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In evidential clustering, cluster-membership uncertainty is represented by Dempster-Shafer mass functions. The notion of evidential partition generalizes other soft clustering structures such as fuzzy, possibilistic or rough partitions. In this paper, we propose two extensions of the Rand index for evaluating and comparing evidential partitions, called similarity and consistency indices. The similarity index is suitable for measuring the closeness of two soft partitions, while the consistency index allows one to assess the agreement, or lack of conflict, between a soft partition and the true hard partition. Simulation experiments illustrate some applications of these indices.

I. INTRODUCTION

Clustering plays an important role in data mining and machine learning. Basically, it consists in finding groups in data. One of the main issues in clustering, as in other tasks such as classification or regression, is the quantification of uncertainty. After some groups have been discovered, how sure are we about the cluster-membership of objects? For instance, in Figure 1, object o i might as well belong to any of the three clusters, while object o j does not seem to belong to any of the clusters: these are two different situations of high uncertainty. In the former case, there is ambiguity because object o i is close to several clusters. In the latter, there is a lack of evidence to assign object o i to any of the clusters, because it is far from all of them.

Over the years, a growing number of clustering concepts and algorithms have been proposed. Early methods, such as the k-means algorithm, unambiguously assign each object to a single cluster, resulting in a hard partition; this approach amounts to neglecting cluster-membership uncertainty. Clustering approaches that explicitly describe cluster-membership uncertainty are collectively referred to as soft clustering [START_REF] Peters | Soft clustering: fuzzy and rough approaches and their extensions and derivatives[END_REF]. In probabilistic [START_REF] Fraley | Model-based clustering, discriminant analysis and density estimation[END_REF] and fuzzy [START_REF] Bezdek | Pattern Recognition with fuzzy objective function algorithm[END_REF] clustering, information about the membership of object o i to clusters is represented by c numbers (u i1 , . . . , u ic ) ∈ [0, 1] c , where c is the total number of clusters, with the following constraint:

c k=1 u ik = 1. (1) 
The interpretation of the u ik 's (as probabilities or as degrees of membership) is different under the probabilistic and fuzzy frameworks, but the mathematical models are formally equivalent. In possibilistic clustering [START_REF] Krishnapuram | A possibilistic approach to clustering[END_REF], [START_REF] Yang | A robust automatic merging possibilistic clustering method[END_REF], condition [START_REF] Peters | Soft clustering: fuzzy and rough approaches and their extensions and derivatives[END_REF] is relaxed; each number u ik can then be interpreted as a degree of possibility that object i belongs to cluster k. Yet another formalism is rough clustering [START_REF] Lingras | Applying rough set concepts to clustering[END_REF], [START_REF] Peters | Is there any need for rough clustering?[END_REF], in which each cluster is represented by two nested sets of objects: a lower approximation ω k , defined as the set of objects that surely belong to cluster k, and an upper approximation ω k , defined as the set of objects that possibly belong to that cluster. This is clearly a special case of possibilistic clustering, where the u ik 's are constrained to be either 0 or 1; then,

ω k = {o i ∈ O, u ik = 1} (2) 
and

ω k = {o i ∈ O, u ik = 1 and u i = 0, ∀ = k}. (3) 
The most general framework to date is evidential clustering [START_REF] Denoeux | EVCLUS: Evidential clustering of proximity data[END_REF]- [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF], which represents cluster-membership information using Dempster-Shafer mass functions [START_REF] Shafer | A mathematical theory of evidence[END_REF], forming an evidential partition (see Section II-A below). Evidential clustering encompasses probabilistic, fuzzy, possibilistic and rough clustering as special cases. Recently, it has been successfully applied in various domains such as machine prognosis [START_REF] Serir | Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory[END_REF], medical image processing [START_REF] Makni | Introducing spatial neighbourhood in evidential c-means for segmentation of multi-source images: Application to prostate multi-parametric MRI[END_REF], [START_REF] Lelandais | Fusion of multi-tracer PET images for dose painting[END_REF] and analysis of social networks [START_REF] Zhou | Median evidential c-means algorithm and its application to community detection[END_REF]. Evidential clustering algorithms include the evidential c-means (ECM) [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF] and EVCLUS [START_REF] Denoeux | EVCLUS: Evidential clustering of proximity data[END_REF], [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF] algorithms. When studying and evaluating clustering algorithms, we need objective methods for comparing different clustering structures. As noted by Rand [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF], such a comparison may try to achieve different goals:

1) We may wish to compare a given hard or soft (fuzzy, possibilistic, rough,...) partition to ground truth (usually, a hard partition); this problem is often referred to as external evaluation in the clustering literature;

2) We may be interested in measuring the sensitivity of the clustering structure to small changes of the data: in this case, we need to compare the clustering structures obtained before and after perturbing the data by some random noise; 3) A variant of the previous situation occurs when we want to evaluate the sensitivity of the clustering to missing data. In that case, we need to compare the clustering of n objects with the cluster assignment of the same objects after n new objects have been added, and the clustering is performed on the n + n objects. 4) Finally, we often need to determine to what extent two different algorithms agree or disagree when applied to the same data. Yet another context in which we need to compare partitions is when we wish to compare different representations of the same objects [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF]: for instance, we may have initially p attributes, and search for a subset of q < p attributes that allows us to obtain a similar clustering structure.

As noted by Anderson et al. [START_REF] Anderson | Comparing fuzzy, probabilistic, and possibilistic partitions[END_REF], the number of comparison indices proposed so far is so large that it is impossible to give an exhaustive account. Even a non-exhaustive, but extensive survey would require a full paper. Here, we will focus on the Rand index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF], which is probably the most widely used comparison index, and which has recently gained revived interest in the bioinformatics community [START_REF] Thalamuthu | Evaluation and comparison of gene clustering methods in microarray analysis[END_REF], [START_REF] Wong | A multi-stage approach to clustering and imputation of gene expression profiles[END_REF], among others. The Rand index measures the similarity between two hard partitions: it is defined as the ratio of the number of objects pairs on which the two partitions agree, to the total number of object pairs. It is thus very simple and easy to interpret, which explains its popularity. In recent years, fuzzy extensions of the Rand index have been proposed (see, e.g., [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], [START_REF] Anderson | Comparing fuzzy, probabilistic, and possibilistic partitions[END_REF], [START_REF] Campello | A fuzzy extension of the rand index and other related indexes for clustering and classification assessment[END_REF], [START_REF] Brouwer | Extending the rand, adjusted rand and jaccard indices to fuzzy partitions[END_REF]). As discussed in [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], most of these extensions are more or less arbitrary (as there are several ways to fuzzify a formula) and are not suitable for all the applications mentioned above. The index proposed in [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF] has some advantages over previous proposals (in particular, it exhibits desirable metric properties), but it is essentially limited to the comparison of fuzzy partitions. In this paper, we propose new indices, grounded in Dempster-Shafer theory, making it possible to comparing evidential partitions. As probabilistic, fuzzy, possibilistic and rough partitions are all special evidential partitions, our approach can be used to evaluate and compare the results of any soft clustering methods.

The rest of this paper is organized as follows. Section II reviews previous work on evidential clustering and fuzzy extensions of the Rand index. Our new indices will then be introduced in Section III. Finally, numerical experiments will be presented in Section IV, and Section V will conclude the paper.

II. BACKGROUND

This section introduces the main background material need in the rest of the paper. In Section II-A, we first recall the notion of evidential partition, and we show that it encompasses all other soft partition types as special cases. In Section II-B, we then review the Rand index and some recent proposals to extend it to fuzzy partitions, and we show that these extended Rand indices are not suitable for comparing arbitrary evidential partitions.

Throughout this paper, it is assumed that the reader has some familiarity with Dempster-Shafer theory. To make the paper self-contained, a reminder of the main concepts of this theory is included as an appendix.

A. Evidential clustering

Let O = {o 1 , . . . , o n } be a set of n objets. We assume that each object belongs to at most one of c clusters. The set of clusters is denoted by Ω = {ω 1 , . . . , ω c }. In evidential clustering, the uncertainty about the cluster membership of each object o i is represented by a mass function m i in Ω. The n-tuple M = (m 1 , . . . , m n ) is called an evidential (or credal) partition.

Example 1: Consider, for instance, the "Butterfly" dataset shown in Figure 2(a), composed of n = 12 objects. Figure 2(b) shows the credal partition with c = 2 clusters produced by the Evidential c-means (ECM) algorithm [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF]. In this figure, the masses m i (∅), m i ({ω 1 }), m i ({ω 2 }) and m i (Ω) are plotted as a function of i, for i = 1, . . . , 12. We can see that m 3 ({ω 1 }) ≈ 0.8, which means that object o 3 is strongly believed to belong to cluster ω 1 . Similarly, m 9 ({ω 2 }) ≈ 0.8, indicating strong evidence of object o 9 belonging to cluster ω 2 . In contrast, objects o 6 and o 12 correspond to two different situations of maximum uncertainty. Object o 6 has a large mass assigned to Ω: this reflects ambiguity in the class membership of this object, which means that it might belong to ω 1 as well as to ω 2 . The situation is completely different for object o 12 , for which the largest mass is assigned to the empty set, indicating that this object does not seem to belong to any of the two clusters.

Because of the generality of the notion of mass function, the concept of evidential partition encompasses all other notions of hard and soft partition:

• If all mass functions m i are certain, then we have a hard partition, with u ik = 1 if m i ({ω k }) = 1, and u ik = 0 otherwise. • If all mass functions m i are Bayesian, then the evidential partition is equivalent to a fuzzy partition, with u ik = m i ({ω k }), for i ∈ {1, . . . , n} and k ∈ {1, . . . , c}. • If all mass functions m i are logical with a single focal set A i ⊆ Ω, then we get a rough partition. The lower and upper approximations of cluster k can be defined, respectively, as

ω k = {o i ∈ O|A i = {ω k }}, (4a) 
and

ω k = {o i ∈ O|ω k ∈ A i }. (4b) 
• If each m i is consonant, then it is equivalent to a possibility distribution, and it can be uniquely represented by the plausibility of the singletons pl ik = P l i ({ω k }) for i ∈ {1, . . . , n} and k ∈ {1, . . . , c}. Each number pl ik is the plausibility that object i belongs to cluster k; these numbers form a possibilistic partition of the n objects. Several algorithms have been proposed for constructing evidential partitions of attribute or proximity data. The Evidential c-means (ECM) algorithm [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF] is a variant of the hard and fuzzy c-means algorithms, in which not only clusters, but also sets of clusters are represented by prototypes. A relational version of ECM, the Relation Evidential c-Means (RECM) algorithm, can handle proximity data [START_REF] Masson | RECM: relational evidential c-means algorithm[END_REF]. This is also the case for another procedure, EVCLUS, which constructs an evidential partition is such a way that the degrees of conflict between any two mass functions m i and m j match the dissimilarity d ij between objects o i and o j [START_REF] Denoeux | EVCLUS: Evidential clustering of proximity data[END_REF]. Whereas the initial version of EVCLUS was limited to small datasets and small numbers of clusters, a recent version, k-EVCLUS, overcomes these limitations and can handle large proximity datasets [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF]. A third method, EK-NNclus [START_REF] Denoeux | EK-NNclus: a clustering procedure based on the evidential k-nearest neighbor rule[END_REF], is an unsupervised version of the evidential K nearest neighbor rule [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF]. All these algorithms are available in the R package evclust [START_REF]evclust: Evidential Clustering[END_REF].

An evidential partition is a quite complex clustering struc-ture, which often needs to be summarized in some way to become interpretable by the user. This can be achieved by transforming each of the mass functions m i in the evidential partition into a simpler representation. For instance, a possibilistic partition can be obtained by equating the membership degrees to the plausibilities: u ik = pl i (ω k ) for all i and all k. After normalization, we get a fuzzy partition, and a hard partition is obtained by selecting, for each object, the cluster with maximum plausibility. To get a rough partition, we have to select a set of possible clusters for each object. This can be achieved either by selecting the focal set with the highest mass [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF], or by using a decision rule such as the interval dominance rule [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF].

B. Rand index and fuzzy extensions

In this section, we represent a c-partition of n objects by a binary matrix U = (u ik ) ∈ {0, 1} n×c such that u ik = 1 if object i is assigned to cluster k, and u ik = 0 otherwise. Similarly, a fuzzy or possibilistic partition can be represented by a matrix U = (u ik ) ∈ [0, 1] n×c . Without any risk of confusion, we will identify a partition (crisp or fuzzy) with its matrix representation U .

The Rand index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF] is a measure of similarity between hard partitions. Given two such partitions U and U (with possibly different numbers of clusters), let us denote by a the number of object pairs that are clustered together in both U and U , and let b denote the number of object pairs that are in different clusters in both U and U . Then, the Rand index is defined by

ρ(U , U ) = a + b n(n -1)/2 . ( 5 
)
As noted by Rand [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF], ρ is a measure of similarity, with ρ(U , U ) = 1 if U = U , and ρ(U , U ) = 0 when U and U have no similarities, i.e., when one partition consists of a single cluster, and the other one consists of n clusters containing single points. Also, 1 -ρ is a metric in the space of partitions of the n objects.

As mentioned in the introduction, several authors [START_REF] Anderson | Comparing fuzzy, probabilistic, and possibilistic partitions[END_REF], [START_REF] Campello | A fuzzy extension of the rand index and other related indexes for clustering and classification assessment[END_REF], [START_REF] Brouwer | Extending the rand, adjusted rand and jaccard indices to fuzzy partitions[END_REF], [START_REF] Frigui | Clustering and aggregation of relational data with applications to image database categorization[END_REF] have proposed extensions of index ρ to measure the similarity between fuzzy partitions. Most of these proposals consist in starting with some formal expression for ρ, and fuzzifying it. For instance, Anderson et al. [START_REF] Anderson | Comparing fuzzy, probabilistic, and possibilistic partitions[END_REF] observe that a and b in (5) can be written as

a = 1 2 k, n k (n k -1) (6a) and b = 1 2   n 2 + k, n 2 k - k n 2 k• - n 2 •   , (6b) 
where n k is the number of objects i such that u ik = u i = 1, n k• = n ij and n • = k n k . Now, the confusion matrix N = (n k ) can be obtained as

N = U U T , (7) 
Equations ( 7) can still be used together with (6a)-(6b) when matrices U and U are replaced by U and U with elements in [0, 1] and represent fuzzy or possibilistic partitions, which allows one to obtained a fuzzy version ρ F of the Rand index, or of any index based on the confusion matrix N = (n k ). One advantage of this approach is that ρ F can be computed in time proportional to the number n of objects, in contrast with previous methods whose complexity was O(n 2 ). However, as noticed by Hüllermeier [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], this method for fuzzifying the Rand index also has shortcomings. It is partially arbitrary, because a and b can be expressed in different ways as a function of the n k , resulting in different values in the fuzzy case. Also, the semantics of the index is not clear in the fuzzy case; for instance, the quantity n k (n k -1) can be negative when 0 < n k < 1, and so can a. Finally, and maybe more importantly, 1 -ρ F is no longer a metric in the space of fuzzy partitions; in particular, we have in general ρ F ( U , U ) < 1, which means that a fuzzy partition is not fully similar to itself; this issues makes index ρ F unsuitable to some applications, such as comparing the fuzzy clusterings produced by two algorithms.

A different approach, proposed by Hüllermeier et al. [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], is to consider the Rand index as a measure of similarity between equivalence relations. Let R = (r ij ) be the n×n binary matrix representing the equivalence relation associated to U , defined by r ij = 1 if objects i and j and clustered together in U , and r ij = 0 otherwise. In the sequel, R will be called the relational representation of U . Similarly, let R = (r ij ) be the relational representation of U . Then, the Rand index can be written as

ρ(U , U ) = 1 - i<j |r ij -r ij | n(n -1)/2 . ( 8 
)
When U ∈ [0, 1] n×c represents a fuzzy partition, we can still define a relation representation R = ( r ij ) ∈ [0, 1] n×n as follows. Let u i = (u i1 , . . . , u ic ) be the vector of membership degrees for object i. Then,

r ij = 1 -δ(u i , u j ), (9) 
where δ is a metric in [0, 1] c taking values in [0, 1]. Equation ( 8) and ( 9) together define a comparison index ρ H between fuzzy partitions,

ρ F ( U , U ) = 1 - i<j | r ij -r ij | n(n -1)/2 , ( 10 
)
which boils down to the Rand index when the partitions are hard. As shown in [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF],

d H = 1 -ρ H is a pseu- dometric, i.e., it verifies reflexivity (∀ U , d H ( U , U ) = 0), symmetry (∀ U , U , d H ( U , U ) = d H ( U , U )) and the tri- angular inequality (∀ U , U , U , d H ( U , U ) ≤ d H ( U , U ) + d H ( U , U )).
It is not a metric in general, because it does not satisfy separability: we may have d H ( U , U ) = 0 for U = U . The reason for this property is that have some information is lost when transforming U into its relational representation R, and two different fuzzy partitions may share the same relational representation (except under some restricting conditions analyzed in [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF]).

Index ρ H has several advantages over ρ F : its meaning is clearer, as it is simply a measure of similarity between relational representations. Even more importantly, its pseudometric properties make it more suitable for comparing fuzzy partitions produced by different clustering algorithms, or for sensitivity analysis. However, it obviously cannot be applied to general evidential partitions, and even its application to possibilitic partitions seems problematic. Consider, for instance, two objects i and j, and their possibility degree vectors computed by two clustering algorithms:

• Algorithm 1:

u i = (1, 0, 0), u j = (0, 1, 0); • Algorithm 2: u i = (1, 0, 0), u j = (1, 1, 1). Defining δ as δ(u i , u j ) = 1 c c k=1 u ik -u jk to have a metric taking values in [0, 1], we get δ(u i , u j ) = δ(u i , u j ) = 2/3 and, consequently, r ij = r ij = 1/3.
We thus consider that the two algorithms agree on this object pair. However, Algorithm 1 assigns the two objects to different clusters, whereas Algorithm 2 is undecided about object j. These two situations are arguably very different, yet this difference is not reflected in the relational representations.

III. EVIDENTIAL EXTENSIONS OF THE RAND INDEX

In this section, we introduce two new extensions of the Rand index for comparing evidential partitions. As in [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], our extensions will be based on the comparison of relational representations. To this aim, we first need to define the relational representation of an evidential partition, which will be the subject of Section III-A. The new definitions will then be introduced in Sections III-B and III-C.

A. Relational representation of an evidential partition

Let Ω = {ω 1 , . . . , ω c } be the set of clusters, and let m i and m j be two mass functions quantifying our beliefs about the cluster-membership of objects i and j. We wish to express our beliefs on the frame Θ = {s, ¬s}, where s and ¬s mean, respectively, "the two objects belong to the same cluster", and "the two objects belong to different clusters". The set Θ is a coarsening of Ω 2 , characterized by the following refining,

f (s) = S (11a) f (¬s) = S, (11b) 
where S = {(ω k , ω k ), k = 1 . . . , c} and S denotes the complement of S (see Figure 3). To express our belief on Θ, we need to compute the extensions of m i and m j in Ω 2 , combine them using Dempster's rule [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF], and then compute the restriction of the combined mass function on Θ. The result is expressed by the following proposition. Proposition 1: Let m i and m j be two mass functions on Ω, and let Θ = {s, ¬s} be the coarsening of Ω 2 defined by [START_REF] Shafer | A mathematical theory of evidence[END_REF]. The mass function on Θ obtained by combined mass function m i and m j by Dempster's rule is

m ij (∅) = m i (∅) + m j (∅) -m i (∅)m j (∅) (12a) m ij ({s}) = c k=1 m i ({ω k })m j ({ω k }) (12b) m ij ({¬s}) = A∩B=∅ m i (A)m j (B) -m ij (∅) (12c) m ij (Θ) = A∩B =∅ m i (A)m j (B) -m ij (s). (12d) ω 1 ω 2 ω 3 ω 4 ω 1 ω 2 ω 3 ω 4
Ω Ω S Fig. 3. Product space Ω 2 , and subset S corresponding to the hypothesis that two objects belong to the same cluster.

Proof. Let A be a focal set of m i and B be a focal set of m j . After extension on Ω 2 and combination by Dempster's rule, the product m i (A)m j (B) is assigned to the focal set

C = (A × Ω) ∩ (Ω × B) = A × B.
We can distinguish four cases:

1) If A = ∅ or B = ∅, then C = ∅; 2) If A = B = {ω k }, then C = {(ω k , ω k )} ⊂ S hence, the mass m i (A)m j (B) is transferred to s; 3) If A ∩ B = ∅, A = ∅ and B = ∅, then C ⊂ S and C = ∅; hence, the mass m i (A)m j (B) is transferred to ¬s; 4) If A ∩ B = ∅ and (|A| > 1 or |B| > 1), then C ∩ S = ∅ and C ∩ S = ∅; hence, the mass m i (A)m j (B) is transferred to Θ.
By considering all focal sets A and B and summing up the masses, we get [START_REF] Serir | Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory[END_REF]. Given an evidential partition M = (m 1 , . . . , m 2 ), the tuple R = (m ij ) 1≤i<j≤n will be called the relational representation of M . To better understand the nature of this representation, let us consider the following special cases:

• If M corresponds to a hard partition, i.e., if the mass functions m i are certain, then

m ij ({s}) = r ij , m ij ({¬s}) = 1 -r ij , (13) 
with r ij = 1 if objects i and j are in the same cluster, and r ij = 0 otherwise; consequently, R contains the same information as the binary matrix R = (r ij ) representing the equivalence relation corresponding to the hard partition. • If M corresponds to a fuzzy partition, i.e., if the mass functions m i are Bayesian, then m ij is also Bayesian:

m ij ({s}) = c k=1 u ik u jk , m ij ({¬s}) = 1 - c k=1 u ik u jk ;
• If M corresponds to a rough partition, i.e., if each mass functions m i has a single focal set A i ⊆ Ω, then

m ij ({s}) = 1 if A i = A j = {ω k } m ij ({¬s}) = 1 if A i ∩ A j = ∅ m ij (Θ) = 1 otherwise.
Example 2: As an illustrative example, consider the evidential partition M = (m 1 , m 2 , m 3 ) with n = 3 objects and c = 2 clusters shown in Table I. Both objects 1 and 2 seem to belong to cluster ω 1 , while object 3 more likely belongs to cluster ω 2 . There is also some evidence that object 1 might belong to none of the two clusters (as shown by the mass m 1 (∅)), as well as some ignorance about the cluster membership of Remark 1: Given a relational representation R, can we uniquely recover the evidential partition M ? For n = 2, it is easy to find counterexamples in which several choices of m 1 and m 2 correspond to the same mass function m 1,2 . Consider, for instance, the following pair of mass functions on Ω = {ω 1 , ω 2 , ω 3 }:

A ∅ {ω 1 } {ω 2 } {ω 1 , ω 2 } m 1 (A) 0.3 0.6 0.1 0.0 m 2 (A) 0.0 0.7 0.1 0.2 m 3 (A) 0.0 0.1 0.6 0.3
m 1 ({ω 1 , ω 2 }) = 0.5, m 1 (Ω) = 0.5 m 2 ({ω 3 }) = 0.5, m 2 (Ω) = 0.5.
We have m 12 (∅) = m 12 ({s}) = 0, m 12 ({¬s}) = 0.5 × 0.5 = 0.25 and m 12 (Θ) = 1 -0.25 = 0.75. We can see that the pairwise mass function m 12 depends only, in this case, on the product m 1 ({ω 1 , ω 2 }) × m 2 ({ω 3 }). Consequently, all pairs of mass functions m 1 and m 2 such that

m 1 ({ω 1 , ω 2 }) = u, m 1 (Ω) = 1 -u m 2 ({ω 3 }) = 0.25/u, m 2 (Ω) = 1 -0.25/u
for some u ∈ [0.25, 1] yield the same pairwise mass function m 12 . We conjecture that the relation between M and R becomes one-to-one (up to a permutation of cluster labels) for large n, subject to some condition on n and c. However, proving this conjecture is an open problem.

B. Similarity index between evidential partitions

Having computed the relational representations R and R of two credal partitions M and M , we can compare M and M from their relational representations. A first idea, somewhat similar to the one developed in [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], is to define a similarity between relational representations. Given a distance δ between mass functions taking values in [0, 1], we could define a generalized Rand index as

ρ S (M, M ) = 1 - i<j δ(m ij , m ij ) n(n -1)/2 . ( 14 
)
Many distances between mass functions have been proposed: the extensive survey presented in [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF] lists more than 60 of them. Here, we will consider two of the most widely used belief function distances, which also have the property of being full metrics: Jousselme's distance [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF] and the belief distance [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF], defined as follows.

1) Let us arrange the masses m ij (A) for A ⊆ Θ in a vector

m ij = (m ij (∅), m ij ({s}), m ij ({ns}), m ij (Θ)) T . Jous- selme's distance between m ij and m ij is δ J (m ij , m ij ) = 1 2 (m ij -m ij ) T J (m ij -m ij ) 1/2
(15) where J is the Jaccard matrix

J =     1 0 0 0 0 1 0 1/2 0 0 1 1/2 0 1/2 1/2 1     .
2) The belief distance between between m ij and m ij is

δ B (m ij , m ij ) = 1 2 A⊆Θ | Bel ij (A) -Bel ij (A) |, (16) 
where Bel ij and Bel ij are, respectively, the belief functions [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF] associated to m ij and m ij , and the multiplica-

tive constant 1/2 ensures that δ B (m ij , m ij ) ∈ [0, 1].
This distance can be expressed as a function of the masses as

δ B (m ij , m ij ) = 1 2 {| m({s}) -m ({s}) | + | m({¬s}) -m ({¬s}) | + | m(∅) -m (∅) |} . ( 17 
)
In the following, we will denote by ρ J S and ρ B S the similarity indices ρ S defined by ( 14)- [START_REF] Zhou | Median evidential c-means algorithm and its application to community detection[END_REF], and ( 14)- [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], respectively. Both indices take values in [0, 1] and generalize the Rand index (they become the Rand index when M and M correspond to hard partitions). Furthermore, Jousselme's distance δ J was shown in [START_REF] Bouchard | A proof for the positive definiteness of the jaccard index matrix[END_REF] to be a metric, as a consequence of the positivedefiniteness of J , and so is δ B . Consequently, 1 -ρ J S and 1 -ρ B S are pseudometric (they are reflexive, symmetric and they verifiy the triangular inequality).

Example 3: As a continuation of Example 2, assume that we now have a second evidential partition M = (m 1 , m 2 , m 3 ) of the same three objects, shown in Table III, with the corresponding relational representation R shown in Table IV. The distances between the pairwise mass functions are Similarity indices such as ρ J S and ρ B S thus allow us to measure the closeness of two soft (fuzzy, possibilistic, rough or, more generally, evidential) partitions. The corresponding distances being pseudometrics, they are suitable, for instance, for comparing the results of several clustering algorithms, or for analyzing the sensitivity of the clustering to perturbations of the data. However, when comparing a ground truth hard partition with an evidential partition, the notion of distance may not always be relevant. Assume, for instance, that two objects i and j are known to belong to the same group, which we denote by m * ij ({s}) = 1. Consider two clustering algorithms, producing the following results about the pair (i, j):

A ∅ {ω 1 } {ω 2 } {ω 1 , ω 2 } m 1 (A) 0 0.2 0.7 0.1 m 2 (A) 0 0.2 0.8 0.0 m 3 (A) 0 0.6 0.2 0.2
• Algorithm 1: m ij ({s}) = 0.5, m ij ({¬s}) = 0.5; • Algorithm 2: m ij (Θ) = 1.
The result of Algorithm 1 is partially in conflict with the truth, as it assigns some mass to the singleton {¬s}. In contrast, Algorithm 2 is more cautious, and produces a mass function m ij that is imprecise, but consistent with the truth. Yet, these two results are not distinguished by criterion ρ B S , as

δ B (m * ij , m ij ) = δ B (m * ij , m ij ) = 0.
5. With Jousselme's distance, we find δ J (m * ij , m ij ) = 0.5 and δ J (m * ij , m ij ) = 0.71, but these values do not seem to indicate that m ij is preferable to m ij in any way. To address this issue, a new criterion will be introduced in the next section.

C. Consistency index between evidential partitions

To measure the consistency between an evidential partition and a true hard partition, another notion than that of distance might thus be suitable. We propose to use the notion of degree of conflict [START_REF] Bouchard | A proof for the positive definiteness of the jaccard index matrix[END_REF], which leads to another generalized Rand index:

ρ C (M, M ) = 1 - 2 i<j κ(m ij , m ij ) n(n -1) . ( 18 
)
where

κ(m ij , m ij ) = A∩B=∅ m ij (A)m ij (B) = m T ij C m ij , (19) 
with

C =     1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0     .
This is a proper generalization of the Rand index, as in the case of hard partitions κ(m ij , m ij ) = 0 if r ij = r ij and κ(m ij , m ij ) = 1 otherwise. In the special case where we compare an evidential partition M with a true hard partition M * , index ρ C has a simpler expression. Let m * ij ({s}) = r * ij and m * ij ({¬s}) = 1 -r * ij , where r * ij = 1 if objects i and j truly belong to the same cluster, and r * ij = 0 otherwise. Then, the degree of conflict between m ij and m * ij is

κ(m ij , m * ij ) = m ij (∅) + m ij ({¬s}) if r * ij = 1, m ij (∅) + m ij ({s}) if r * ij = 0 (20) = 1 -pl ij (s) if r * ij = 1, 1 -pl ij (¬s) if r * ij = 0. (21) 
Consequently,

ρ C (M, M * ) = 1- i<j,r * ij =1 (1 -pl ij (s)) + i<j,r * ij =0 (1 -pl ij (¬s)) n(n -1)/2 , (22) 
which can be simplified to

ρ C (M, M * ) = i<j pl ij (s) r * ij pl ij (¬s) 1-r * ij n(n -1)/2 . ( 23 
)
The meaning of ( 23) is clear: the consistency ρ C (M, M * ) between M and the true partition M * is high when pl ij (s) is high whenever r * ij = 1, and pl ij (¬s) is high whenever r * ij = 0. If the evidential partition M is vacuous, i.e., if m ij (Θ) = 1 for all i < j, meaning that we are in a state of total ignorance regarding the membership of objects to clusters, then ρ C (M, M * ) = 1: since M encodes total ignorance, it is perfectly consistent with the truth, whatever it is. It is obvious from this special case that 1 -ρ C is not a distance: it is a measure of conflict, and ρ C can be seen as a measure of consistency between two evidential partitions.

As ρ C (M, M ) is, in general, strictly less than one, index ρ C is not suitable to compare, for instance, two evidential partitions generated by two algorithms. But it does make sense to use ρ C (M, M * ) to measure how consistent the evidential partition M is, with respect to the true hard partition M * . A cautious clustering algorithm, which produces imprecise evidential partitions, will tend to have high ρ C scores. When comparing the performances of two clustering algorithms generating evidential partitions M and M , we should, therefore, also take into account the imprecision of the evidential partitions. As mentioned in Section A, imprecision can be measured by nonspecificity [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF]. The imprecision of a credal partition can thus be defined from the average nonspecificity of the m ij 's,

N (M ) = i<j N (m ij ) n(n -1)/2 = i<j [m ij (∅) + m ij (Θ)] n(n -1)/2 , (24) 
which ranges in [0, 1]. We note that, for crisp and fuzzy partitions, we have N (M ) = 0.

The quality of an evidential partition M can thus be described by two numbers: ρ C (M, M * ) and N (M ), both taking values in [0, 1]. Given two evidential partitions M and M , M can be considered to be preferable to M if it is both more consistent with the truth, and more precise, i.e., if [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF] and M is strictly more preferable than M if at least one of the inequalities on (25) is strict. 

ρ C (M, M * ) ≥ ρ C (M , M * ) and N (M ) ≤ N (M ),

IV. NUMERICAL EXPERIMENTS

As noted by Hüllermeier et al. [START_REF] Hüllermeier | Comparing fuzzy partitions: A generalization of the rand index and related measures[END_REF], there is no gold standard to which an external validity index such as a generalized Rand index can be compared. The best we can do is to show that the indices introduced in Sections III-B and III-C above provide useful information for assessing and comparing soft partitions produced by a variety of clustering algorithms. This is our objective in the section. Two experiments will be presented. In Section IV-A, we will show that similarity index ρ S can be used to compare hard and soft partitions produced by various algorithms and to generate informative graphical representations. In Section IV-B, we will use consistency index ρ C together with the nonspecificity measure to compare evidential and rough clustering algorithms for different values of their tuning parameters.

A. Experiment 1

As an example, we consider the Seeds data from the UCI Repository of machine learning databases [START_REF] Murphy | UCI Repository of machine learning databases[END_REF]. This dataset consists of 7 attributes observed for 210 kernels belonging to three different varieties of wheat, with 70 elements each. Figure 4 shows the three clusters in the space spanned by the first four principal components of the data.

The clustering algorithms used in this experiment are shown in Table V. The simulations were done using the R environment [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. Each algorithm was run using the default parameter values. For the EM algorithm, we used the Gaussian mixture model with spherical classes of equal volume, which is the most similar to the assumptions of FCM. For hierarchical clustering, we used the Ward distance and we cut the dendrogram to obtain three clusters. For ECM, we used the version with masses assigned to all subsets of Ω, except Ω itself. For EVCLUS, we specified the focal sets to be the empty set, the singletons and Ω. The evidential partitions generated by ECM and EVCLUS were transformed into hard (ECMh, EVCh), fuzzy (ECMf, EVCf) and rough (ECMr, EVCr) partitions, as explained in Section II-A. We thus obtained a total of 15 hard [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF] kevclus evclust [26] FCM [START_REF] Bezdek | Numerical taxonomy with fuzzy sets[END_REF] FKM fclust [START_REF] Ferraro | A toolbox for fuzzy clustering using the R programming language[END_REF] Fuzzy k-medoids [START_REF] Krishnapuram | Low-complexity fuzzy relational clustering algorithms for web mining[END_REF] FKM.med fclust [START_REF] Ferraro | A toolbox for fuzzy clustering using the R programming language[END_REF] π-Rough k-means [START_REF] Peters | Rough clustering utilizing the principle of indifference[END_REF] RoughKMeans_PI SoftClustering [39] EM [START_REF] Fraley | Model-based clustering, discriminant analysis and density estimation[END_REF] Mclust mclust [START_REF] Fraley | mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation[END_REF] 0 and soft partitions (including the true one). These partitions and the corresponding notations are recapitulated in Table VI. The similarity indices ρ J S between these partitions are shown in Table VII. As shown in Figure 5, indices ρ J S and ρ J B are highly correlated. Figures 6(a) and 6(b) display Multidimensional Scaling (MDS) configurations of, respectively, the distances 1 -ρ J S and 1 -ρ J B between the 15 partitions, computed using Kruskal's nonmetric method [START_REF] Cox | Multidimensional scaling[END_REF]. We recall that MDS finds a configuration of points in a low-dimensional space, such that Euclidean distances between the points match the observed distances or dissimilarities between the objects. Comparing Figures 6(a) and 6(b), we can see that the MDS configurations computed from similarity indices ρ J S and ρ J B are quite similar, which seems to indicate that these two indices can be used interchangeably.

From Figure 6, we can see that partitions of the same type (evidential, fuzzy, rough, hard) are mapped together in the MDS representation, i.e., they are similar according to index ρ S , whereas partitions of different types are mapped in different regions of the configuration space. (The partition derived from the EM algorithm is clustered with hard partitions because most of the estimated cluster membership probabil- ities are close to 0 or 1.) Evidential partitions (ECM, EVC) are the most dissimilar to the true one, but hard partitions derived from them (ECMh, EVCh) are quite similar to the hard partition generated by the HCM algorithm, and have similar values of the Rand index. In the same way, fuzzy and rough partitions derived from evidential partitions are similar to those generated by the FCM and π-RCM algorithms, respectively. This finding confirms the idea that evidential clustering extracts rich information from the data, which can be summarized into different clustering structures (hard, fuzzy, rough). A related finding is that the similarity to the true partition according to ρ B S or ρ J S is not a good criterion to rank clustering algorithms of different types: the similarity between a soft partition and the true one may be low, even through the true partition can be approximated quite accurately by summarizing the soft partition.

Figure 7 shows another representation of the 15 hard and soft partitions, according to nonspecificity (x-axis) and consistency with the true partition (y-axis). Hard and fuzzy partitions all have zero nonspecificity: consequently, they are located on the line x = 0. Once again we can see that rough, fuzzy and hard partitions extracted from ECM and EVCLUS are quite similar to partitions generated by the RCM, FCM and HCM algorithms, respectively. The rough partition extracted from ECM (ECMr) has the highest degree of consistency, but it is also the most imprecise. Consequently, it is not comparable to any of the other soft partitions. Similarly, the evidential partitions generated by ECM and EVCLUS are not comparable: the evidential partition generated by ECM is slightly more consistent than that produced by EVC, but it is also less precise.

Figure 7 also reveals that hard partitions generally have a higher degree of consistency with the true partition, as compared to fuzzy partitions. In a similar way, rough partitions are more consistent than evidential partitions. This effect can be easily explained: assume that two objects i and j actually belong to the same class, i.e., m * ij ({s}) = 1. Consider the following pairwise mass function:

m ij ({s}) = 0.5, m ij ({¬s}) = 0.2, m ij (Θ) = 0.3. The degree of conflict between m * ij and m ij is κ ij = 1 -pl ij (s) = 0.
2. Now, for the derived rough partition, we will have m ij (Θ) = 1, and the degree of conflict will be κ ij = 1 -pl ij (s) = 0. This observation suggest that preference relation [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF] might be specially relevant to compare evidential partitions (with graded membership values) with fuzzy partitions, and rough partitions (with 0-1 membership values) with hard partitions.

B. Experiment 2

When comparing imprecise predictions of some quantities, we usually need to take into account both precision and accuracy. For instance, when predicting a real number x by an interval I, we need to consider not only whether I contains x, but also the length of I. If two intervals I 1 and I 2 both contain x, I 1 may be considered a better prediction than I 2 if it is smaller. A similar issue arises when comparing evidential partitions. A more imprecise evidential partition will usually be more consistent with the true partition; consequently, nonspecificity and consistency both need to be taken into account when assessing the quality of an evidential partition. Evidential clustering algorithms such as ECM [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF] and EVCLUS [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF] have a parameter that allows one to tune the nonspecificity of the evidential partition. Larger nonspecificity results in smaller conflict. When comparing two algorithms, we thus need to compute the pairs (N (M ), ρ C (M, M * )) for a range of parameter values.

In this second experiment, we considered the ECM and EVCLUS algorithms. ECM [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF] minimizes the following cost function:

J ECM (M, V ) = n i=1 f j=1 |A j | α [m i (A j )] β d 2 ij + n i=1 δ 2 [m i (∅)] β , (26) 
where A 1 , . . . , A f are f nonempty subsets of Ω, d ij denotes the Euclidean distance between attribute vector x i and the prototype v j representing the set of clusters A j , and V = (v 1 , . . . , v f ). In [START_REF]evclust: Evidential Clustering[END_REF], coefficient α controls the imprecision of the evidential partition: a larger value of α penalizes focal sets A j with a large cardinality, resulting in a more specific evidential partition. In this experiment, the focal sets A j were defined as subsets of Ω with cardinality one or two. Parameters β and δ were set to 1 and to the maximum of distances x ix j , respectively. EVCLUS [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF] minimizes the stress function

J(M ) = i<j (κ ij -δ ij ) 2 , ( 27 
)
where κ ij is the degree of conflict [START_REF] Bouchard | A proof for the positive definiteness of the jaccard index matrix[END_REF] between mass functions m i and m j , and δ ij is the transformed dissimilarity between objects o i and o j . Usually, δ ij is defined from distances d ij through the transformation δ ij = 1 -exp(-γd 2 ij ), where γ is determined in such a way that δ ij = 0.95 when d ij equals some predefined value d 0 . Parameter d 0 is interpreted as follows: two objects o i and o j such that d ij ≥ d 0 have a plausibility at least 0.95 of belonging to different clusters. Parameter d 0 influences nonspecificity, larger values of d 0 resulting in less specific evidential partitions. Here, d 0 was set to the q-quantile of the distances d ij , with q ∈ [0.9, 1].

As an illustration, three datasets from the UCI Repository of machine learning databases [START_REF] Murphy | UCI Repository of machine learning databases[END_REF] were used in this experiment: Seed (see Section IV-A), Ecoli and Wine. The Ecoli dataset contains data about protein localization sites in E. coli bacteria. We used only the quantitative attributes (2, 3, 6, 7, and 8) and the four most frequent classes: 'im', 'pp', 'imU' and 'cp', resulting in a dataset with 307 objects and 5 attributes. The Wine data are results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The dataset contains 13 attributes (the quantities of 13 constituents) and 178 objects (wines).

We applied ECM and EVCLUS to each of these three datasets. For ECM, parameter α was varied between 0 and 3. For EVCLUS, we varied q between 0.9 and 1. The results are shown in Figures 8,[START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF] show the same information for the rough partitions derived from the evidential partitions generated by ECM and EVCLUS. We also show the fuzzy partition generated by the Fuzzy c-means algorithm with the evidential partitions, and the hard partition generated by the Hard c-means with the rough partitions. (As remarked in Section IV-A, evidential partitions with graded membership values are comparable to fuzzy partitions, while rough partitions with 0-1 membership values are comparable to hard partitions.) Hard and fuzzy partitions have zero nonspecificity: they are thus located on the vertical axes in Figures 8910. We can see that evidential (respectively, rough) partitions outperform fuzzy (respectively, hard) partitions in terms of consistency, and this advantage can be further enhanced by increasing nonspecificity.

Figures 8-10 reveal similar patterns. For each of the two algorithms ECM and EVCLUS, it possible to tune parameters so as to increase the consistency ρ C (M, M * ) with the true partition, at the price of also increasing the nonspecificity (imprecision) of the evidential partition. For the three datasets, EVCLUS outperforms ECM in terms of the evidential partitions: for comparable nonspecificity, evidential partitions generated by EVCLUS are more consistent with the true partition than those generated by ECM (Figures 8(a)-10(a)). However, the opposite effect if observed for the rough partitions: those derived from ECM are more consistent than those derived from EVCLUS (Figures 8(b)-10(b)). Overall, the two algorithms thus appear to be roughly equivalent for these three datasets. We can remark that these nonspecificity-consistency curve provide a rich description of the quality of evidential partitions generated by a clustering algorithm with different parameter tunings.

V. CONCLUSIONS

The Dempster-Shafer theory of belief functions [START_REF] Shafer | A mathematical theory of evidence[END_REF] provides a very general framework for representing and reasoning with uncertainty. In evidential clustering, this framework is exploited to represent uncertain assignment of objects to clusters. In previous work, this approach has allowed us to devise new clustering procedures such as ECM [START_REF] Masson | ECM: an evidential version of the fuzzy c-means algorithm[END_REF], EVCLUS [START_REF] Denoeux | EVCLUS: Evidential clustering of proximity data[END_REF], [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF] and Ek-NNclus [START_REF] Denoeux | EK-NNclus: a clustering procedure based on the evidential k-nearest neighbor rule[END_REF]. In this paper, we have shown that the Dempster-Shafer framework also makes it possible to evaluate and compare soft partitions produced by a wide range of methods, including probabilistic, fuzzy, possibilistic and rough clustering algorithms. The Rand index is probably the most widely used external cluster validity measure in a hard clustering context. It can be seen both as a similarity measure, allowing one to measure the closeness of two hard partitions, and as a measure of agreement or consistency between a hard partition computed by some algorithm and the true one. When moving from hard to evidential partitions, the two notions need to be distinguished: by making an evidential partition more imprecise, we can make it more consistent with the true partition, while increasing the distance to it. We thus need two indices: a similarity index and a consistency index. To define such indices, we have introduced the notion of relational representation of an evidential partition, defined as a set of pairwise mass functions indicating whether any two objects belong to the same class or not, with some uncertainty. The mean distance between such pairwise mass functions for two evidential partitions allows one to define a similarity index, while the mean degree of conflict yields a consistency index. The former is suitable for comparing partitions produced by different soft clustering algorithms, or by the same algorithm with different initial conditions or parameter values, while the latter makes it possible to compare a soft clustering to the ground truth partition, when available. We hope that the unified approach introduced in this paper will stimulate research on the comparison of clustering methods based on different frameworks, including the fuzzy, possibilistic and rough settings. Another potential application concerns the combination of heterogeneous soft partitions computed by various clustering procedures. This topic is left for further study.

APPENDIX DEMPSTER-SHAFER THEORY

Let Ω be a finite set. A mass function [START_REF] Shafer | A mathematical theory of evidence[END_REF] is a mapping m from the power set of Ω, denoted as 2 Ω , to the interval [0, 1], such that A⊆Ω m(A) = 1. The subsets A of Ω such that m(A) > 0 are called the focal sets of m. Typically, Ω is a set of possible answers to some question, and m(A) is interpreted as a share of a unit mass of belief allocated to the hypothesis that the truth is in A based on some evidence, and which cannot be allocated to any strict subset of A. If m(∅) = 0, the mass function is said to be normalized. This condition will not be imposed in this paper. A mass function m is said to be logical if it has only one focal set; Bayesian if its focal sets are singletons; certain if it is both logical and Bayesian, i.e., if it has only one focal set, and this focal set is a singleton; consonant if its focal sets are nested.

The imprecision of a mass function can be measured by its nonspecificity [START_REF] Dubois | A note on measures of specificity for fuzzy sets[END_REF], defined for a normalized mass function as

N (m) = A⊆Ω m(A) log 2 |A|, (28) 
where |A| denotes the cardinality of A. This function was shown by Ramer [START_REF] Ramer | Uniqueness of information measure in the theory of evidence[END_REF] to be the only one satisfying some axioms. Klir and Wierman [44, page 51] proposed to extend it to unnormalized mass function as

N (m) = A⊆Ω,A =∅ m(A) log 2 |A| + m(∅) log 2 |Ω|. ( 29 
)
The rationale of this extension is that the mass assigned to the empty set expresses inconsistency of the evidence, which is a form of uncertainty. Consequently, the coefficient of m(∅) in ( 29) should be as high as that of m(Ω), i.e., it should be equal to log 2 |Ω|. Given a mass function m, belief and plausibility functions are defined as follows:

Bel(A) = ∅ =B⊆A

m(B) P l(A) =

B∩A =∅ m(B), [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF] for all A ⊆ Ω. The quantity Bel(A) can be interpreted as a degree of support in A, while P l(A) can be seen as a degree to which hypothesis A is consistent with the evidence [START_REF] Shafer | A mathematical theory of evidence[END_REF]. The contour function pl : Ω → [0, 1] is the restriction of the plausibility function P l to singletons, i.e., pl(ω) = P l({ω}), for all ω ∈ Ω.

Two mass functions m 1 and m 2 representing independent items of evidence can be combined using the unnormalized Dempster's rule [START_REF] Smets | The combination of evidence in the Transferable Belief Model[END_REF] as follows,

(m 1 ∩ m 2 )(A) = B∩C=A m 1 (B)m 2 (C), (31) 
for all A ⊆ Ω. The quantity

κ = (m 1 ∩ m 2 )(∅) = B∩C=∅ m 1 (B)m 2 (C) (32) 
is called the degree of conflict between m 1 and m 2 . Much of the power of Dempster-Shafer theory resides in the possibility to change the granularity of the set on which beliefs are expressed [START_REF] Shafer | A mathematical theory of evidence[END_REF]. Let Ω and Θ be two finite sets. We say that Ω is a refinement of Θ (or Θ is a coarsening of Ω) if there is a mapping f : Θ → 2 Ω (called a refining) such that f (θ) ∩ f (θ ) = ∅ for any θ = θ , and θ∈Θ f (θ) = Ω (see Figure 11). Each element θ ∈ Θ is thus split into a subset f (θ) of Ω, resulting in a finer representation. If Ω is a 
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 1 Fig. 1. A dataset with three clusters. Objects o i and o j cannot be assigned to a cluster with certainty.

Fig. 2 .

 2 Fig. 2. Butterfly dataset (a) and a credal partition (b).

  objects 1 and 2 (as shown by the masses m i ({ω 1 , ω 2 }) for i = 1, 2). The corresponding relational representation R is shown in Figure II. We can see that objects 1 and 2 seem to belong to the same cluster (m 12 (s) = 0.43), while the pairs (1,3) and (2,3) seem to belong to different clusters (m 13 (¬s) = 0.37 and m 23 (¬s) = 0.43). The belief that object 1 might belong to none of the two clusters translates into the masses m 12 (∅) = m 13 (∅) = 0.3 being assigned the empty set.

δ

  J (m 12 , m 12 ) = 0.261, δ J (m 13 , m 13 ) = 0.263 δ J (m 23 , m 23 ) = 0.124, and δ B (m 12 , m 12 ) = 0.32, δ B (m 13 , m 13 ) = 0.265 δ B (m 23 , m 23 ) = 0.120. The corresponding similarity indices between evidential partitions M and M are thus ρ J S (M, M ) = 1 -(0.261 + 0.263 + 0.124)/3 = 0.784 and ρ B S (M, M ) = 1 -(0.32 + 0.265 + 0.120)/3 = 0.765.

Example 4 :

 4 Consider again the evidential partitions M and M of Examples 2 and 3. Assume that the true hard partition M * is defined by m * 12 ({s}) = r * 12 = 1, m * 13 ({¬s}) = 1r * 13 = 1 and m * 23 ({¬s}) = 1 -r * 23 = 1, i.e., objects 1 and 2 are in the same cluster, and object 3 forms another cluster. For evidential partition M (see Table II), the degrees of conflict are κ(m 12 , m * 12 ) = 1 -pl 12 (s) = 1 -(0.43 + 0.14) = 0.43 κ(m 13 , m * 13 ) = 1 -pl 13 (¬s) = 1 -(0.37 + 0.21) = 0.42 κ(m 23 , m * 23 ) = 1 -pl 23 (¬s) = 1 -(0.43 + 0.44) = 0.13. Consequently, we have ρ C (M, M * ) = 1 -(0.43 + 0.42 + 0.13)/3 = 0.673. Similar calculation yields ρ C (M , M * ) = 0.72: M is thus strictly more consistent than M with the true partition. Now, the nonspecificities of M and M are, respectively, N (M ) = 0.46 and N (M ) = 0.19. We can conclude that M is also strictly more precise than M . Consequently M is strictly preferable to M .
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 4 Fig. 4. The seeds data, in the space spanned by the first four components of Principal Component Analysis.
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 5 Fig. 5. Similarity indices ρ B S vs. ρ J S for the Seeds data.

Fig. 6 .

 6 Fig. 6. MDS representations of similarities ρ J S (a) and ρ B S (b) for the Seeds data. Distances in the MDS representation match dissimilarities 1 -ρ S between the evidential partitions. The axes are arbitrary, as the representation is defined up to an isometric transformation.

Fig. 7 .

 7 Fig. 7. Nonspecificity N (M ) (x-axis) vs. consistency with the true partition ρ C (M, M * ) (y-axis) for the 15 hard and soft partitions of Experiment 1 (Seeds dataset).

  and 10. Each of these figures contains two graphs. The upper graphs (Figures 8(a), 9(a) and 10(a)) show the nonspecificity and consistency indices of the evidential partitions obtained by ECM and EVCLUS with different parameters. The lower graphs (Figures 8(b), 9(b) and 10(b))
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 8 Fig.8. Top: nonspecificity N (M ) (x-axis) vs. consistency with the true partition ρ C (M, M * ) (y-axis) for ECM (solid line) and EVCLUS (dashed line) for different values of parameters α and q, respectively (Seeds dataset). Bottom: same graph for the rough partitions derived from the evidential partitions.

Fig. 9 .

 9 Fig.9. Top: Nonspecificity N (M ) (x-axis) vs. consistency with the true partition ρ C (M, M * ) (y-axis) for ECM (solid line) and EVCLUS (dashed line) for different values of parameters α and q, respectively (Wine dataset). Bottom: same graph for the rough partitions derived from the evidential partitions.
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 10 Fig.10. Top: Nonspecificity N (M ) (x-axis) vs. consistency with the true partition ρ C (M, M * ) (y-axis) for ECM (solid line) and EVCLUS (dashed line) for different values of parameters α and q, respectively (Ecoli dataset). Bottom: same graph for the rough partitions derived from the evidential partitions.
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 11 Fig. 11. Refining of a set.

TABLE I EXAMPLE

 I OF AN EVIDENTIAL PARTITION WITH n = 3 OBJECTS AND c = 2 CLUSTERS.

TABLE III EVIDENTIAL

 III PARTITION M OF EXAMPLE 3.

TABLE IV RELATIONAL

 IV REPRESENTATION OF THE EVIDENTIAL PARTITION M SHOWN IN TABLE III.

	A	∅	{s}	{¬s} {s, ¬s}
	0.0 m 13 (A) 0.00 0.26 0.6 m 12 (A) m 23 (A) 0.00 0.28	0.3 0.46 0.52	0.1 0.28 0.20

TABLE VI DESCRIPTION

 VI OF THE 15 HARD AND SOFT PARTITIONS IN EXPERIMENT 1.

		Acronym			Method		Acronym			Method			
		TRUE			True partition			EVC			EVCLUS			
		HCM			Hard c-means			EVCh	Hard partition derived from EVCLUS	
		Ward			Ward hierarchical clustering		EVCf	Fuzzy partition derived from EVCLUS	
		EM		EM algorithm with Gaussian Mixture Model	EVCr		Rough partition from EVCLUS		
		FCM			Fuzzy c-means			ECM		Evidential c-means		
		FKMm		Fuzzy k-medoids			ECMh	Hard partition derived from ECM		
		RCM			Rough c-means			ECMf	Fuzzy partition derived from ECM		
									ECMr	Rough partition derived from ECM	
								TABLE VII							
		SIMILARITY INDICES ρ J S BETWEEN THE 15 HARD AND SOFT PARTITIONS OF EXPERIMENT 1 (SEEDS DATASET).	
		True HCM Ward ECM ECMh ECMf	ECMr	EVC EVCh EVCf EVCr FCM FKMm	EM
	HCM	0.90													
	Ward	0.85	0.89												
	ECM	0.62	0.62	0.61											
	ECMh	0.89	0.91	0.84	0.62										
	ECMf	0.68	0.68	0.67	0.81	0.69									
	ECMr	0.68	0.69	0.67	0.73	0.69	0.64								
	EVC	0.65	0.66	0.65	0.82	0.65	0.8	0 0.66							
	EVCh	0.88	0.92	0.91	0.62	0.92	0.68	0.69	0.66						
	EVCf	0.75	0.76	0.76	0.77	0.76	0.90	0.69	0.81	0.77					
	EVCr	0.82	0.88	0.84	0.67	0.85	0.67	0.79	0.68	0.89	0.76				
	FCM	0.73	0.75	0.73	0.79	0.74	0.93	0.67	0.81	0.74	0.92	0.73			
	FKMm	0.83	0.86	0.83	0.71	0.83	0.80	0.72	0.75	0.85	0.88	0.83	0.87		
	EM	0.89	0.96	0.87	0.65	0.92	0.72	0.72	0.69	0.91	0.80	0.88	0.79	0.89	
	RCM	0.80	0.83	0.80	0.69	0.83	0.67	0.86	0.68	0.83	0.75	0.89	0.73	0.82	0.85

ACKNOWLEDGMENT

This research was supported by a grant from the Beijing Government as part of the Overseas Talents program, and by the Puey Ungphakorn Center of Excellence in Econometrics at Chiang Mai University.