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Evaluating and Comparing Soft Partitions:
an Approach Based on Dempster-Shafer Theory

Thierry Denœux, Shoumei Li and Songsak Sriboonchitta

Abstract—In evidential clustering, cluster-membership uncer-
tainty is represented by Dempster-Shafer mass functions. The
notion of evidential partition generalizes other soft clustering
structures such as fuzzy, possibilistic or rough partitions. In this
paper, we propose two extensions of the Rand index for evalu-
ating and comparing evidential partitions, called similarity and
consistency indices. The similarity index is suitable for measuring
the closeness of two soft partitions, while the consistency index
allows one to assess the agreement, or lack of conflict, between a
soft partition and the true hard partition. Simulation experiments
illustrate some applications of these indices.

Index Terms—Clustering, evidence theory, cluster validity
measure, belief functions.

I. INTRODUCTION

Clustering plays an important role in data mining and
machine learning. Basically, it consists in finding groups in
data. One of the main issues in clustering, as in other tasks
such as classification or regression, is the quantification of
uncertainty. After some groups have been discovered, how sure
are we about the cluster-membership of objects? For instance,
in Figure 1, object oi might as well belong to any of the three
clusters, while object oj does not seem to belong to any of the
clusters: these are two different situations of high uncertainty.
In the former case, there is ambiguity because object oi is close
to several clusters. In the latter, there is a lack of evidence to
assign object oi to any of the clusters, because it is far from
all of them.

Over the years, a growing number of clustering concepts
and algorithms have been proposed. Early methods, such as
the k-means algorithm, unambiguously assign each object to
a single cluster, resulting in a hard partition; this approach
amounts to neglecting cluster-membership uncertainty. Clus-
tering approaches that explicitly describe cluster-membership
uncertainty are collectively referred to as soft clustering [1].
In probabilistic [2] and fuzzy [3] clustering, information about
the membership of object oi to clusters is represented by c
numbers (ui1, . . . , uic) ∈ [0, 1]c, where c is the total number
of clusters, with the following constraint:

c∑
k=1

uik = 1. (1)

The interpretation of the uik’s (as probabilities or as de-
grees of membership) is different under the probabilistic and
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Fig. 1. A dataset with three clusters. Objects oi and oj cannot be assigned
to a cluster with certainty.

fuzzy frameworks, but the mathematical models are formally
equivalent. In possibilistic clustering [4], [5], condition (1)
is relaxed; each number uik can then be interpreted as a
degree of possibility that object i belongs to cluster k. Yet
another formalism is rough clustering [6], [7], in which each
cluster is represented by two nested sets of objects: a lower
approximation ωk, defined as the set of objects that surely
belong to cluster k, and an upper approximation ωk, defined
as the set of objects that possibly belong to that cluster. This
is clearly a special case of possibilistic clustering, where the
uik’s are constrained to be either 0 or 1; then,

ωk = {oi ∈ O, uik = 1} (2)

and

ωk = {oi ∈ O, uik = 1 and ui` = 0,∀` 6= k}. (3)

The most general framework to date is evidential clustering
[8]–[10], which represents cluster-membership information
using Dempster-Shafer mass functions [11], forming an ev-
idential partition (see Section II-A below). Evidential cluster-
ing encompasses probabilistic, fuzzy, possibilistic and rough
clustering as special cases. Recently, it has been successfully
applied in various domains such as machine prognosis [12],
medical image processing [13], [14] and analysis of social
networks [15]. Evidential clustering algorithms include the ev-
idential c-means (ECM) [9] and EVCLUS [8], [10] algorithms.

When studying and evaluating clustering algorithms, we
need objective methods for comparing different clustering
structures. As noted by Rand [16], such a comparison may
try to achieve different goals:

1) We may wish to compare a given hard or soft (fuzzy,
possibilistic, rough,...) partition to ground truth (usually,
a hard partition); this problem is often referred to as
external evaluation in the clustering literature;
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2) We may be interested in measuring the sensitivity of
the clustering structure to small changes of the data: in
this case, we need to compare the clustering structures
obtained before and after perturbing the data by some
random noise;

3) A variant of the previous situation occurs when we want
to evaluate the sensitivity of the clustering to missing
data. In that case, we need to compare the clustering
of n objects with the cluster assignment of the same
objects after n′ new objects have been added, and the
clustering is performed on the n+ n′ objects.

4) Finally, we often need to determine to what extent two
different algorithms agree or disagree when applied to
the same data.

Yet another context in which we need to compare partitions is
when we wish to compare different representations of the same
objects [17]: for instance, we may have initially p attributes,
and search for a subset of q < p attributes that allows us to
obtain a similar clustering structure.

As noted by Anderson et al. [18], the number of comparison
indices proposed so far is so large that it is impossible to give
an exhaustive account. Even a non-exhaustive, but extensive
survey would require a full paper. Here, we will focus on
the Rand index [16], which is probably the most widely used
comparison index, and which has recently gained revived
interest in the bioinformatics community [19], [20], among
others. The Rand index measures the similarity between two
hard partitions: it is defined as the ratio of the number of
objects pairs on which the two partitions agree, to the total
number of object pairs. It is thus very simple and easy to
interpret, which explains its popularity. In recent years, fuzzy
extensions of the Rand index have been proposed (see, e.g.,
[17], [18], [21], [22]). As discussed in [17], most of these
extensions are more or less arbitrary (as there are several
ways to fuzzify a formula) and are not suitable for all the
applications mentioned above. The index proposed in [17]
has some advantages over previous proposals (in particular,
it exhibits desirable metric properties), but it is essentially
limited to the comparison of fuzzy partitions. In this paper,
we propose new indices, grounded in Dempster-Shafer theory,
making it possible to comparing evidential partitions. As prob-
abilistic, fuzzy, possibilistic and rough partitions are all special
evidential partitions, our approach can be used to evaluate and
compare the results of any soft clustering methods.

The rest of this paper is organized as follows. Section
II reviews previous work on evidential clustering and fuzzy
extensions of the Rand index. Our new indices will then be
introduced in Section III. Finally, numerical experiments will
be presented in Section IV, and Section V will conclude the
paper.

II. BACKGROUND

This section introduces the main background material need
in the rest of the paper. In Section II-A, we first recall the
notion of evidential partition, and we show that it encompasses
all other soft partition types as special cases. In Section II-B,
we then review the Rand index and some recent proposals to

extend it to fuzzy partitions, and we show that these extended
Rand indices are not suitable for comparing arbitrary evidential
partitions.

Throughout this paper, it is assumed that the reader has
some familiarity with Dempster-Shafer theory. To make the
paper self-contained, a reminder of the main concepts of this
theory is included as an appendix.

A. Evidential clustering

Let O = {o1, . . . , on} be a set of n objets. We assume
that each object belongs to at most one of c clusters. The
set of clusters is denoted by Ω = {ω1, . . . , ωc}. In evidential
clustering, the uncertainty about the cluster membership of
each object oi is represented by a mass function mi in Ω. The
n-tuple M = (m1, . . . ,mn) is called an evidential (or credal)
partition.

Example 1: Consider, for instance, the “Butterfly” dataset
shown in Figure 2(a), composed of n = 12 objects. Figure 2(b)
shows the credal partition with c = 2 clusters produced by the
Evidential c-means (ECM) algorithm [9]. In this figure, the
masses mi(∅), mi({ω1}), mi({ω2}) and mi(Ω) are plotted as
a function of i, for i = 1, . . . , 12. We can see that m3({ω1}) ≈
0.8, which means that object o3 is strongly believed to belong
to cluster ω1. Similarly, m9({ω2}) ≈ 0.8, indicating strong
evidence of object o9 belonging to cluster ω2. In contrast,
objects o6 and o12 correspond to two different situations of
maximum uncertainty. Object o6 has a large mass assigned
to Ω: this reflects ambiguity in the class membership of this
object, which means that it might belong to ω1 as well as to
ω2. The situation is completely different for object o12, for
which the largest mass is assigned to the empty set, indicating
that this object does not seem to belong to any of the two
clusters. �

Because of the generality of the notion of mass function, the
concept of evidential partition encompasses all other notions
of hard and soft partition:
• If all mass functions mi are certain, then we have a hard

partition, with uik = 1 if mi({ωk}) = 1, and uik = 0
otherwise.

• If all mass functions mi are Bayesian, then the evidential
partition is equivalent to a fuzzy partition, with uik =
mi({ωk}), for i ∈ {1, . . . , n} and k ∈ {1, . . . , c}.

• If all mass functions mi are logical with a single focal
set Ai ⊆ Ω, then we get a rough partition. The lower
and upper approximations of cluster k can be defined,
respectively, as

ωk = {oi ∈ O|Ai = {ωk}}, (4a)

and
ωk = {oi ∈ O|ωk ∈ Ai}. (4b)

• If each mi is consonant, then it is equivalent to a
possibility distribution, and it can be uniquely represented
by the plausibility of the singletons plik = Pli({ωk}) for
i ∈ {1, . . . , n} and k ∈ {1, . . . , c}. Each number plik is
the plausibility that object i belongs to cluster k; these
numbers form a possibilistic partition of the n objects.
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Fig. 2. Butterfly dataset (a) and a credal partition (b).

Several algorithms have been proposed for constructing evi-
dential partitions of attribute or proximity data. The Evidential
c-means (ECM) algorithm [9] is a variant of the hard and fuzzy
c-means algorithms, in which not only clusters, but also sets
of clusters are represented by prototypes. A relational version
of ECM, the Relation Evidential c-Means (RECM) algorithm,
can handle proximity data [23]. This is also the case for
another procedure, EVCLUS, which constructs an evidential
partition is such a way that the degrees of conflict between
any two mass functions mi and mj match the dissimilarity
dij between objects oi and oj [8]. Whereas the initial version
of EVCLUS was limited to small datasets and small numbers
of clusters, a recent version, k-EVCLUS, overcomes these
limitations and can handle large proximity datasets [10]. A
third method, EK-NNclus [24], is an unsupervised version
of the evidential K nearest neighbor rule [25]. All these
algorithms are available in the R package evclust [26].

An evidential partition is a quite complex clustering struc-

ture, which often needs to be summarized in some way to
become interpretable by the user. This can be achieved by
transforming each of the mass functions mi in the evidential
partition into a simpler representation. For instance, a possi-
bilistic partition can be obtained by equating the membership
degrees to the plausibilities: uik = pli(ωk) for all i and all
k. After normalization, we get a fuzzy partition, and a hard
partition is obtained by selecting, for each object, the cluster
with maximum plausibility. To get a rough partition, we have
to select a set of possible clusters for each object. This can be
achieved either by selecting the focal set with the highest mass
[9], or by using a decision rule such as the interval dominance
rule [27].

B. Rand index and fuzzy extensions
In this section, we represent a c-partition of n objects by

a binary matrix U = (uik) ∈ {0, 1}n×c such that uik = 1
if object i is assigned to cluster k, and uik = 0 otherwise.
Similarly, a fuzzy or possibilistic partition can be represented
by a matrix Ũ = (uik) ∈ [0, 1]n×c. Without any risk of
confusion, we will identify a partition (crisp or fuzzy) with
its matrix representation U .

The Rand index [16] is a measure of similarity between
hard partitions. Given two such partitions U and U ′ (with
possibly different numbers of clusters), let us denote by a the
number of object pairs that are clustered together in both U
and U ′, and let b denote the number of object pairs that are
in different clusters in both U and U ′. Then, the Rand index
is defined by

ρ(U ,U ′) =
a+ b

n(n− 1)/2
. (5)

As noted by Rand [16], ρ is a measure of similarity, with
ρ(U ,U ′) = 1 if U = U ′, and ρ(U ,U ′) = 0 when U and U ′

have no similarities, i.e., when one partition consists of a single
cluster, and the other one consists of n clusters containing
single points. Also, 1−ρ is a metric in the space of partitions
of the n objects.

As mentioned in the introduction, several authors [18], [21],
[22], [28] have proposed extensions of index ρ to measure the
similarity between fuzzy partitions. Most of these proposals
consist in starting with some formal expression for ρ, and
fuzzifying it. For instance, Anderson et al. [18] observe that
a and b in (5) can be written as

a =
1

2

∑
k,`

nk`(nk` − 1) (6a)

and

b =
1

2

n2 +
∑
k,`

n2
k` −

∑
k

n2
k· −

∑
`

n2
·`

 , (6b)

where nk` is the number of objects i such that uik = u′i` = 1,
nk· =

∑
` nij and n·` =

∑
k nk`. Now, the confusion matrix

N = (nk`) can be obtained as

N = UU ′T , (7)

Equations (7) can still be used together with (6a)-(6b) when
matrices U and U ′ are replaced by Ũ and Ũ

′
with elements
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in [0, 1] and represent fuzzy or possibilistic partitions, which
allows one to obtained a fuzzy version ρF of the Rand index,
or of any index based on the confusion matrix N = (nk`).
One advantage of this approach is that ρF can be computed in
time proportional to the number n of objects, in contrast with
previous methods whose complexity was O(n2). However, as
noticed by Hüllermeier [17], this method for fuzzifying the
Rand index also has shortcomings. It is partially arbitrary,
because a and b can be expressed in different ways as a
function of the nk`, resulting in different values in the fuzzy
case. Also, the semantics of the index is not clear in the fuzzy
case; for instance, the quantity nk`(nk` − 1) can be negative
when 0 < nk` < 1, and so can a. Finally, and maybe more
importantly, 1−ρF is no longer a metric in the space of fuzzy
partitions; in particular, we have in general ρF (Ũ , Ũ) < 1,
which means that a fuzzy partition is not fully similar to itself;
this issues makes index ρF unsuitable to some applications,
such as comparing the fuzzy clusterings produced by two
algorithms.

A different approach, proposed by Hüllermeier et al. [17], is
to consider the Rand index as a measure of similarity between
equivalence relations. Let R = (rij) be the n×n binary matrix
representing the equivalence relation associated to U , defined
by rij = 1 if objects i and j and clustered together in U ,
and rij = 0 otherwise. In the sequel, R will be called the
relational representation of U . Similarly, let R′ = (r′ij) be
the relational representation of U ′. Then, the Rand index can
be written as

ρ(U ,U ′) = 1−
∑
i<j |rij − r′ij |
n(n− 1)/2

. (8)

When Ũ ∈ [0, 1]n×c represents a fuzzy partition, we can still
define a relation representation R̃ = (r̃ij) ∈ [0, 1]n×n as
follows. Let ui = (ui1, . . . , uic) be the vector of membership
degrees for object i. Then,

r̃ij = 1− δ(ui,uj), (9)

where δ is a metric in [0, 1]c taking values in [0, 1]. Equation
(8) and (9) together define a comparison index ρH between
fuzzy partitions,

ρF (Ũ , Ũ
′
) = 1−

∑
i<j |r̃ij − r̃′ij |
n(n− 1)/2

, (10)

which boils down to the Rand index when the partitions
are hard. As shown in [17], dH = 1 − ρH is a pseu-
dometric, i.e., it verifies reflexivity (∀ Ũ , dH(Ũ , Ũ) = 0),
symmetry (∀ Ũ , Ũ

′
, dH(Ũ , Ũ

′
) = dH(Ũ

′
, Ũ)) and the tri-

angular inequality (∀ Ũ , Ũ
′
, Ũ
′′
, dH(Ũ , Ũ

′′
) ≤ dH(Ũ , Ũ

′
)+

dH(Ũ
′
, Ũ
′′
)). It is not a metric in general, because it does

not satisfy separability: we may have dH(Ũ , Ũ
′
) = 0 for

Ũ 6= Ũ
′
. The reason for this property is that have some

information is lost when transforming Ũ into its relational
representation R̃, and two different fuzzy partitions may
share the same relational representation (except under some
restricting conditions analyzed in [17]).

Index ρH has several advantages over ρF : its meaning
is clearer, as it is simply a measure of similarity between

relational representations. Even more importantly, its pseudo-
metric properties make it more suitable for comparing fuzzy
partitions produced by different clustering algorithms, or for
sensitivity analysis. However, it obviously cannot be applied to
general evidential partitions, and even its application to possi-
bilitic partitions seems problematic. Consider, for instance, two
objects i and j, and their possibility degree vectors computed
by two clustering algorithms:
• Algorithm 1: ui = (1, 0, 0), uj = (0, 1, 0);
• Algorithm 2: u′i = (1, 0, 0), u′j = (1, 1, 1).

Defining δ as δ(ui,uj) = 1
c

∑c
k=1 ‖uik − ujk‖ to have a

metric taking values in [0, 1], we get δ(ui,uj) = δ(u′i,u
′
j) =

2/3 and, consequently, rij = r′ij = 1/3. We thus consider
that the two algorithms agree on this object pair. However,
Algorithm 1 assigns the two objects to different clusters,
whereas Algorithm 2 is undecided about object j. These two
situations are arguably very different, yet this difference is not
reflected in the relational representations.

III. EVIDENTIAL EXTENSIONS OF THE RAND INDEX

In this section, we introduce two new extensions of the
Rand index for comparing evidential partitions. As in [17],
our extensions will be based on the comparison of relational
representations. To this aim, we first need to define the
relational representation of an evidential partition, which will
be the subject of Section III-A. The new definitions will then
be introduced in Sections III-B and III-C.

A. Relational representation of an evidential partition
Let Ω = {ω1, . . . , ωc} be the set of clusters, and let mi

and mj be two mass functions quantifying our beliefs about
the cluster-membership of objects i and j. We wish to express
our beliefs on the frame Θ = {s,¬s}, where s and ¬s mean,
respectively, “the two objects belong to the same cluster”, and
“the two objects belong to different clusters”. The set Θ is a
coarsening of Ω2, characterized by the following refining,

f(s) = S (11a)

f(¬s) = S, (11b)

where S = {(ωk, ωk), k = 1 . . . , c} and S denotes the
complement of S (see Figure 3). To express our belief on
Θ, we need to compute the extensions of mi and mj in Ω2,
combine them using Dempster’s rule (31), and then compute
the restriction of the combined mass function on Θ. The result
is expressed by the following proposition.

Proposition 1: Let mi and mj be two mass functions on Ω,
and let Θ = {s,¬s} be the coarsening of Ω2 defined by (11).
The mass function on Θ obtained by combined mass function
mi and mj by Dempster’s rule is

mij(∅) = mi(∅) +mj(∅)−mi(∅)mj(∅) (12a)

mij({s}) =

c∑
k=1

mi({ωk})mj({ωk}) (12b)

mij({¬s}) =
∑

A∩B=∅

mi(A)mj(B)−mij(∅) (12c)

mij(Θ) =
∑

A∩B 6=∅

mi(A)mj(B)−mij(s). (12d)
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Fig. 3. Product space Ω2, and subset S corresponding to the hypothesis that
two objects belong to the same cluster.

Proof. Let A be a focal set of mi and B be a focal set of mj .
After extension on Ω2 and combination by Dempster’s rule,
the product mi(A)mj(B) is assigned to the focal set

C = (A× Ω) ∩ (Ω×B) = A×B.

We can distinguish four cases:

1) If A = ∅ or B = ∅, then C = ∅;
2) If A = B = {ωk}, then C = {(ωk, ωk)} ⊂ S hence,

the mass mi(A)mj(B) is transferred to s;
3) If A ∩ B = ∅, A 6= ∅ and B 6= ∅, then C ⊂ S and

C 6= ∅; hence, the mass mi(A)mj(B) is transferred to
¬s;

4) If A ∩ B 6= ∅ and (|A| > 1 or |B| > 1), then C ∩ S 6=
∅ and C ∩ S 6= ∅; hence, the mass mi(A)mj(B) is
transferred to Θ.

By considering all focal sets A and B and summing up the
masses, we get (12). �

Given an evidential partition M = (m1, . . . ,m2), the tuple
R = (mij)1≤i<j≤n will be called the relational representation
of M . To better understand the nature of this representation,
let us consider the following special cases:

• If M corresponds to a hard partition, i.e., if the mass
functions mi are certain, then

mij({s}) = rij , mij({¬s}) = 1− rij , (13)

with rij = 1 if objects i and j are in the same
cluster, and rij = 0 otherwise; consequently, R contains
the same information as the binary matrix R = (rij)
representing the equivalence relation corresponding to the
hard partition.

• If M corresponds to a fuzzy partition, i.e., if the mass
functions mi are Bayesian, then mij is also Bayesian:

mij({s}) =

c∑
k=1

uikujk,

mij({¬s}) = 1−
c∑

k=1

uikujk;

• If M corresponds to a rough partition, i.e., if each mass
functions mi has a single focal set Ai ⊆ Ω, then

mij({s}) = 1 if Ai = Aj = {ωk}
mij({¬s}) = 1 if Ai ∩Aj = ∅

mij(Θ) = 1 otherwise.

Example 2: As an illustrative example, consider the eviden-
tial partition M = (m1,m2,m3) with n = 3 objects and c = 2
clusters shown in Table I. Both objects 1 and 2 seem to belong
to cluster ω1, while object 3 more likely belongs to cluster
ω2. There is also some evidence that object 1 might belong
to none of the two clusters (as shown by the mass m1(∅)),
as well as some ignorance about the cluster membership of
objects 1 and 2 (as shown by the masses mi({ω1, ω2}) for
i = 1, 2). The corresponding relational representation R is
shown in Figure II. We can see that objects 1 and 2 seem
to belong to the same cluster (m12(s) = 0.43), while the
pairs (1,3) and (2,3) seem to belong to different clusters
(m13(¬s) = 0.37 and m23(¬s) = 0.43). The belief that object
1 might belong to none of the two clusters translates into the
masses m12(∅) = m13(∅) = 0.3 being assigned the empty set.

TABLE I
EXAMPLE OF AN EVIDENTIAL PARTITION WITH n = 3 OBJECTS AND

c = 2 CLUSTERS.

A ∅ {ω1} {ω2} {ω1, ω2}
m1(A) 0.3 0.6 0.1 0.0
m2(A) 0.0 0.7 0.1 0.2
m3(A) 0.0 0.1 0.6 0.3

TABLE II
RELATIONAL REPRESENTATION OF THE EVIDENTIAL PARTITION SHOWN

IN TABLE I.

A ∅ {s} {¬s} {s,¬s}
m12(A) 0.30 0.43 0.13 0.14
m13(A) 0.30 0.12 0.37 0.21
m23(A) 0.00 0.13 0.43 0.44

�
Remark 1: Given a relational representation R, can we

uniquely recover the evidential partition M? For n = 2,
it is easy to find counterexamples in which several choices
of m1 and m2 correspond to the same mass function m1,2.
Consider, for instance, the following pair of mass functions
on Ω = {ω1, ω2, ω3}:

m1({ω1, ω2}) = 0.5, m1(Ω) = 0.5

m2({ω3}) = 0.5, m2(Ω) = 0.5.

We have m12(∅) = m12({s}) = 0, m12({¬s}) = 0.5× 0.5 =
0.25 and m12(Θ) = 1 − 0.25 = 0.75. We can see that the
pairwise mass function m12 depends only, in this case, on the
product m1({ω1, ω2})×m2({ω3}). Consequently, all pairs of
mass functions m′1 and m′2 such that

m′1({ω1, ω2}) = u, m′1(Ω) = 1− u

m′2({ω3}) = 0.25/u, m′2(Ω) = 1− 0.25/u
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for some u ∈ [0.25, 1] yield the same pairwise mass function
m12. We conjecture that the relation between M and R
becomes one-to-one (up to a permutation of cluster labels)
for large n, subject to some condition on n and c. However,
proving this conjecture is an open problem. �

B. Similarity index between evidential partitions

Having computed the relational representations R and R′

of two credal partitions M and M ′, we can compare M
and M ′ from their relational representations. A first idea,
somewhat similar to the one developed in [17], is to define a
similarity between relational representations. Given a distance
δ between mass functions taking values in [0, 1], we could
define a generalized Rand index as

ρS(M,M ′) = 1−
∑
i<j δ(mij ,m

′
ij)

n(n− 1)/2
. (14)

Many distances between mass functions have been proposed:
the extensive survey presented in [29] lists more than 60 of
them. Here, we will consider two of the most widely used
belief function distances, which also have the property of being
full metrics: Jousselme’s distance [30] and the belief distance
[31], defined as follows.

1) Let us arrange the masses mij(A) for A ⊆ Θ in a vector
mij = (mij(∅),mij({s}),mij({ns}),mij(Θ))

T . Jous-
selme’s distance between mij and m′ij is

δJ(mij ,m
′
ij) =

(
1

2
(mij −m′ij)

TJ(mij −m′ij)

)1/2

(15)
where J is the Jaccard matrix

J =


1 0 0 0
0 1 0 1/2
0 0 1 1/2
0 1/2 1/2 1

 .

2) The belief distance between between mij and m′ij is

δB(mij ,m
′
ij) =

1

2

∑
A⊆Θ

| Belij(A)−Bel′ij(A) |, (16)

where Belij and Bel′ij are, respectively, the belief func-
tions (30) associated to mij and m′ij , and the multiplica-
tive constant 1/2 ensures that δB(mij ,m

′
ij) ∈ [0, 1].

This distance can be expressed as a function of the
masses as

δB(mij ,m
′
ij) =

1

2
{| m({s})−m′({s}) |

+ | m({¬s})−m′({¬s}) |
+ | m(∅)−m′(∅) |} . (17)

In the following, we will denote by ρJS and ρBS the similarity
indices ρS defined by (14)-(15), and (14)-(17), respectively.
Both indices take values in [0, 1] and generalize the Rand index
(they become the Rand index when M and M ′ correspond
to hard partitions). Furthermore, Jousselme’s distance δJ was
shown in [32] to be a metric, as a consequence of the positive-
definiteness of J , and so is δB . Consequently, 1 − ρJS and

1 − ρBS are pseudometric (they are reflexive, symmetric and
they verifiy the triangular inequality).

Example 3: As a continuation of Example 2, assume that we
now have a second evidential partition M ′ = (m′1,m

′
2,m

′
3)

of the same three objects, shown in Table III, with the
corresponding relational representation R′ shown in Table IV.
The distances between the pairwise mass functions are

δJ(m12,m
′
12) = 0.261, δJ(m13,m

′
13) = 0.263

δJ(m23,m
′
23) = 0.124,

and

δB(m12,m
′
12) = 0.32, δB(m13,m

′
13) = 0.265

δB(m23,m
′
23) = 0.120.

The corresponding similarity indices between evidential par-
titions M and M ′ are thus

ρJS(M,M ′) = 1− (0.261 + 0.263 + 0.124)/3 = 0.784

and

ρBS (M,M ′) = 1− (0.32 + 0.265 + 0.120)/3 = 0.765.

TABLE III
EVIDENTIAL PARTITION M ′ OF EXAMPLE 3.

A ∅ {ω1} {ω2} {ω1, ω2}
m′1(A) 0 0.2 0.7 0.1
m′2(A) 0 0.2 0.8 0.0
m′3(A) 0 0.6 0.2 0.2

TABLE IV
RELATIONAL REPRESENTATION OF THE EVIDENTIAL PARTITION M ′

SHOWN IN TABLE III.

A ∅ {s} {¬s} {s,¬s}
m′12(A) 0.0 0.6 0.3 0.1
m′13(A) 0.00 0.26 0.46 0.28
m′23(A) 0.00 0.28 0.52 0.20

�
Similarity indices such as ρJS and ρBS thus allow us to

measure the closeness of two soft (fuzzy, possibilistic, rough
or, more generally, evidential) partitions. The corresponding
distances being pseudometrics, they are suitable, for instance,
for comparing the results of several clustering algorithms, or
for analyzing the sensitivity of the clustering to perturbations
of the data. However, when comparing a ground truth hard
partition with an evidential partition, the notion of distance
may not always be relevant. Assume, for instance, that two
objects i and j are known to belong to the same group,
which we denote by m∗ij({s}) = 1. Consider two clustering
algorithms, producing the following results about the pair
(i, j):
• Algorithm 1: mij({s}) = 0.5, mij({¬s}) = 0.5;
• Algorithm 2: m′ij(Θ) = 1.

The result of Algorithm 1 is partially in conflict with the
truth, as it assigns some mass to the singleton {¬s}. In
contrast, Algorithm 2 is more cautious, and produces a mass
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function m′ij that is imprecise, but consistent with the truth.
Yet, these two results are not distinguished by criterion ρBS , as
δB(m∗ij ,mij) = δB(m∗ij ,m

′
ij) = 0.5. With Jousselme’s dis-

tance, we find δJ(m∗ij ,mij) = 0.5 and δJ(m∗ij ,mij) = 0.71,
but these values do not seem to indicate that mij is preferable
to m′ij in any way. To address this issue, a new criterion will
be introduced in the next section.

C. Consistency index between evidential partitions

To measure the consistency between an evidential partition
and a true hard partition, another notion than that of distance
might thus be suitable. We propose to use the notion of degree
of conflict (32), which leads to another generalized Rand
index:

ρC(M,M ′) = 1−
2
∑
i<j κ(mij ,m

′
ij)

n(n− 1)
. (18)

where

κ(mij ,m
′
ij) =

∑
A∩B=∅

mij(A)m′ij(B) = mT
ijC m′ij , (19)

with

C =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 .

This is a proper generalization of the Rand index, as in the
case of hard partitions κ(mij ,m

′
ij) = 0 if rij = r′ij and

κ(mij ,m
′
ij) = 1 otherwise. In the special case where we

compare an evidential partition M with a true hard partition
M∗, index ρC has a simpler expression. Let m∗ij({s}) = r∗ij
and m∗ij({¬s}) = 1 − r∗ij , where r∗ij = 1 if objects i and j
truly belong to the same cluster, and r∗ij = 0 otherwise. Then,
the degree of conflict between mij and m∗ij is

κ(mij ,m
∗
ij) =

{
mij(∅) +mij({¬s}) if r∗ij = 1,

mij(∅) +mij({s}) if r∗ij = 0
(20)

=

{
1− plij(s) if r∗ij = 1,

1− plij(¬s) if r∗ij = 0.
(21)

Consequently,

ρC(M,M∗) = 1−∑
i<j,r∗ij=1(1− plij(s)) +

∑
i<j,r∗ij=0(1− plij(¬s))

n(n− 1)/2
, (22)

which can be simplified to

ρC(M,M∗) =

∑
i<j plij(s)

r∗ij plij(¬s)1−r∗ij

n(n− 1)/2
. (23)

The meaning of (23) is clear: the consistency ρC(M,M∗)
between M and the true partition M∗ is high when plij(s) is
high whenever r∗ij = 1, and plij(¬s) is high whenever r∗ij = 0.

If the evidential partition M is vacuous, i.e., if mij(Θ) = 1
for all i < j, meaning that we are in a state of total
ignorance regarding the membership of objects to clusters,
then ρC(M,M∗) = 1: since M encodes total ignorance, it is

perfectly consistent with the truth, whatever it is. It is obvious
from this special case that 1 − ρC is not a distance: it is
a measure of conflict, and ρC can be seen as a measure of
consistency between two evidential partitions.

As ρC(M,M) is, in general, strictly less than one, index
ρC is not suitable to compare, for instance, two evidential
partitions generated by two algorithms. But it does make sense
to use ρC(M,M∗) to measure how consistent the evidential
partition M is, with respect to the true hard partition M∗.
A cautious clustering algorithm, which produces imprecise
evidential partitions, will tend to have high ρC scores. When
comparing the performances of two clustering algorithms
generating evidential partitions M and M ′, we should, there-
fore, also take into account the imprecision of the evidential
partitions. As mentioned in Section A, imprecision can be
measured by nonspecificity (29). The imprecision of a credal
partition can thus be defined from the average nonspecificity
of the mij’s,

N(M) =

∑
i<j N(mij)

n(n− 1)/2
=

∑
i<j [mij(∅) +mij(Θ)]

n(n− 1)/2
, (24)

which ranges in [0, 1]. We note that, for crisp and fuzzy
partitions, we have N(M) = 0.

The quality of an evidential partition M can thus be de-
scribed by two numbers: ρC(M,M∗) and N(M), both taking
values in [0, 1]. Given two evidential partitions M and M ′, M
can be considered to be preferable to M ′ if it is both more
consistent with the truth, and more precise, i.e., if

ρC(M,M∗) ≥ ρC(M ′,M∗) and N(M) ≤ N(M ′), (25)

and M is strictly more preferable than M ′ if at least one of
the inequalities on (25) is strict.

Example 4: Consider again the evidential partitions M and
M ′ of Examples 2 and 3. Assume that the true hard partition
M∗ is defined by m∗12({s}) = r∗12 = 1, m∗13({¬s}) = 1 −
r∗13 = 1 and m∗23({¬s}) = 1 − r∗23 = 1, i.e., objects 1 and 2
are in the same cluster, and object 3 forms another cluster. For
evidential partition M (see Table II), the degrees of conflict
are

κ(m12,m
∗
12) = 1− pl12(s) = 1− (0.43 + 0.14) = 0.43

κ(m13,m
∗
13) = 1− pl13(¬s) = 1− (0.37 + 0.21) = 0.42

κ(m23,m
∗
23) = 1− pl23(¬s) = 1− (0.43 + 0.44) = 0.13.

Consequently, we have ρC(M,M∗) = 1 − (0.43 + 0.42 +
0.13)/3 = 0.673. Similar calculation yields ρC(M ′,M∗) =
0.72: M ′ is thus strictly more consistent than M with the
true partition. Now, the nonspecificities of M and M ′ are,
respectively, N(M) = 0.46 and N(M ′) = 0.19. We can
conclude that M ′ is also strictly more precise than M .
Consequently M ′ is strictly preferable to M . �

IV. NUMERICAL EXPERIMENTS

As noted by Hüllermeier et al. [17], there is no gold standard
to which an external validity index such as a generalized
Rand index can be compared. The best we can do is to
show that the indices introduced in Sections III-B and III-C
above provide useful information for assessing and comparing
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Fig. 4. The seeds data, in the space spanned by the first four components of
Principal Component Analysis.

soft partitions produced by a variety of clustering algorithms.
This is our objective in the section. Two experiments will be
presented. In Section IV-A, we will show that similarity index
ρS can be used to compare hard and soft partitions produced
by various algorithms and to generate informative graphical
representations. In Section IV-B, we will use consistency
index ρC together with the nonspecificity measure to compare
evidential and rough clustering algorithms for different values
of their tuning parameters.

A. Experiment 1

As an example, we consider the Seeds data from the UCI
Repository of machine learning databases [33]. This dataset
consists of 7 attributes observed for 210 kernels belonging
to three different varieties of wheat, with 70 elements each.
Figure 4 shows the three clusters in the space spanned by the
first four principal components of the data.

The clustering algorithms used in this experiment are shown
in Table V. The simulations were done using the R environ-
ment [34]. Each algorithm was run using the default parameter
values. For the EM algorithm, we used the Gaussian mixture
model with spherical classes of equal volume, which is the
most similar to the assumptions of FCM. For hierarchical
clustering, we used the Ward distance and we cut the dendro-
gram to obtain three clusters. For ECM, we used the version
with masses assigned to all subsets of Ω, except Ω itself. For
EVCLUS, we specified the focal sets to be the empty set, the
singletons and Ω. The evidential partitions generated by ECM
and EVCLUS were transformed into hard (ECMh, EVCh),
fuzzy (ECMf, EVCf) and rough (ECMr, EVCr) partitions, as
explained in Section II-A. We thus obtained a total of 15 hard

TABLE V
CLUSTERING ALGORITHMS USED IN EXPERIMENT 1.

algorithm R function R package
HCM kmeans stats [34]

Hierarchical clust. hclust stats
(Ward distance)

ECM [9] ecm evclust [26]
EVCLUS [10] kevclus evclust [26]

FCM [35] FKM fclust [36]
Fuzzy k-medoids [37] FKM.med fclust [36]
π-Rough k-means [38] RoughKMeans_PI SoftClustering [39]

EM [2] Mclust mclust [40]
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Fig. 5. Similarity indices ρBS vs. ρJS for the Seeds data.

and soft partitions (including the true one). These partitions
and the corresponding notations are recapitulated in Table VI.

The similarity indices ρJS between these partitions are shown
in Table VII. As shown in Figure 5, indices ρJS and ρJB
are highly correlated. Figures 6(a) and 6(b) display Multi-
dimensional Scaling (MDS) configurations of, respectively,
the distances 1 − ρJS and 1 − ρJB between the 15 partitions,
computed using Kruskal’s nonmetric method [41]. We recall
that MDS finds a configuration of points in a low-dimensional
space, such that Euclidean distances between the points match
the observed distances or dissimilarities between the objects.
Comparing Figures 6(a) and 6(b), we can see that the MDS
configurations computed from similarity indices ρJS and ρJB are
quite similar, which seems to indicate that these two indices
can be used interchangeably.

From Figure 6, we can see that partitions of the same
type (evidential, fuzzy, rough, hard) are mapped together in
the MDS representation, i.e., they are similar according to
index ρS , whereas partitions of different types are mapped
in different regions of the configuration space. (The partition
derived from the EM algorithm is clustered with hard partitions
because most of the estimated cluster membership probabil-
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TABLE VI
DESCRIPTION OF THE 15 HARD AND SOFT PARTITIONS IN EXPERIMENT 1.

Acronym Method Acronym Method
TRUE True partition EVC EVCLUS
HCM Hard c-means EVCh Hard partition derived from EVCLUS
Ward Ward hierarchical clustering EVCf Fuzzy partition derived from EVCLUS
EM EM algorithm with Gaussian Mixture Model EVCr Rough partition from EVCLUS

FCM Fuzzy c-means ECM Evidential c-means
FKMm Fuzzy k-medoids ECMh Hard partition derived from ECM
RCM Rough c-means ECMf Fuzzy partition derived from ECM

ECMr Rough partition derived from ECM

TABLE VII
SIMILARITY INDICES ρJS BETWEEN THE 15 HARD AND SOFT PARTITIONS OF EXPERIMENT 1 (SEEDS DATASET).

True HCM Ward ECM ECMh ECMf ECMr EVC EVCh EVCf EVCr FCM FKMm EM
HCM 0.90
Ward 0.85 0.89
ECM 0.62 0.62 0.61
ECMh 0.89 0.91 0.84 0.62
ECMf 0.68 0.68 0.67 0.81 0.69
ECMr 0.68 0.69 0.67 0.73 0.69 0.64
EVC 0.65 0.66 0.65 0.82 0.65 0.8 0 0.66
EVCh 0.88 0.92 0.91 0.62 0.92 0.68 0.69 0.66
EVCf 0.75 0.76 0.76 0.77 0.76 0.90 0.69 0.81 0.77
EVCr 0.82 0.88 0.84 0.67 0.85 0.67 0.79 0.68 0.89 0.76
FCM 0.73 0.75 0.73 0.79 0.74 0.93 0.67 0.81 0.74 0.92 0.73
FKMm 0.83 0.86 0.83 0.71 0.83 0.80 0.72 0.75 0.85 0.88 0.83 0.87
EM 0.89 0.96 0.87 0.65 0.92 0.72 0.72 0.69 0.91 0.80 0.88 0.79 0.89
RCM 0.80 0.83 0.80 0.69 0.83 0.67 0.86 0.68 0.83 0.75 0.89 0.73 0.82 0.85

ities are close to 0 or 1.) Evidential partitions (ECM, EVC)
are the most dissimilar to the true one, but hard partitions
derived from them (ECMh, EVCh) are quite similar to the
hard partition generated by the HCM algorithm, and have
similar values of the Rand index. In the same way, fuzzy
and rough partitions derived from evidential partitions are
similar to those generated by the FCM and π-RCM algorithms,
respectively. This finding confirms the idea that evidential
clustering extracts rich information from the data, which can
be summarized into different clustering structures (hard, fuzzy,
rough). A related finding is that the similarity to the true
partition according to ρBS or ρJS is not a good criterion to
rank clustering algorithms of different types: the similarity
between a soft partition and the true one may be low, even
through the true partition can be approximated quite accurately
by summarizing the soft partition.

Figure 7 shows another representation of the 15 hard
and soft partitions, according to nonspecificity (x-axis) and
consistency with the true partition (y-axis). Hard and fuzzy
partitions all have zero nonspecificity: consequently, they are
located on the line x = 0. Once again we can see that rough,
fuzzy and hard partitions extracted from ECM and EVCLUS
are quite similar to partitions generated by the RCM, FCM and
HCM algorithms, respectively. The rough partition extracted
from ECM (ECMr) has the highest degree of consistency,
but it is also the most imprecise. Consequently, it is not
comparable to any of the other soft partitions. Similarly, the
evidential partitions generated by ECM and EVCLUS are
not comparable: the evidential partition generated by ECM
is slightly more consistent than that produced by EVC, but it

is also less precise.
Figure 7 also reveals that hard partitions generally have

a higher degree of consistency with the true partition, as
compared to fuzzy partitions. In a similar way, rough partitions
are more consistent than evidential partitions. This effect
can be easily explained: assume that two objects i and j
actually belong to the same class, i.e., m∗ij({s}) = 1. Con-
sider the following pairwise mass function: mij({s}) = 0.5,
mij({¬s}) = 0.2, mij(Θ) = 0.3. The degree of conflict
between m∗ij and mij is κij = 1 − plij(s) = 0.2. Now,
for the derived rough partition, we will have m′ij(Θ) = 1,
and the degree of conflict will be κ′ij = 1 − pl′ij(s) = 0.
This observation suggest that preference relation (25) might be
specially relevant to compare evidential partitions (with graded
membership values) with fuzzy partitions, and rough partitions
(with 0-1 membership values) with hard partitions.

B. Experiment 2

When comparing imprecise predictions of some quantities,
we usually need to take into account both precision and
accuracy. For instance, when predicting a real number x by an
interval I , we need to consider not only whether I contains
x, but also the length of I . If two intervals I1 and I2 both
contain x, I1 may be considered a better prediction than I2 if
it is smaller. A similar issue arises when comparing evidential
partitions. A more imprecise evidential partition will usually
be more consistent with the true partition; consequently, non-
specificity and consistency both need to be taken into account
when assessing the quality of an evidential partition. Evidential
clustering algorithms such as ECM [9] and EVCLUS [10]
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Fig. 6. MDS representations of similarities ρJS (a) and ρBS (b) for the
Seeds data. Distances in the MDS representation match dissimilarities 1−ρS
between the evidential partitions. The axes are arbitrary, as the representation
is defined up to an isometric transformation.

have a parameter that allows one to tune the nonspecificity
of the evidential partition. Larger nonspecificity results in
smaller conflict. When comparing two algorithms, we thus
need to compute the pairs (N(M), ρC(M,M∗)) for a range
of parameter values.

In this second experiment, we considered the ECM and
EVCLUS algorithms. ECM [9] minimizes the following cost
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Fig. 7. Nonspecificity N(M) (x-axis)
vs. consistency with the true partition ρC(M,M∗) (y-axis) for
the 15 hard and soft partitions of Experiment 1 (Seeds dataset).

function:

JECM(M,V ) =

n∑
i=1

f∑
j=1

|Aj |α[mi(Aj)]
βd2

ij

+

n∑
i=1

δ2[mi(∅)]β , (26)

where A1, . . . , Af are f nonempty subsets of Ω, dij denotes
the Euclidean distance between attribute vector xi and the
prototype vj representing the set of clusters Aj , and V =
(v1, . . . ,vf ). In (26), coefficient α controls the imprecision
of the evidential partition: a larger value of α penalizes focal
sets Aj with a large cardinality, resulting in a more specific
evidential partition. In this experiment, the focal sets Aj were
defined as subsets of Ω with cardinality one or two. Parameters
β and δ were set to 1 and to the maximum of distances ‖xi−
xj‖, respectively.

EVCLUS [10] minimizes the stress function

J(M) =
∑
i<j

(κij − δij)2, (27)

where κij is the degree of conflict (32) between mass functions
mi and mj , and δij is the transformed dissimilarity between
objects oi and oj . Usually, δij is defined from distances dij
through the transformation δij = 1 − exp(−γd2

ij), where
γ is determined in such a way that δij = 0.95 when dij
equals some predefined value d0. Parameter d0 is interpreted
as follows: two objects oi and oj such that dij ≥ d0 have
a plausibility at least 0.95 of belonging to different clusters.
Parameter d0 influences nonspecificity, larger values of d0

resulting in less specific evidential partitions. Here, d0 was
set to the q-quantile of the distances dij , with q ∈ [0.9, 1].
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As an illustration, three datasets from the UCI Repository of
machine learning databases [33] were used in this experiment:
Seed (see Section IV-A), Ecoli and Wine. The Ecoli dataset
contains data about protein localization sites in E. coli bacteria.
We used only the quantitative attributes (2, 3, 6, 7, and 8) and
the four most frequent classes: ‘im’, ‘pp’, ‘imU’ and ‘cp’,
resulting in a dataset with 307 objects and 5 attributes. The
Wine data are results of a chemical analysis of wines grown
in the same region in Italy but derived from three different
cultivars. The dataset contains 13 attributes (the quantities of
13 constituents) and 178 objects (wines).

We applied ECM and EVCLUS to each of these three
datasets. For ECM, parameter α was varied between 0 and
3. For EVCLUS, we varied q between 0.9 and 1. The results
are shown in Figures 8, 9 and 10. Each of these figures
contains two graphs. The upper graphs (Figures 8(a), 9(a)
and 10(a)) show the nonspecificity and consistency indices
of the evidential partitions obtained by ECM and EVCLUS
with different parameters. The lower graphs (Figures 8(b), 9(b)
and 10(b)) show the same information for the rough partitions
derived from the evidential partitions generated by ECM and
EVCLUS. We also show the fuzzy partition generated by the
Fuzzy c-means algorithm with the evidential partitions, and
the hard partition generated by the Hard c-means with the
rough partitions. (As remarked in Section IV-A, evidential
partitions with graded membership values are comparable to
fuzzy partitions, while rough partitions with 0-1 membership
values are comparable to hard partitions.) Hard and fuzzy
partitions have zero nonspecificity: they are thus located on
the vertical axes in Figures 8-10. We can see that evidential
(respectively, rough) partitions outperform fuzzy (respectively,
hard) partitions in terms of consistency, and this advantage can
be further enhanced by increasing nonspecificity.

Figures 8-10 reveal similar patterns. For each of the two
algorithms ECM and EVCLUS, it possible to tune parameters
so as to increase the consistency ρC(M,M∗) with the true
partition, at the price of also increasing the nonspecificity
(imprecision) of the evidential partition. For the three datasets,
EVCLUS outperforms ECM in terms of the evidential parti-
tions: for comparable nonspecificity, evidential partitions gen-
erated by EVCLUS are more consistent with the true partition
than those generated by ECM (Figures 8(a)-10(a)). However,
the opposite effect if observed for the rough partitions: those
derived from ECM are more consistent than those derived from
EVCLUS (Figures 8(b)-10(b)). Overall, the two algorithms
thus appear to be roughly equivalent for these three datasets.
We can remark that these nonspecificity-consistency curve
provide a rich description of the quality of evidential partitions
generated by a clustering algorithm with different parameter
tunings.

V. CONCLUSIONS

The Dempster-Shafer theory of belief functions [11] pro-
vides a very general framework for representing and reasoning
with uncertainty. In evidential clustering, this framework is
exploited to represent uncertain assignment of objects to
clusters. In previous work, this approach has allowed us to
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Fig. 8. Top: nonspecificity N(M) (x-axis) vs. consistency with the true
partition ρC(M,M∗) (y-axis) for ECM (solid line) and EVCLUS (dashed
line) for different values of parameters α and q, respectively (Seeds dataset).
Bottom: same graph for the rough partitions derived from the evidential
partitions.

devise new clustering procedures such as ECM [9], EVCLUS
[8], [10] and Ek-NNclus [24]. In this paper, we have shown
that the Dempster-Shafer framework also makes it possible
to evaluate and compare soft partitions produced by a wide
range of methods, including probabilistic, fuzzy, possibilistic
and rough clustering algorithms.

The Rand index is probably the most widely used ex-
ternal cluster validity measure in a hard clustering context.
It can be seen both as a similarity measure, allowing one
to measure the closeness of two hard partitions, and as a
measure of agreement or consistency between a hard partition
computed by some algorithm and the true one. When moving
from hard to evidential partitions, the two notions need to
be distinguished: by making an evidential partition more
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Fig. 9. Top: Nonspecificity N(M) (x-axis) vs. consistency with the true
partition ρC(M,M∗) (y-axis) for ECM (solid line) and EVCLUS (dashed
line) for different values of parameters α and q, respectively (Wine dataset).
Bottom: same graph for the rough partitions derived from the evidential
partitions.

imprecise, we can make it more consistent with the true
partition, while increasing the distance to it. We thus need
two indices: a similarity index and a consistency index. To
define such indices, we have introduced the notion of relational
representation of an evidential partition, defined as a set of
pairwise mass functions indicating whether any two objects
belong to the same class or not, with some uncertainty. The
mean distance between such pairwise mass functions for two
evidential partitions allows one to define a similarity index,
while the mean degree of conflict yields a consistency index.
The former is suitable for comparing partitions produced by
different soft clustering algorithms, or by the same algorithm
with different initial conditions or parameter values, while the
latter makes it possible to compare a soft clustering to the
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Fig. 10. Top: Nonspecificity N(M) (x-axis) vs. consistency with the true
partition ρC(M,M∗) (y-axis) for ECM (solid line) and EVCLUS (dashed
line) for different values of parameters α and q, respectively (Ecoli dataset).
Bottom: same graph for the rough partitions derived from the evidential
partitions.

ground truth partition, when available.
We hope that the unified approach introduced in this pa-

per will stimulate research on the comparison of clustering
methods based on different frameworks, including the fuzzy,
possibilistic and rough settings. Another potential application
concerns the combination of heterogeneous soft partitions
computed by various clustering procedures. This topic is left
for further study.

APPENDIX
DEMPSTER-SHAFER THEORY

Let Ω be a finite set. A mass function [11] is a mapping
m from the power set of Ω, denoted as 2Ω, to the interval
[0, 1], such that

∑
A⊆Ωm(A) = 1. The subsets A of Ω such
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that m(A) > 0 are called the focal sets of m. Typically, Ω
is a set of possible answers to some question, and m(A) is
interpreted as a share of a unit mass of belief allocated to
the hypothesis that the truth is in A based on some evidence,
and which cannot be allocated to any strict subset of A. If
m(∅) = 0, the mass function is said to be normalized. This
condition will not be imposed in this paper. A mass function
m is said to be logical if it has only one focal set; Bayesian
if its focal sets are singletons; certain if it is both logical and
Bayesian, i.e., if it has only one focal set, and this focal set is
a singleton; consonant if its focal sets are nested.

The imprecision of a mass function can be measured by its
nonspecificity [42], defined for a normalized mass function as

N(m) =
∑
A⊆Ω

m(A) log2 |A|, (28)

where |A| denotes the cardinality of A. This function was
shown by Ramer [43] to be the only one satisfying some
axioms. Klir and Wierman [44, page 51] proposed to extend
it to unnormalized mass function as

N(m) =
∑

A⊆Ω,A6=∅

m(A) log2 |A|+m(∅) log2 |Ω|. (29)

The rationale of this extension is that the mass assigned to the
empty set expresses inconsistency of the evidence, which is
a form of uncertainty. Consequently, the coefficient of m(∅)
in (29) should be as high as that of m(Ω), i.e., it should be
equal to log2 |Ω|.

Given a mass function m, belief and plausibility functions
are defined as follows:

Bel(A) =
∑
∅6=B⊆A

m(B) Pl(A) =
∑

B∩A 6=∅

m(B), (30)

for all A ⊆ Ω. The quantity Bel(A) can be interpreted as a
degree of support in A, while Pl(A) can be seen as a degree
to which hypothesis A is consistent with the evidence [11].
The contour function pl : Ω → [0, 1] is the restriction of the
plausibility function Pl to singletons, i.e., pl(ω) = Pl({ω}),
for all ω ∈ Ω.

Two mass functions m1 and m2 representing independent
items of evidence can be combined using the unnormalized
Dempster’s rule [45] as follows,

(m1 ∩m2)(A) =
∑

B∩C=A

m1(B)m2(C), (31)

for all A ⊆ Ω. The quantity

κ = (m1 ∩m2)(∅) =
∑

B∩C=∅

m1(B)m2(C) (32)

is called the degree of conflict between m1 and m2.
Much of the power of Dempster-Shafer theory resides in

the possibility to change the granularity of the set on which
beliefs are expressed [11]. Let Ω and Θ be two finite sets.
We say that Ω is a refinement of Θ (or Θ is a coarsening
of Ω) if there is a mapping f : Θ → 2Ω (called a refining)
such that f(θ) ∩ f(θ′) = ∅ for any θ 6= θ′, and

⋃
θ∈Θ f(θ) =

Ω (see Figure 11). Each element θ ∈ Θ is thus split into a
subset f(θ) of Ω, resulting in a finer representation. If Ω is a

Θ Ω
θ1	

θ2	
θ3	

f	 B	

Fig. 11. Refining of a set.

refinement of Θ, a mass function mΘ on Θ can be carried to Ω
by transferring each mass mΘ(A) to the set

⋃
θ∈A f(θ). The

resulting mass function mΩ is called the extension of mΘ in
Ω. Conversely, a mass function mΩ on Ω can be carried to Θ
(possibly with some loss of information) by transferring each
mass mΩ(B) to the set {θ ∈ Θ|f(θ)∩B 6= ∅}. For instance, in
Figure 11, the mass mΩ(B) would be transferred to {θ2, θ3}.
The resulting mass function mΘ is called the restriction of
mΩ in Θ.
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