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BETTI NUMBERS OF SHIMURA CURVES AND ARITHMETIC THREEORBIFOLDS

We show that asymptotically the rst Betti number b1 of a Shimura curve satises the GaussBonnet equality 2π(b1 -2) = vol where vol is hyperbolic volume; equivalently 2g-2 = (1+o(1)) vol where g is the arithmetic genus. We also show that the rst Betti number of a congruence hyperbolic 3orbifold asymptotically vanishes relatively to hyperbolic volume, that is b1/ vol → 0. This generalises previous results obtained by the rst author, on which we rely, and uses the same main tool, namely BenjaminiSchramm convergence.

1. Introduction 1.1. BenjaminiSchramm convergence. Let G be a semisimple Lie group, K ⊂ G a maximal compact subgroup and X = G/K the associated symmetric space. BenjaminiSchramm convergence of locally symmetric orbifolds Γ\X of nite volume was introduced in [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF]. The BenjaminiSchramm convergence of a sequence of nite volume locally symmetric spaces (Γ i \X) i∈N to the symmetric space X is equivalent to the following simple geometric condition:

(1.1)

∀R > 0, lim i→∞ vol((Γ i \X) <R ) vol(Γ i \X) = 0,
where M <R denotes the R-thin part of a Riemannian orbifold M (which we take to include the full singular set, see (3.1) below).

In addition to X there are other possible limits in the Benjamini-Schramm topology. In order to describe them it is convenient to pass to the language of invariant random subgroups (IRS) of the group G. These are the Borel probability measures on the Chabauty space Sub G of closed subgroups which are invariant under conjugation by elements of G. For every lattice Γ of G there is a unique G-invariant probability measure on G/Γ and its pushforward by the map gΓ → gΓg -1 gives an IRS denoted µ Γ . It was
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observed in [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF] that (Γ i \X) converges to X if and only if µ Γ i converge weakly-* to the trivial IRS δ {1} . In general a sequence (Γ i \X) converges Benjamini-Schramm if and only if µ Γ converges weakly-* to some IRS ν. The limit IRS ν is always supported on discrete subgroups and the Benjamini-Schramm limit is the random locally symmetric space X/Λ where Λ is a ν-random subgroup of G.

It was proven in [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF], as a consequence of the NevoStückZimmer theorem, that if G is semisimple of higher rank, with all factors having property (T) then any sequence of irreducible locally symmetric spaces converges in the BenjaminiSchramm sense to X. This was extended to all nontrivial products in [START_REF] Levit | On the benjamini-schramm limit of congruence subgroups in products[END_REF] (see also [START_REF] Matz | Limit multiplicities for PSL2(OF ) in PSL2(R r 1 ⊕ C r 2[END_REF] for more precise results in a very specic case). This statement is known to be false when G = SO(n, 1) or SU(n, 1), because in those cases there are lattices Γ ⊂ G such that H 1 (Γ, R) = 0 (see [START_REF] Millson | On the rst Betti number of a constant negatively curved manifold[END_REF], [START_REF] Li | On the rst Betti number of a hyperbolic manifold with an arithmetic fundamental group[END_REF], [START_REF] Kazhdan | Some applications of the Weil representation[END_REF]). On the other hand restricting attention to the family of arithmetic congruence lattices in G (see 1.4 below for a short description) the rst author proved in [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF] that for G = SO(2, 1), SO [START_REF] Boileau | Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF][START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF] the symmetric space X = H 2 , H 3 is the only possible limit in the Benjamini-Schramm topology for a sequence of torsion-free congruence lattices. Previously the second author [START_REF] Raimbault | On the convergence of arithmetic orbifolds[END_REF] had proven a similar result for the family of non-uniform, not necessarily torsion-free lattices (nonuniformity makes them much easier to deal with algebraically). In this paper we remove the torsion-free hypothesis in general.

Theorem A. If G = PGL 2 (R) or PGL 2 (C) and Γ n is a sequence of irreducible arithmetic lattices in G, which are either all congruence and pairwise distinct, or pairwise non-commensurable, then the sequence of locally symmetric spaces Γ n \X converges in the BenjaminiSchramm sense to X.

In [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF] the torsion free assumption was necessary because the methods only allowed to control the volume of the subset of thin part consiting of the collars of short geodesics. For a sequence of general arithmetic congruence orbifolds (Γ n \X) n∈N it could a priori happen that the vast majority of the thin part comes from the cusps or the conical singularities so the sequence does not converge to X. Theorem A excludes this possibility. For the proof we use the estimates developped in [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF] to show that any weak-* limit of the sequence µ Γn is supported on elementary subgroups. By [START_REF] Osin | Invariant random subgroups of groups acting on hyperbolic spaces[END_REF] the only IRS supported on this set is the trivial IRS, hence the theorem. We carry out the second step of this scheme of proof in detail in Proposition A.4, which is valid for all sequences of lattices in proper Gromov-hyperbolic spaces.

We note that because we are using a soft method our approach does not indicate the rate of decay of vol((Γ n \X) <R )/ vol(Γ n \X) as opposed to [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF].

1.2. Genus of Shimura curves. One application of Theorem A is to determine the asymptotic genus of congruence surfaces of large volume. For compact surfaces without singularities the genus and volume are essentially linearly related by the Gauss-Bonnet formula. However for 2-orbifolds terms coming from cone points and cusps appear in the formula, and it is easy to see that there exists sequences of hyperbolic orbifolds with underlying space a sphere and volume going to innity. This also has an algebraic interpretation: if S is isomorphic as a Riemann surface to the C-points of an algebraic variety dened over a number eld, which is the case for orbifolds obtained from congruence groups (so-called Shimura curves, see [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]), then its arithmetic genus is given by the RiemannHurwitz formula and essentially proportional to the volume while its geometric genus equals the topological genus of the underlying surface and can be arbitrarily smaller than the former.

It is known that this phenomenon cannot occur for congruence orbifolds: using the uniform spectral gap for congruence quotients (see [START_REF] Clozel | Démonstration de la conjecture τ[END_REF] for a more general result) and a theorem of P. Zograf [START_REF] Zograf | A spectral proof of Rademacher's conjecture for congruence subgroups of the modular group[END_REF] it follows that there is a lower bound of the form g ≥ c vol for congruence subgroups (see also [START_REF] Long | Arithmetic Fuchsian groups of genus zero[END_REF]).

As a consequence of Theorem A we obtain the following asymptotically more precise result (we note that it was known for congruence covers of the modular surface by a result of J. G. Thompson [START_REF] Thompson | A niteness theorem for subgroups of PSL(2, R) which are commensurable with PSL(2, Z)[END_REF]).

Theorem B. Let Γ n be a sequence of congruence lattices in PSL 2 (R), and let g n be the topological genus of the orbifold O n = Γ n \H 2 . Then, assuming the Γ n are not pairwise conjugated, we have

lim n→+∞ g n vol O n = 1 4π . 
1.3. Betti numbers of 3orbifolds. Theorem B is equivalent to the statement that b 1 (Γ n )/ vol(Γ n \H 2 ) converges to 1/2π for a sequence of congruence lattices. Indeed, the rank of abelianisation is essentially equal to twice the genus in a BS-convergent sequence. This can be proven more directly by analytical means, as 1/2π is the rst L 2 -Betti number of the hyperbolic plane. While more complicated, the analytic approach generalizes to the dimension 3 and where obtain the following result.

Theorem C. Let Γ n be a sequence of congruence lattices in PSL 2 (C). Then

lim n→+∞ b 1 (Γ n ) vol(Γ n \H 3 ) = 0.
This was proven in [START_REF] Raimbault | On the convergence of arithmetic orbifolds[END_REF] for non-uniform lattices, and in [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF] in the case of all torsion-free lattices. Our proof is very similar to the proof for hyperbolic 3manifolds appearing in [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF]. 

(A) = PA × (k ⊗ Q R) × PA × (A f ) and PA × (k ⊗ Q R) = d i=1 PA × (k ν i ) PGL(2, K) × PO(3) d-1 .
Choose an open compact subgroup

U of PA × (A f ). Let Γ U = PA × (k) ∩ (PA × (k ⊗ Q R) × PA × (A f )). By a classical result of Borel-Harish-Chandra [4] the group Γ U is a lattice in PA × (k ⊗ Q R) × PA × (A f ) PGL(2, K) × PO(3) d-1 × U .
The projection of Γ U to the factor PGL(2, K) is a congruence arithmetic lattice in PGL(2, K). Every congruence arithmetic lattice of PGL(2, K) arises in this way.

1.5. Outline of the paper. In Section 2 we apply a soft criterion for BenjaminiSchramm convergence, together with the estimates from [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF], to deduce Theorem A. The criterion is proven, in a general form including lattices in the isometry group of any proper Gromov-hyperbolic space, in Appendix A. Next, in section 3 we give a precise metric description of the singular locus of hyperbolic 2-and 3-orbifolds, and (in the 3-dimensional case) a way to smooth the boundary of the thick part while keeping control of the geometry (the technical details of which are left to a second Appendix B).

We use this description of singularities and Theorem A to deduce Theorem B in section 4. In section 5 we use heat kernel methods (for which we need the precise description of the smoothed thick part) to deduce Theorem C from Theorem A. 

O f (γ) = G/Gγ f (γ -1 xγ)dx
The following proposition is a generalisation of [START_REF] Raimbault | On the convergence of arithmetic orbifolds[END_REF]Proposition 2.2]. We provide a self-contained proof (along the same lines as that of loc. cit.) of a much more general result valid for all Gromov-hyperbolic spaces in Proposition A.4 below. 

lim n→+∞ [γ] Γn ⊂U vol((Γ n ) γ \G γ )O f (γ) vol(Γ n \G) = 0 holds, then Γ n \H d is BS-convergent to H d .
1 vol(Γ n \G) [γ]⊂U vol((Γ n ) γ \G γ )O f (γ) n→+∞ -----→ 0.
Proof. If Γ is an arithmetic lattice in PGL 2 (R) or PGL 2 (C) then an element γ ∈ Γ is hyperbolic if and only if it is semisimple and of innite order. In the proof of [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF]Theorem 1.8], starting form the lines (10.7-10.9) the author bounds the sum (2.4)

[γ] Γ non torsion vol(Γ γ \G γ )O γ (f )
for congruence arithmetic lattices. The line (10.7) of [11, p. 67] is the adèlic version of the last sum where we group together the classes conjugate over PA × (k), where PA × is the group used to construct the lattice Γ as explained in Section 1.4. The passage between the adèlic and classical trace formula is explained in [START_REF] Fraczyk | Strong Limit Multiplicity for arithmetic hyperbolic surfaces and 3manifolds[END_REF]Theorem 4.21]. Proceeding as in [11, p. 67-69] we obtain the bound

[γ] Γ non torsion vol(Γ γ \G γ )O γ (f ) vol(Γ\G) 0.986 .

Any hyperbolic conjugacy class [γ]

Γ is non-torsion so we can deduce the that the sum (2.3) converges to 0 as vol(Γ\X) → ∞ and Γ is a congruence arithmetic lattice. In order to establish the convergence for sequences of pairwise non-commensurable arithmetic lattices (Γ n ) n∈N we choose for each n a maximal arithmetic lattice Λ n containing Γ n . It is always a congruence arithmetic lattice. We have

1 vol(Γ n \X) [γ] Γn ∈U vol((Γ n ) γ \G γ )O f (γ) ≤ 1 vol(Γ n \X) [γ] Γn ∈U vol((Γ n ) γ \G γ )O |f | (γ) ≤ 1 vol(Λ n \X) [γ] Λn ∈U vol((Λ n ) γ \G γ )O |f | (γ) = o(1).

Structure of the singular locus of closed hyperbolic orbifolds

To be able to deduce from the sole BenjaminiSchramm convergence of a sequence of orbifolds further asymptotic results on topological invariants we need a ne metric description of the singular locus. The results in this section provide it; they are not really original but precise statements such as we need are not easily found in the litterature. As usual our main tool is the Margulis lemma.

Theorem 3.1. For every n ≥ 2 there exists ε = ε(n) > 0 such that the following holds. Let Γ be a discrete subgroup of isometries of H n , then for any x ∈ H n the subgroup

Γ ε := γ ∈ Γ : d(x, γx) ≤ ε
is virtually abelian.

In the sequel we will only work in 2 or 3-dimensional hyperbolic space, and we let ε denote a Margulis constant which is valid for both cases. Recall that O ≤ε stands for the ε-thin part of an orbifold O, for which we use the following denition: if O = Γ\X where X is the orbifold universal cover and we assume X to be CAT(0) then

(3.1) O ≤ε = Γ\{x ∈ X : ∃γ ∈ Γ \ {Id}, d(x, γ x) ≤ ε}
which includes the singular locus of Onote that in the litterature, e.g. in [START_REF] Boileau | Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF], a dierent convention is often used where only points with large stabilisers are included. The closure of the complement of O ≤ε (the ε-thick part) will be denoted by O ≥ε .

In fact we need to tweak a bit the denition of the thin part around that part of the singular locus where the cone angle is π: around these vertices or geodesics we put a collar whose width is ε/6 (instead of ε/2).

3.1. 2-dimensional orbifolds. In PGL 2 (R) + all the virtually abelian discrete subgroups are given by the following list:

(1) An innite cyclic group generated by an hyperbolic or parabolic isometry;

(2) A nite cyclic group generated by an elliptic isometry;

(3) An innite dihedral group generated by two elliptic isometries of order 2.

As a rst consequence we see that the singular locus of an orientable hyperbolic 2-orbifold consists only of cone points, that is all non-manifold points have a neighbourhood which is isometric to the quotient of a disc by a nite cyclic group.

In addition we can deduce from this classication a metric description of the singular locus. We need the following notation: given an elliptic isometry γ with xed point x and rotation angle θ, let (θ, ε) be the smallest such that d(y, γy) ≥ ε for d(x, y) = . Similarly, given a hyperbolic isometry γ of minimal displacement we dene r( , ε) to be the minimal distance from its axis at which an hyperbolic isometry translates of at least ε. Lemma 3.2. Let O = Γ\H 2 be an orientable hyperbolic 2-orbifold and x a point in its singular locus. Then x is an isolated cone point and one of the following possibilities hold:

(1) If its angle is 2π/m with m ≥ 3 then there is no other singular point in the ball B O (x, ) where = (2π/m, ε).

(2) If the angle is equal to π then either there is no other singular point within distance (π, ε), or there is one (and its cone angle is also π) at distance x < (π, ε) but no other within distance r( x , ε) of x.

Proof. Let Γx ∈ O be as in the statement, with x ∈ H 2 . Then x is a xed point of a non-trivial element of Γ, and it follows that the subgroup Γ ε x = {γ ∈ Γ : d(x, γx) ≤ ε} must be one of those described in (2) or (3) at the beginning of this section; let γ 0 be a generator (with minimal rotation angle) of the cyclic subgroup xing x and m > 1 its order. In any case x lies above a conical point in O. Assume now that m ≥ 3; then Γ x = γ 0 and by the Margulis lemma there is no other xed point of a non-trivial element in Γ within the set C = {y ∈ H 2 : d(y, γ 0 y) ≤ ε)}.

By denition the ball B H 2 (x, (2π/m, ε)) is contained in C, so it contains no other singular point.

If m = 2 and there is another elliptic xed point x ∈ H 2 with d(x, x ) ≤ (π, ε) then we might assume that x is the closest such point. By the previous paragraph any nontrivial γ 0 ∈ Γ xing x must be of order 2. Let η = γ 0 γ 0 . It is a hyperbolic isometry with axis containing the geodesic α joining x to x and translation distance 2d(x, x ). Write Γ α for the setwise stabilizer of α in Γ. For every γ ∈ Γ α not xing x we will have d(x, γx) ≥ 2d(x, x ) as otherwise γ 0 γ would have a xed point closer to x than x . We deduce that Γ α = γ 0 , γ 0 . The former is a maximal virtually abelian subgroup of Γ (it is an intersection of Γ with the normaliser of a split torus). The Margulis lemma now implies that within the ball B H 2 (x, (π, ε)) (resp. B H 2 (x, r( x , ε))) any other elliptic xed point must be a translate of either x or x by a power of η, as any such point is moved by at most ε by γ 0 (resp. η) and hence its stabiliser in Γ must belong to Γ α .

3-dimensional orbifolds.

3.2.1. Description of the singular locus. The list of discrete virtually abelian subgroups of PGL 2 (C) is long enough to make us avoid giving a complete description. Rather, we will assume that Γ is a cocompact lattice in PGL 2 (C) and Λ a maximal virtually abelian subgroup of Γ which contains torsion elements (which is all we need to prove Theorem C). If Λ contains a hyperbolic element γ then it must normalise γ , so it is contained in the normalizer of a maximal torus. Any such normalizer is isomorphic to C × Z/2. Otherwise Λ contains only elements of nite order and so by Burnside's theorem it must be a nite subgroup of the maximal compact PU(2). It follows that Λ is one of the following groups:

(1) γ, η ∼ = Z × Z/m where γ, η are respectively hyperbolic and elliptic isometries sharing the same axis;

(2) γ, η, ρ ∼ = (Z × Z/m) Z/2 where η, γ are as above (with η possibly trivial) and ρ is an elliptic of order 2 with axis orthogonal to that of γ or η;

(3) One of the nitely many non-dihedral nite subgroups of PU(2).

We see from this description that the singular locus of an hyperbolic 3 orbifold consists of closed geodesics (which we will call singular geodesics), which can intersect each other. A singular point not on the intersection of two singular geodesics has a neighbourhood isometric to the quotient of a ball by a rotation; the angle of the latter we will call the cone angle of the singular geodesic. We will call a vertex which is at the intersection of two or more singular geodesics a vertex of the singular locus.

Together with the Margulis lemma the list above allows us to give the following metric description of the singular locus (see also [START_REF] Boileau | Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF]Corollary 6.3] for a more geometric description, and loc. cit., Fig. 5 on p. 33 for illustrations). This description is analogous to the situation from Lemma 3.2; we recall that and r were dened there. Lemma 3.3. Let O be a compact orientable 3-dimensional hyperbolic orbifold and Σ its singular locus. Let x ∈ Σ be a vertex. Then one of the two following possibilities hold.

(2) There is at most one other singular vertex x within distance ε/2 of x; x and x are joined by a singular geodesic c of length and cone angle 2π/m, there are two singular geodesics with cone angle π and orthogonal to c each going through one of x or x . There are no further components of the singular locus within distance max( (2π/m, ε), r( , ε)) of x and x .

Moreover if two non-intersecting singular geodesics of O are within distance ε/2 of each other then both have angle π.

Proof. Let O = Γ\H 3 a closed hyperbolic 3orbifold. Let x be a vertex in the singular locus of O and Π the subgroup of Γ xing a lift x of x to H 3 . Then Π is either a dihedral group Z/m Z/2 or one of nitely many nite non-dihedral subgroups of PU(2), according to the list of virtually abelian subgroups of Γ above.

If the vertex is as in (1) and η ∈ Γ, η ∈ Π is an elliptic isometry of order m then as (by the Margulis Lemma) Π contains all isometries moving x by at most ε any xed point of η must be at distance at least (2π/m, ε) ≥ (π, ε) = ε/2 of x. Similarly any hyperbolic isometry in Γ must move x by at least ε. Hence the quotient Π\B(x, ε/2) embeds into O.

If the vertex has a dihedral stabiliser as in (2) let η be a generator of the Z/m-subgroup and γ a generator of the Z-subgroup commuting with η. We might assume that either < ε/2 or m > 5 (otherwise we can add its neighbourhood to the nite list in (1)). Then any elliptic element of Γ which does not normalise η cannot x a point in B(x, ε) (otherwise it and η would generate a subgroup moving a point by less than ε but not in the list given above, which is not possible by the Margulis Lemma). Similarly it cannot x a point within r( , ε) of the axis of γ.

3.2.2. Smoothing the thick part. Let C = (C 0 , C 1 , . . .) ∈ [0, +∞[ N . As (a slight variation of ) the denition in [START_REF] Lück | L 2 -torsion of hyperbolic manifolds of nite volume[END_REF] we say that a Riemannian manifold has C-bounded geometry if its injectivity radius is at least C 0 , the normal geodesic ow up to C 0 gives coordinates for a collar neighbourhood of the boundary, and the kth derivatives of the metric tensor and its inverse (in normal coordinates) are bounded in sup norm by C k . In this section we prove the following lemma. Lemma 3.4. There exists C such that for any hyperbolic 3orbifold O there exists a smooth submanifold O such that:

• O ≥ε ⊂ O and this is an homotopy equivalence;

• O is of C-bounded geometry.

We will deduce the lemma from the description of the singular locus and the following general proposition, the proof of which we give in appendix B. Proposition 3.5. Let X be a Riemannian d-manifold and H 1 , H 2 two open subsets whose closures have smooth boundary. Assume the following holds:

• they intersect transversally in a compact subset; let α 0 such that the dihedral angles at the intersection stay within the interval ]α 0 , π-α 0 [. • Both manifolds X \ H i are of bounded geometry. Then for any δ > 0 there exists an open subset H of X such that:

(1) H ⊃ H 1 ∪ H 2 and they are equal outside of the δ-neighbourhood of H 1 ∩ H 2 ;

(2) the closure of H has a smooth boundary;

(3) X \ H is of bounded geometry; the bounds depend only on δ, on the bounds on the geometry of X and X \ H i and on α 0 .

Proof of Lemma 3.4. Observe rst that the boundary of the thin part is smooth away from the geodesics with cone angle π and the vertices of the singular locus, as follows from the third part of Lemma 3.3. Thus the nonsmooth part of ∂O ≥ε comes from intersecting tubular neighbourhoods of singular geodesics and short geodesics. There are nitely many possible congurations where the geodesics are not orthogonal to each other (corresponding to case (1) of Lemma 3.3); we do not need to deal in detail with these, so the only problem left to deal with is the following: at all points in the intersection of the tubular neighbourhood N 1 (with varying radius) of one geodesic, and the ε/6-tubular neigbourhood N 2 of another geodesic orthogonal to the rst, the dihedral angle between ∂N 1 and ∂N 2 stays bounded away from 0 and from π1 .

To prove this note that the maximum and minimum values for these angles both are continuous functions of the radius 0 ≤ r < +∞ of N 1 . It can be continuously extended to r = +∞, the values then being those of the angle (in a conformal model of H 3 ) between ∂N 1 and the boundary at innity of H 3 . As N 1 and N 2 are never tangent to each other we see by compactness that the maximal and minimal values stay bounded away from 0 and π.

The genus of congruence orbifolds

In this section we prove Theorem B. Let O be an hyperbolic orbifold of dimension 2, which is a quotient of the hyperbolic plane H 2 by a lattice of PSL 2 (R). Then the underlying topological space |O| is a surface of nite type, that is it is homeomorphic to a compact surface S with a nite number of points removed. The genus of O is dened to be the genus of S.

Suppose that O has genus g, that it has k punctures and r conical singularities with angles 2π/m 1 , . . . , 2π/m r (the tuple (g, k, m 1 , . . . , m r ) is then called the signature of O). Then, computing the volume of a well-chosen fundamental polygon we get the following equality (see [2, Theorem 10.4.2]):

(4.1) vol O = 2π 2g -2 + k + r i=1 1 - 1 m i .
From this equation we obtain the bound:

g - vol(O) 4π ≤ k + r + 2 4π .
We now see that Theorem B follows from Theorem A together with the following proposition. Proof. To prove that r n = o(vol O n ) we associate to each conical point x with angle θ the region

Ω x = B(x, (θ, ε))
if there is no other singular point within distance (θ, ε). Otherwise let x be the distance to the nearest singular point and put

Ω x = B(x, r( x , ε)).
We will check below the following facts:

(1) there exists c > 0 such that vol Ω x > c for all n and x ∈ O n ;

(2) Any point p ∈ O n is covered by at most two distinct sets Ω x ;

(3) for all conical points x ∈ O n we have

Ω x ⊂ (O n ) ≤ε .
It follows from these that:

r n ≤ 1 c x∈Σ On vol Ω x ≤ 2 c vol   x∈Σ On Ω x   ≤ 2 c vol(O n ) ≤ε
and as the right-hand side is o(vol O n ) in a BS-convergent sequence we get that r n = o(vol O n ). That (3) holds follows immediately from the denitions of (θ, ε) and r( , ε). Point (2) follows from Margulis lemma combined with Lemma 3.2.

It remains to prove 1. Let x ∈ O n be a singularity with cone angle 2π/m with m > 2, let x be a lift of x to H 2 and = (2π/m, ε). Then we have

vol(B On (x, )) = 1 m B H 2 (x, )
e m so we need to prove that e m. This follows easily from distance computations in the disk model: by denition of (θ, ε) we have that (θ, ε)

= log((1 + r)/(1 -r)) where 0 < r < 1 is such that d(r, re iθ ) = ε. It follows that cosh(ε) = 1 + 2r 2 |1 -e iθ | 2 (1 -r 2 ) 2
and by standard computations we get that

r = 1 - θ √ 2 sinh(ε) + O(θ 2 )
whence it follows that

(θ, ε) = -log(θ) -c + O(θ)
for some constant c depending on ε. We nally get that e log(m/2π) m. Assume now that m = 2 and that there is another singular point x within (2, ε) of x. In this case the volume of Ω x is half that of a collar around a closed geodesic of length r( x , ε) ε; as the latter is bounded from below (see [START_REF] Halpern | A proof of the collar lemma[END_REF]) so is that of Ω x .

The proof that k n = o(vol O n ) is similar: by the Margulis lemma the regions of the ε-thin part where a given conjugacy class of parabolic isometries realises the injectivity radius are pairwise disjoint, and an easy hyperbolic area computation shows that the volume of such a region is bounded below.

Betti numbers of arithmetic 3orbifolds

Recall that ε is the Margulis constant for H 3 . Let O be a 3orbifold, then we will write O for the manifold with boundary obtained by Lemma 3.4. We write ∆ 1 abs for the maximal self-adjoint extension of the HodgeLaplace operator on O with absolute boundary condition. The goal of this section is to prove the following proposition, which we do by extending the analysis at the end of section 7 in [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF] to the orbifold case. 

(O n ) vol O n = 0.
On the other hand we have that the orbifold fundamental group Γ n is a quotient of π 1 (O n ). Indeed, the universal cover of (O n ) ≥ε is a cover of the connected subset ( O n ) ≥ε of those x ∈ H 3 which are not displaced by less than ε by some non-trivial element of Γ n , and

(O n ) ≥ε is homotopy equivalent to O n . Moreover H 1 (O n ) is the abelianisation of π 1 (O n ). From these two facts it follows that b 1 (Γ n ) ≤ b 1 (O n ), so that b 1 (Γ n ) = o(vol O n ) as well.
The proof of Proposition 5.1 is done in four steps: rst we prove an analogue of Proposition 4.1 and then deduce the convergence of the part of the trace formula for O n coming from the ε-thick part: see (5.1). The two next steps together imply that the trace of the heat kernel on O n is asymptotically the same as that computed in (5.1): rst we analyse the integral of the dierence on the R-thick part and show that it limit superior is o(R) (see (5.6), then we prove that the integral on the R-thin part of O n asymptotically vanishes (see (5.7)). Altogether these three steps imply that

lim n→+∞ Tr(e -t∆ 1 abs [O n ] ) vol O n = tr e -t∆ 1 [H 3 ]
where we denoted tr e -t∆ 1 [H 3 ] = tr e -t∆ 1 [H 3 ] (x, x) for any x ∈ H 3 . The proposition now follows from the vanishing of the rst L 2 -Betti number of H 3 , which means that lim t→+∞ tr e -t∆ 1 [H 3 ] = 0 (see [START_REF] Lück | L 2 -invariants: theory and applications to geometry and K-theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]).

5.1. Upper bound on the total length of singular geodesics. Let Σ n be the set of singular geodesics of O n . To prove Proposition 5.1 we will need to control the total length c∈Σn n in terms of the volume of the thin part of O n . This is problematic for 3-orbifolds because of an issue with singular geodesics corresponding to order-2 elements. For these geodesics we will need to replace the lengths in the sum by another quantity. To make it precise let us introduce some notations.

Let O by a nite volume hyperbolic 3-orbifold and let Σ be the set of singular geodesics on O. For c ∈ Σ we will write c for a lift of c to H 3 ; in our arguments below we will clarify the choice of c whenever it matters. Let Γ be the orbifold fundamental group of O. Let c ∈ Σ and write Γ c for the pointwise stabilizer of its lift c. Then Γ c is a lattice inside a maximal torus of PGL(2, C), so is it is of the form Z × Z/m c for an integer m c ≥ 2. We write c for the length of c.

Let M be the maximal order of a nite non-dihedral subgroup of PU(2). The relevance of M to the arguments below comes from the fact that nite subgroups of PGL(2, C) either stabilize a geodesic in H 3 or are conjugate to a non-dihedral subgroup of PU(2). Accordingly, we divide Σ into three sets Σ 1 , Σ 2 , Σ 3 dened as follows :

Σ 1 = {c ∈ Σ|m c = 2}, Σ 2 = {c ∈ Σ|2 < m c ≤ M }, Σ 3 = {c ∈ Σ|M < m c }.
The sets do not depend on the choice of c. Let c ∈ Σ 1 . A point p ∈ c will be called a type I vertex if there exists a closed geodesic a ∈ Σ 3 on O (not necessarily singular) such that p ∈ c ∩ a and a ≤ ε. A point p ∈ c is a type II vertex if there exists b ∈ Σ 3 such that p ∈ c ∩ b. Write T I (c), T II (c) for the sets of type I and type II vertices. For p ∈ T I (c), T II (c) we let r p := max{r( a , ε), (2π/m a , ε)}, max{r( b , ε), (2π/m b , ε)} respectively. Dene c := c -p∈T II (c) 2r p . Proposition 5.2. For any hyperbolic 3-orbifold we have

c∈Σ\Σ 1 c + c∈Σ 1 c + |T II (c)| vol(O ≤ε ).
Proof. As in the proof of Proposition 4.1 we will construct sets Ω c , Ω II p ⊂ O attached to each singular geodesic c ∈ Σ and to p ∈ T II (c) for c ∈ Σ 1 satisfying the following properties (2) any point x ∈ O is covered by at most M distinct sets Ω c , Ω II p .

(

) Ω c , Ω II p ⊂ O ≤ε . If A ⊂ H 3 write [A] 3 
for the image of A in O under the covering map. The subset Σ 1 is the most problematic so let us rst dene the sets

Ω c for c ∈ Σ 2 , Σ 3 . • For c ∈ Σ 3 let Ω c := [B H 3 (c, (2π/m c , ε))]. • For c ∈ Σ 2 let Ω c := [B H 3 (c, ε/2)]. Now let c ∈ Σ 1 . We construct sets Ω I p , Ω II p for p ∈ T I (c), T II (c) respectively. • Ω I p = [B H 3 (ã, r( a , ε))]. • Ω II p = [B H 3 ( b, r p )] (recall that max{r( b , ε), (2π/m b , ε)}).
Margulis lemma and the description of nilpotent subgroups from Section 3.2.1 imply that Ω I p , Ω II q are pairwise disjoint if p ∈ T I (c), q ∈ T II (c). We dene

Ω c := [B H 3 (c, ε/2)] ∪ p∈T I (c) Ω I p \ p∈T II (c)
Ω II p .

5.1.1.

Step 1. We verify the condition [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF]. Recall that in the proof of Proposition 4.1 we showed that e (2π/m,ε) m. For c ∈ Σ 3 the formula for integration in cylindrical coordinates [10, p. 205] yields

vol(Γ c\B H 3 (c, (2π/m c , ε)) e 2 (2π/mc,ε) c m -1 c c .
Using Margulis lemma and the description of nilpotent subgroups from Section 3.2.1 we can show that the map

Γ c\B H 3 (c, (2π/m c , ε)) → [Γ c\B H 3 (c, (2π/m c , ε))] = Ω c is at most 2-to-1, so vol(Ω c ) c .
For c ∈ Σ 2 we similarly get

vol(Γ c\B H 3 (c, (2π/m c , ε)) c .
By Lemma 3.3 and Margulis lemma the map Note that we implicitly used here the fact that m a is bounded. The Margulis lemma implies that the quotient map from the last set to [B H 3 (ã, r( a , ε))] is at most M -to-1 so we deduce vol(Ω I p ) r p . Reasoning as in the previous cases we get vol(Ω c ) c + p∈T I (c) r p c . Finally let p ∈ T II (c). Integrating in cylindrical coordinates we get

Γ c\B H 3 (c, ε/2) → [Γ c\B H 3 (c, ε/2)]
vol(Γ b \B H 3 ( b, max{r( b , ε), (2π/m b , ε)) b m b max{m 2 b , -2 b } 1.
As before we deduce vol(Ω II p ) 1. This concludes the rst step. 2) together with the following limit:

(5.3)

[γ]∈Cn,e∪C n,h F ≥ε γ tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx = o(vol O n ).
We proceed to prove (5.3). The proof for the hyperbolic part is exactly the same as in [1, Section 7].

We deal now with the elliptic part; similar computations are done in [9, pp. 193 and following]. To simplify the computations we integrate over a subset E ≥ε γ of F γ which is slightly larger than F ≥ε 

p ∈ T II (c). Set T II (c) is Γ γ invariant. Dene E ≥ε γ := F γ \   B H 3 (c, r c ) ∪ p∈T II (c) B H (p, r p )   .
We are ready to bound the integrals in (5.3) uniformly for r ≥ (2π/m c , ε). We get (5.4)

E ≥ε γ tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx c m c .
Now let γ be an elliptic element of order 2. The singular geodesic c can be identied with its lift to F γ . Let pr : F γ → c be the "closest point projection" to c. By triangle inequality, for every point y ∈ E ≥ε We will split the integral over E ≥ε γ according to whether pr(y) falls into c 0 or c 1 :

e • E ≥ε γ tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx = pr -1 (c 0 )∩E ≥ε γ f π (d(y, pr(y)))dy + pr -1 (c 1 )∩E ≥ε γ f π (d(y, pr(y)))dy ≤π c +∞ max( (2π/mc,ε),r( c,ε)) f π (r)dr + π p∈T II (c) 2 rp 0 +∞ s f π (r)dr ds.
Using the estimate for the heat kernel we get (5.5)

E ≥ε γ tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx c + |T II (c)|.
Let Σ n be the set of singular geodesics in O n (so each is the image of an axis of an elliptic conjugacy class in Γ n ) with subsets Σ Then the angle between u i and v i is at most cδ.

Proof. [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF] follows from the boundedness of coecients of the metric tensor and its inverse in normal exponential coordinates (in both I ⊂ H i and ∂H i ⊂ X).

(2) follows from (1), together with the fact that parallel transport along a closed curve stays close to the identity within the δ-neighbourhood.

Let V i be the vector elds given by the vectors v i dened in the lemma. As for any x ∈ I we have that the angle between V 1 (x) and V 2 (x) lies in [α 0 , π -α 0 ] it follows from (2) that if we choose δ < c -1 α 0 /2 we have that the angle between V 1 and V 2 at any point x in the δ-neighbourhood of I lies in [α 0 /2, π -α 0 /2]. In particular V 1 , V 2 dene a plane eld, and we dene J to be its orthogonal. Let π J be orthogonal projection on J. The block decomposition of Dϕ according to T X = J ⊕ (V 1 + V 2 ) is:

D (x,t,s) ϕ = π J D x ϕ C (1 -π J )D x ϕ B .
We need to prove that:

(1) D x ϕ, B and C have bounded coecients (in terms of the bounds on the geometry);

(2) π J D x ϕ and B are everywhere invertible and their inverses are bounded;

(3) (1 -π J )D x ϕ δ.

Indeed, this shows that the map ϕ has a derivative which everywhere invertible.

In particular, it is a local dieomorphism and as it is the identity on I it is also a global dieomorphism. This also implies that its derivative is uniformly bounded in terms of the geometry of H i and α 0 , and so is its inverse.

We deal rst with D x ϕ. We note that (D x ϕ) (x,t,s) = h at -s as -t D x ϕ 1 (x, t, s)+ 1 -h at -s as -t D x ϕ 2 (x, t, s)+O(δ)

because of bounded geometry and the fact that to obtain ϕ we move ϕ 1 and ϕ 2 by at most δ. It follows that D x ϕ is bounded. By point (1) of the Lemma we have that at all points the angle between the image of D x ϕ and V i is at most cδ; it follows that (1 -π J )D x ϕ δ. Moreover D x ϕ is everywhere invertible with bounded inverse, because both A 1 = D x ϕ 1 and A 2 = D x ϕ 2 are, and for w ∈ T x I the vectors A 1 (w), A 2 (w) have an angle ≤ cδ between them by [START_REF] Abert | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF].

We also have 

Proposition 5 . 1 .

 51 Let O n be a sequence of closed hyperbolic 3orbifolds which BS-converge to H 3 , and let O n be the smoothings described in Lemma 3.4. Then for all t > 0 we have that lim sup t→+∞ lim n→+∞ Tr(e -t∆ 1 abs [O n ] ) vol O n = 0. Before giving the proof we explain how this implies Theorem C: let O n = Γ n \H 3 . By Hodge theory we have b 1 (O n ) ≤ Tr(e -t∆ 1 abs [O n ] ) for all t, and so Proposition 5.1 implies that lim n→+∞ b 1

( 1 )

 1 for c ∈ Σ \ Σ 1 we have vol(Ω c ) c ; for c ∈ Σ 1 we have vol(Ω c ) c and for p ∈ T II (c) vol(Ω II p ) 1.

  is at most M -to-one. Hence vol(Ω c ) c . Now let c ∈ Σ 1 . Since the sets Ω I p , Ω II q for p ∈ T I (c), q ∈ T II (c) are pairwise disjoint we can write c = c + p∈T II (c) 2r p and c = c + p∈T I (c) 2r p where c ≥ 0. Let p ∈ T I (c). Let γ be an element of Γ ã translating ã by a . Integration in cylindrical coordinates yields vol( γ \B H 3 (ã, r p )

  γ .If[γ] is an elliptic conjugacy class let c be the singular geodesic on O n corresponding to γ and c the lift of c to H 3 which is xed by γ. Let c be the length of c and m c the order of the torsion subgroup of Γ γ . If m c > 2we putE ≥ε γ = F γ \ B H 3 (c, max{r( c , ε), (2π/m c , ε)}).The denition for γ with m c = 2 is bit more involved. Recall from Proposition 5.2 that we call a point p ∈ c a type II vertex if there exists a singular geodesic b in O n such that p ∈ c ∩ b and the torsion part of Γ b is of order at least M (a constant dened there). Write T II (c) for the set of type II vertices on c. For each point p ∈ T II (c) the geodesic b is unique so the values b , m b are well dened. To shorten notation we will write r c := max{r( c , ε), (2π/m c )} and r p := max{r( b , ε), (2π/m b )}. Let T II (c) ⊂ c be the set of lifts of

  , pr(y)) ≥ max{r c , r p -d(pr(y), p)|p ∈ T II (c)}. Let c be as in Proposition 5.2 and let r p := max{ (2π/m b , ε), r( b , ε)} where b is the singular geodesic of O such that p ∈ c ∩ b (see the denition of type II vertices). Write c 0 = c \ p∈T II (c) B(p, r p ) and c 1 := c \ c 0 . Note that c is the length of c 0 .

tr(e -t∆ 1 [R 2 Ct from which ( 5 . 6 ) follows immediately. 5 . 4 .

 125654 On] -e -t∆ 1 abs [O n ] )(x, x)dx = Dn γ∈Γ tr γ * (e -t∆ 1 [H 3 ] -e -t∆ abs [Un] )(x, γx)dx e -R 2CtDn γ∈Γ e -d(x,γx) 2 Ct dx where ∆ abs [U n ] is the Laplacian with absolute boundary conditions on the complete manifold U n , and the second line follows from[START_REF] Lück | L 2 -torsion of hyperbolic manifolds of nite volume[END_REF] Theorem 2.26].By the same arguments as used above to demonstrate (5.1) the integral is O(vol O n ) (with a constant independent of R as the domain of integration shrinks when we take R to innity). In the end we get that lim supn→+∞ 1 vol O n (On) ≥R tr(e -t∆ 1 abs [On] -e -t∆ 1 [O n ] )(x,x)dx e -Heat kernel near the boundary. Here we prove the nal ingredient for the proof of Proposition 5.1: for all R > 0 we have (5.7) O n \(On) ≥R tr e -t∆ 1 abs [O n ] (x, x)dx = o(vol O n ).

  , b ∈ k × be such that (a) ν i , (b) ν i are positive for i ≥ 2 and (a) ν 1 or (b) ν 1 is negative if K R. We dene the quaternion algebra A as A = k + ik + jk + ijk, subject to the relations i 2 = -a, j 2 = -b, ij = -ji. By our choice of a, b we have A ⊗ k k ν 1 M (2, K) and for i ≥ 2 the algebra A ⊗ k k ν i is isomorphic to the Hamilton's quaternions. We form an algebraic group PA × = A × /k × . It is an adjoint simple group of type A 1 dened over k. Note that PA ×

1.4. Congruence lattices. For completeness we give an explicit description of the congruence arithmetic latices in G = PGL(2, R), PGL(2, C), though we will not directly use this structure theory in the rest of the paper. Let K = R, C. We start by choosing a number eld k with Archimedean places ν 1 , . . . , ν d such that k ν 1 K and k

ν i R for i ≥ 2.

In what follows A, A f stand for the ring of adèles, respectively nite adèles of k. We will write k

x → (x) ν ∈ k ν for the embedding of k in its completion k ν . Let a

  Proposition 2.1. Let Γ n be a sequence of lattices in either PGL 2 (R) or PGL 2 (C) and d = 2, 3 accordingly. Let U be the subset of loxodromic elements in G. If for every smooth compactly supported function f on G

	the limit
	(2.2)

  Let G = PGL 2 (R) or PGL 2 (C) and let U be the set of hyperbolic elements of G. Let Γ n a sequence of arithmetic congruence lattices in G, such that vol(Γ n \G) → +∞ or any sequence of pairwise non-commensurable arithmetic lattices. Then for any f ∈ C ∞

	This is essentially tautological if the Γ n are torsion-free; the nontrivial
	part is that it allows us to avoid studying the elliptic conjugacy classes (and
	the parabolic classes if the Γ n are noncompact) in order to establish BS-
	convergence of a sequence of orbifolds.
	2.2. Proof of Theorem A. If X is a rank-one irreducible symmetric space
	such as H 2 or H 3 and G = Isom(X) then G is a simple Lie group of non-
	compact type and its elliptic radical is trivial. Theorem A thus follows
	immediately from Proposition 2.1 and the following result extracted from
	[11].
	Theorem 2.2. 0 (G) we have :
	(2.3)

  Proposition 4.1. Let O n be a sequence of hyperbolic 2orbifolds which is BenjaminiSchramm convergent to H 2 . Let k n , r n be the numbers of cusps and conical points of O n , respectively. Then k n + r n = o(vol O n ).

  5.1.2.Step 2. We verify the condition[START_REF] Beardon | The geometry of discrete groups[END_REF]. For c ∈ Σ 3 the sets Ω c are pairwise disjoint. Indeed let c 1 , c 2 ∈ Σ 3 and assume Ω c 1 ∩ Ω c 2 = ∅. By Margulis lemma, for some lifts c1 , c2 the torsion parts of the stabilizers Γ c1 , Γ c2 generate a nilpotent subgroup. By discussion in Section 3.2.1 it is either contained in a normalizer of geodesic or in a nite non-dihedral subgroup of PU(2), and the denition of Σ 3 excludes the second option so Γ c1 , Γ c2 both normalize the same geodesic. This can happen only if c1 = c2 .A similar argument shows that for c 1 ∈ Σ 2 , c 2 ∈ Σ 3 the sets Ω c 1 , Ω c 2 are of form Ω c with c ∈ Σ 3 . By Lemma 3.3 together with Margulis lemma Ω II p are disjoint from Ω c if c ∈ Σ 1 , Σ 2 . Again by Margulis lemma and Lemma 3.3, every point x ∈ O can be covered by at most M sets Ω c with c ∈ Σ 1 , Σ 2 . We conclude that any point is covered by at most M distinct sets of form Ω c , c ∈ Σ and Ω II p , p ∈ T II (c), c ∈ Σ 3 . .2. Trace formula on the thick part. Let O n be a sequence as in -t∆ 1[On] (x, x)dx -tr e -t∆ 1 [H 3 ] • vol O n = o(vol O n ).C n,e and C n,h be the sets of conjugacy classes of respectively elliptic and hyperbolic elements in Γ n . For γ ∈ Γ let F γ be a fundamental domain for the centraliser Γ γ of γ in Γ and F ≥ε γ the part of it on which the non-trivial elements of Γ displace by at least ε. The proof of the Selberg trace formula -t∆ 1 [On] (x, x)dx = vol(O n ) ≥ε tr e -t∆ 1 [H 3 ] e -t∆ 1 [H 3 ] (x, γx))dx. of BenjaminiSchramm convergence we have vol O n -vol(O n ) ≥ε = o(vol O n ). Then (5.1) will follow from(5.

	Proposition 5.1. We prove here that
	(5.1) tr e Let then gives that (On) ≥ε		
	(5.2) tr(γ Because (On) ≥ε tr e + [γ]∈Cn,e∪C n,h F ≥ε γ
	disjoint.		
	By Lemma 3.3 and Margulis lemma the sets Ω II p are pairwise disjoint
	or equal. It is not hard to verify that we can have at most two dierent
	p ∈ T II (c), p ∈ T II (c ) such that Ω II p = Ω II p . By construction Ω II p contains
	exactly one set 5.1.3. Last Step. Property (3) holds by construction. We get
	vol(Ω c ) +		vol(Ω II p )	M vol(O ≤ε ).
	c∈Σ	c∈Σ 3 p∈T II (c)
	By the rst step we conclude that
	c +	c + |T II (c)|	vol(O ≤ε ).
	c∈Σ\Σ 1	c∈Σ 1	
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  corresponding to the elliptic elements. For γ with m c > 2 we have e -t∆[H 3 ] (x, γx)) for a point x at distance r from the axis, and e = 1 or 1/2 according to whether Γ γ ∼ = Z × Z/m or (Z × Z/m) Z/2 (see 3.2.1 for the geometric signicance of this). This is a consequence of desintegration of hyperbolic volume in cylindrical coordinates[10, p. 205]. By the Gaussian estimate of the heat kernel of H 3 (which can

	e •	E ≥ε γ	tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx =	2π m c	c	+∞ max( (2π/mc,ε),r( γ ,ε))	f θ (r)dr
	where f θ (r) = sinh(r) cosh(r) tr(γ be seen from its explicit expression; see [27, Proposition 2.2 on P. 425] for a
	more general statement) we have that				
			f 2π/mc (r)	C(t)e -c(t)r 2	

* 

  By Proposition 5.2 the right hand side is of order O(vol((O n ) ≤ε )). The sequence converges Benjamini-Schramm to H 3 so vol((O n ) ≤ε ) = o(vol(O n )).

	so by (5.4) and (5.5) we get that	
	[γ]∈Cn,e F ≥ε γ	tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx	c∈Σ 2 n ,Σ 3 n	c	m c -1 m c	n c∈Σ 1 +	( c +|T II (c)|).
	It follows that		
	γ [γ]∈Cn,e F ≥ε	tr(γ * e -t∆ 1 [H 3 ] (x, γx))dx	c∈Σn\Σ 1 n	c +	c∈Σ 1 n	c + |T II (c)| .
	Estimate (5.3) follows.	
	5.3. Comparison between heat kernels. We prove here that
	(5.6)	lim R→+∞	lim sup n→+∞	1 vol O n (On)	
								γ

1 

n , Σ 2 n , Σ 3 n dened as in Section 5.1. If γ is an elliptic isometry of order m, primitive in Γ, there are m -1 elliptic elements in Γ γ sharing the same axis. We have

F ≥ε γ ⊂ E ≥ε ≥R tr(e -t∆ 1 [On] -e -t∆ 1 abs [O n ] )(x, x)dx = 0.

To do this we let U n be the subset of H 3 covering O n and choose a fundamental domain D n for Γ acting in the subset of U n covering (O n ) ≥R (we assume R is large enough so that (O n ) ≥R ⊂ O n ). Then we can write (On) ≥R

  By BenjaminiSchramm convergence we have that vol(O n \(O n ) ≥R ) = o(vol O n ). normal vector to H i at x and v i = ∂ ∂τ τ =t Φ τ

	N X H i	(Φ s N I H i	(x)).

So to prove

(5.6

) it suces to see that tr e -t∆ 1 abs

[O n ] (x, x) = O t (1) for x ∈ O n .

As in

[1, (7.19.4)

] this follows from

[START_REF] Lück | L 2 -torsion of hyperbolic manifolds of nite volume[END_REF] Theorem 2.35

]; the latter is applicable with a uniform constant in our context by

Lemma 3.4. 

outward

  similarly for D s ϕ, so the coecients of B, C are bounded. It remains to prove that B is invertible and det(B) is bounded away from zero. At a point x ∈ I we have D t ϕ and D s ϕ belong to two disjoint

	D t ϕ = h	at -s as -t	D t ϕ 1 (x, t, s) + 1 -h	at -s as -t	D t ϕ 2 (x, t, s) + O(δ)

and

(1) The ε/2-neighbourhood of x is isometric to one of a nite list of orbifolds, whose singular locus has only one vertex and all singular geodesics go through x.

Note that the neighbourhoods corresponding to two geodesics orthogonal to a third one cannot intersect each other, because we took their radius to be ε/3 and the distance between the geodesics outside the ε-thin part is at least ε/2

It might be possible to straightforwrdly adapt the arguments in loc. cit. to our case, but we give a dierent, mostly self-contained proof.

Lemma A.1. Let γ ∈ G be an hyperbolic isometry. Then G γ / γ is compact.

For the proof we use the following lemma, which should be standard but we could not nd in the literature. The proof is a bit long and technical so we put it at the end of this appendix (see A.3).

Lemma A.2. Let γ be an hyperbolic isometry of X. For any x ∈ X there exists constants C = C(x, γ, δ) and A = A(x, γ, δ) such that for any y ∈ X and any k suciently large (depending on γ, x, δ) we have

Proof of lemma A.1. Let τ = d(γ) := inf{d(y, γy)|y ∈ X} be the minimal displacement of γ. Fix x ∈ X, let k, A, C as given by Lemma A.2 and dene:

It is a non-empty (by denition of τ ) closed G γ -invariant subset of X. Given that the action of G γ on D is proper, the Lemma will follow once we prove that γ \D is compact. The previous Lemma implies that

) for some suciently large R, and as X is proper this in turn implies that γ \D is compact.

Let dg be a xed Haar measure on G. According to the lemma above the subgroup G γ admits a lattice so it is unimodular and we have a decomposition dg = dxdh where dx is a G-invariant measure on G/G γ and dh a Haar measure on G γ , both depending only on the original choice of dg. For a function f ∈ C 0 (G) we can then dene the orbital integral associated to γ by:

A.2. General criterion for BenjaminiSchramm convergence. Here again X is always a proper Gromov-hyperbolic space and G = Isom(X). We assume that the action of G on X is non-elementary. The elliptic radical of G can then be dened as its unique maximal normal compact subgroup (see [START_REF] Osin | Invariant random subgroups of groups acting on hyperbolic spaces[END_REF]Proposition 3.4]; in our context, by properness of X bounded elements are the same as compact ones). The following lemma is a special case of [START_REF] Osin | Invariant random subgroups of groups acting on hyperbolic spaces[END_REF]Theorem 1.5].

Lemma A.3. Let µ be an invariant random subgroup of G. Then either µ is supported on the elliptic radical or it has full limit set.

Recall from [12, Section 3] that there is a BenjaminiSchramm topology on the set of Borel probability measures on the GromovHausdor space of pointed proper metric spaces (up to isometry). The set of measures supported on spaces locally isometric to X is precompact in this topology. Moreover, if X is a locally symmetric space then (1.1) is equivalent to Γ i \X converging in the BenjaminiSchramm topology to X.

There is a continuous injective map from the space of invariant random subgroups of G to the BenjaminiSchramm space. If Γ i are lattices in G then the sequence of uniformly pointed spaces Γ i \X converges to X if and only if the IRSs µ Γ i converge to the trivial IRS. We will use this to prove the following criterion for convergence, which is a more general version of Proposition 2.1.

Proposition A.4. Let U the set of hyperbolic isometries in G. Assume that the elliptic radical of G is trivial. If Γ n is a sequence of lattices in G which satises:

then the sequence of metric spaces Γ n \X converges to X in the Benjamini Schramm topology.

Proof. Let µ n be the invariant random subgroup of G supported on the conjugacy class of Γ n . We want to prove that any weak limit µ of a subsequence of (µ n ) is equal to the trivial IRS δ e . By Lemma A.3, and the fact that a subgroup of G containing no hyperbolic isometries has at most one limit point (cf. [13, Section 8.2]) it suces to prove that any such µ contains no hyperbolic isometries.

To prove this choose a covering U = C∈C C of U where C is countable and every C ∈ C is compact. We can do this since Sub G is metrizable [8, Proposition 2]. Let W C = Λ : Λ ∩ C = ∅ ; this is a Chabauty-closed subset of Sub G . If ν is a nontrivial IRS then by Lemma A.3 and previous paragraph it almost surely contains a hyperbolic element. Hence, there is C ∈ C such that ν(W C ) > 0. We need to prove the opposite for µ, which amounts to the following : for every C there exists a non-negative Borel function F on Sub G which is positive on W C and such that Sub G F (Λ)dµ(Λ) = 0.

Let us x C ∈ C and prove this.

There exists an open relatively compact subset V with C ⊂ V and V ⊂ U . Choose any f ∈ C ∞ (G) such that f > 0 on C and f = 0 on G \ V and dene :

Then F is lower semicontinuous on Sub G , non-negative and positive on W C .

On the other hand we have :

By the so-called Portemanteau theorem [START_REF] Klenke | Probability theory. Universitext[END_REF]Theorem 13.16] the limit inferior of the left-hand side is larger or equal to Sub G F (Λ)dµ(Λ). By (A. [START_REF] Beardon | The geometry of discrete groups[END_REF] we have that the right-hand side converges to 0. It follows that

which nishes the proof. A.3. Proof of Lemma A.2. Let us recall the statement. We have a proper hyperbolic geodesic space X and an hyperbolic isometry γ of X. We x x ∈ X and we want to show that there exists constants C = C(x, γ, δ) and A = A(x, γ, δ) such that for any y ∈ X and any k suciently large (depending on γ, x, δ) we have

Let x, y ∈ X. As γ is hyperbolic there exists a, c such that L = γ x is a (c, a)-quasi-geodesic. Regarding the conclusion of the proposition it does not change anything if we assume that x is the approximate projection of y on L, meaning that any point x of L within distance d(y, L) of y, satises d(x , x) ≤ K (where K depends only on the hyperbolicity constant δ). Thus from now on we will assume that both inequalities above hold for y and k.

Let x i = γ i x, y i = γ i y for 0 ≤ i ≤ k. Let F be the nite set F = {x 0 , x 1 , . . . , x k } ∪ {y 0 , y k };

by [5, Proposition 7.3.1] there exists a choice of a spanning tree on F (that is, a tree whose edges are a subset of all pairs of geodesics segment between points of F ) such that

where K depends only on δ (so we take it equal to the K introduced above to simplify notation). One of y 0 , y k must be connected to one of the x i in T F ; we may assume that [y 0 , x i ] is an edge in T F for some i. We claim that this i must be unique, and we must have

Indeed, let i be the smallest integer such that

we see that i must verify (A.7). Now assume that there is a j > i such that [x j , y 0 ] ⊂ T F , and take it to be the smallest such; we want to reach a contradiction. Consider i ≤ l < j to be maximal such that the path in T F from x l to x i does not go through y 0 . Then the path in T F from x l to x l+1 must go through y 0 (otherwise we would have a path from x l+1 to x i via x l avoiding y 0 ). We have thus d T F (x l , x l+1 ) ≥ d(x 0 , y 0 ) -K which together with (A.5) and (A.6) contradicts the fact that d(x l , x l+1 ) = .

We now want to prove that [y 0 , y k ] is not an edge in T F . To do so we must consider two possibilities. Assume rst that [y k , x j ] ⊂ T F for some j. Then reasoning as above we see that j is the only such index, and j > kc -1 ((log(k + 2) + 2)K + a) > i. In this case we reach a contradiction in the same way as in the previous paragraph: considering a maximal i ≤ l < j such that the path from x l to x i does not go through y 0 we see that d T F (x l , x l+1 ) is too large.

If there is no edge [y k , x j ] in T F then the path from x k to y k must go rst to x i , then to y 0 and nally to y k . But as d(x k , x i ) > (log(k + 2) + 1)K by (A.7) and (A.4) we see that this contradicts d(x 0 , y 0 ) = d(x k , y k ).

So we get that there must be a unique edge [y k , x j ] in T F , and the path in T F from y 0 to y k must go through x j and x i . As before we must have

and we nally get using rst (A.6), then the fact that (x 0 , . . . , x k ) is a quasigeodesic, and nally the above together with (A.7) that:

where B, b depend only on x, γ, δ. From the last inequality and (A.4) we can conclude that (A.3) holds.

Appendix B. Smoothing corners

In this appendix we prove Proposition 3.5; as the argument is technical but has no subtleties we will be quite sketchy in presenting it.

Recall that we have the following situation: X is a manifold with bounded geometry, H 1 , H 2 ⊂ X such that X \ H i both have bounded geometry, meet transversally and the dihedral angle between them is bounded away from 0 and π. We remark that constructing a smoothing of Y = X \ (H 1 ∪ H 2 )

satisfying the conclusions of Proposition 3.5 is immediate in the case where the intersection I = H 1 ∩ H 2 has a neighbourhood in Y which is isometric to the product [0, δ[ 2 ×I. In general we will prove the following statement: there exists a dieomorphism ϕ from [0, δ[ 2 ×I to a neighbourhood of I in Y such that ϕ and ϕ -1 have all their derivatives uniformly bounded. In view of the preceding remark this proves the proposition.

To dene ϕ we need some more auxiliary notation: for a vector eld V and t ≥ 0 we let Φ t V be its ow at time t; if H ⊂ Z is open with smooth boundary we denote by N Z H the normal eld of H in Z. We put:

We x a smooth non-decreasing function h : R → [0, 1[ such that h is zero on negative numbers, and at innity it tends to 1 and all its derivatives vanish at all orders. Let 0 < a < 1 such that the convex hull of all ϕ 1 (x, t, s) and ϕ 2 (x, t, s) for as ≤ t ≤ a -1 s is contained in Y . For x, y ∈ X and u ∈ [0, 1] let ux + (1 -u)y denote the barycenter of x, y on the geodesic segment between them 2 . With this notation we dene: ϕ(x, t, s) = h at -s as -t ϕ 1 (x, t, s) + 1 -h at -s as -t ϕ 2 (x, t, s)

and we claim that ϕ has the desired properties. It is smooth as a composition of smooth maps. To deduce the remaining properties we will use the following lemma.

Lemma B.1. For i = 1, 2 there is c depending only on the bounds on the geometry of H i such that the following properties hold. (2) For all x ∈ I and all 0 ≤ s, t < δ, let y = Φ t N X H i (Φ s N H i I (x)). Let γ be the geodesic (in X) from x to y, u i the parallel transport along γ of the 2 This is well-dened for those pairs of points in X that we consider, as long as we take

open convex cones in T x X/J x ; by ( 2) and (1) this remains true in the δneighbourhood and the angle between the cones remains bounded away from zero, hence the matrix B is invertible with uniformly bounded inverse.