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Abstract—The boundary element method provides a computa-
tionally efficient solution to the Electroencephalography (EEG)
forward problem on piece-wise homogeneous head models by
using surface integral equations. However, realistic modeling of
the head medium requires a proper account of the anisotropic
electric nature of the human skull, which cannot be handled
by standard surface integral equations. This work addresses
this issue by presenting a new formulation which perturbs the
standard Lippmann-Schwinger approach with volume elements
within the skull. The resulting surface/volume integral equation
can handle computations of fully realistic modeling for both skull
and white matter. Numerical results will confirm the validity of
the approach as well as its applicability to real case scenarios.

I. INTRODUCTION

Electroencephalography (EEG) is a standard method of
recording the brain activity used for a wide range of medical
and research applications. In particular, the accurate solution of
the so-called forward EEG problem is a crucial step to obtain
insight on the source activity which generates the electric
potential measured on scalp electrodes. A standard numerical
technique to solve the forward problem is the Boundary
element method (BEM) [1]. Boundary integral techniques fea-
ture several advantages over differential formulations, among
which the convenient need to discretize only the boundary
of the studied medium. A major drawback of standard BEM
is the requirement for the conductivity to be isotropic and
homogeneous. Thus, it cannot account for anisotropic human
tissues in the head. The skull for instance, is known to be ten
times more conductive in the tangential direction to its surface
than in the normal direction [2]. To bypass this constraint, the
authors of [3] have derived an adequate formulation which
handles anisotropy and inhomogeneity of the conductivity in
the EEG problem by adapting a volume integral technique
previously used in high frequency electromagnetic solvers
[4]. Consequently however, this formulation requires the dis-
cretization of the whole head model and the computational
efficiency of the BEM is partially lost. This costly requirement
can nonetheless be restricted. In fact, we show that the
volume discretization can be reduced to only the anisotropic
and inhomogeneous regions, whereas surface discretization is
sufficient for regions with constant scalar conductivity. This
is achieved by suitable definition of a conductivity contrast
which reduces the inhomogeneous problem to an equivalent
piecewise homogeneous problem. Accordingly, we introduce

a new formulation to solve the forward problem which can
efficiently handle an arbitrary number of isotropic and non-
isotropic layers. The validity of the approach is confirmed by
numerical results which show the practical relevance of the
newly developed formulation.

II. BACKGROUND AND NOTATION

The head medium Ω is modelled as a superposition of nested
regions Ωi, i = 1, ..., N with boundary Γi. In each region, the
3 × 3 conductivity tensor ¯̄σ(r) is either homogeneous and
isotropic (¯̄σ(r) = σiI) or inhomogeneous and anisotropic. In
the latter case we still define an arbitrary background scalar
conductivity σi = σb. The forward EEG problem then consists
in the determination of the unknown electric potential φ(r),
r ∈ ΓN in the presence of a source dipole located in r0 ∈ Ω1

inducing a primary current Jp(r).
In the quasi-static regime, Maxwell’s system reduces to

Poisson’s equation

∇ · (¯̄σ(r)∇φ(r)) = ∇ · Jp(r) r ∈ Ω (1)

with the boundary conditions

φ(r)|−i = φ(r)|+i r ∈ Γi (2a)

n̂(r)¯̄σ(r)∇φ(r)|−i = n̂(r)¯̄σ(r)∇φ(r)|+i , r ∈ Γi<N (2b)
n̂(r)¯̄σ(r)∇φ(r) = 0, r ∈ ΓN (2c)

where n̂(r) is a unit vector normal to Γi. Define the following
surface and volume operators

S(fs)(r) =

∫
Γ

G(r, r′)fs(r
′)dΓ′ (3)

D∗(fs)(r) =

∫
Γ

n̂(r) · ∇G(r, r′)fs(r
′)dΓ′ (4)

S∗v (fv)(r) =

∫
Ω

G(r, r′)∇′ · fv(r′)dΩ′ (5)

D∗v(fv)(r) =

∫
Ω

n̂(r) · ∇G(r, r′)∇′ · fv(r′)dΩ′ (6)

where
G(r, r′) =

1

4π|r − r′|
(7)

is the static Green’s function.



III. A HYBRID FORMULATION

We introduce the conductivity contrast χ(r), piecewise-
defined as:

χ(r) = (σiI − ¯̄σ(r))¯̄σ−1(r) r ∈ Ωi. (8)

In particular, we have χ(r) = 0 in homogeneous isotropic
layers. Equation (1) is then rewritten as:

σi∆φ(r) = ∇ · (Jp(r) + χ(r)¯̄σ(r)∇φ(r)) r ∈ Ωi. (9)

Thus the second term on the right-hand side
χ(r)¯̄σ(r)∇φ(r)) = Jeq(r) can be seen as an equivalent
volume current source originated from the anisotropic
behaviour of the conductivity. Because of our definition of
the contrast, the volume unknown exists only in anisotropic
regions. In these conditions, we can then follow a single-layer
approach [1] to obtain surface equations for each unknown
single-layer potential ξΓi

(r)

σi + σi+1

2(σi+1 − σi)
ξΓi

(r)−
∑
k

D∗(ξΓk
)(r) +

1

σb
D∗v(Jeq)(r)

= − 1

σ1
D∗v(Jp)(r), r ∈ Γi. (10)

The potential can then be computed as

φ(r) =
∑
k

S(ξΓk
)(r)− 1

σb
S∗v (Jeq)(r)− 1

σ1
S∗v (Jp)(r) (11)

but to retrieve it, another volume equation is required which
we can get by taking the gradient of (11) in the anisotropic
regions, obtaining∑
k

∇S(ξΓk
)(r)− (σbI − ¯̄σ(r))−1Jeq(r)− 1

σb
∇S∗v (Jeq)(r)

= − 1

σ1
∇S∗v (Jp)(r), r ∈ Ω, ¯̄σ(r) 6= σi. (12)

In order to obtain a discrete matrix system, the surface
unknowns are discretized with pyramidal basis functions and
the volume unknown with SWG functions [5]. Following a
Galerkin approach, the equations are tested with the corre-
sponding basis functions. It must be noted that with this
scheme, only the anisotropic regions (¯̄σ(r) 6= σi) need full
volume discretization, while homogeneous ones still lead to
efficient surface contributions.

IV. NUMERICAL RESULTS

A first set of test has been focusing on multi-layer spherical
geometries since analytic solutions are available as a bench-
mark in this case. The model used is then a 3-layer sphere
accounting for brain, skull and scalp media. The brain and
scalp have a scalar constant conductivity, whereas the skull
has inhomogeneous and anisotropic conductivity [2]. Fig. 1
shows the relative error with respect to the analytic solution
as a function of the average mesh size h. From the figure
it is clear that our scheme is converging to the analytic
reference. To show the applicability of our new scheme to

Fig. 1. Relative error as a function of the mesh refinement

Fig. 2. Scalp potential (left) and volume currents (right) on a realistic model

a real-case scenario, we have used a Magnetic-Resonance-
Imaging generated brain-head model and both scalp potential
and skull electric currents have been obtained as shown in Fig.
2.
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