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Boundary stabilization in �nite time of one-dimensional1

linear hyperbolic balance laws with coe�cients depending on2

time and space3

Jean-Michel Coron∗, Long Hu†, Guillaume Olive‡, Peipei Shang�4

April 24, 20205

Abstract6

In this article we are interested in the boundary stabilization in �nite time of one-dimensional7

linear hyperbolic balance laws with coe�cients depending on time and space. We extend the so8

called �backstepping method� by introducing appropriate time-dependent integral transforma-9

tions in order to map our initial system to a new one which has desired stability properties. The10

kernels of the integral transformations involved are solutions to non standard multi-dimensional11

hyperbolic PDEs, where the time dependence introduces several new di�culties in the treat-12

ment of their well-posedness. This work generalizes previous results of the literature, where only13

time-independent systems were considered.14

Keywords: Hyperbolic systems, Boundary stabilization, Non-autonomous systems, Backstep-15

ping method.16

1 Introduction and main result17

In the present paper we are interested in the one-sided boundary stabilization in �nite time of18

one-dimensional linear hyperbolic balance laws when the coupling coe�cients of the system depend19

on both time and space variables. To investigate this stabilization property we use the by now so-20

called �backstepping method�, a method that consists in transforming our initial system into another21

system - called target system - for which the stabilization properties are simpler to study. In �nite22

dimension it relies on a recursive design procedure, which in the case of partial di�erential equations23

leads to Volterra transformations of the second kind.24

The idea of the possibility to transform a control system into another one in order to study25

its controllability or stabilization properties already goes back to the development of the control26

theory for linear �nite-dimensional systems in the late 60's, notably with the celebrated work [Bru70]27

where the author introduced the so-called �control canonical form�. Concerning in�nite-dimensional28

systems, such as systems modeled by partial di�erential equations (PDEs), this approach is much29

more complicated. The �rst attempt in this direction seems to be [Rus78], where the author was30

interested in the spectral determination (i.e. pole placement) of a particular 2×2 �rst-order hyperbolic31
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system. The di�cult task in this approach is, in general, to �nd an invertible transformation that32

allows to pass from one system to another and, to the best of our knowledge, there is no general33

theory for in�nite-dimensional systems so far (if possible). In [Rus78], the author proposed to use34

a Volterra transformation of the second kind to pass from what he called the �control normal form�35

to the control canonical form of his hyperbolic system and, in this way, easily solved his spectral36

determination problem. In that paper, the use of such a transformation was justi�ed by the analogy37

with �nite-dimensional systems when using transformations of the simple form Id +K with K being38

a triangular matrix (while for Volterra transformations of the second kind, K is an integral operator39

whose kernel is supported in a triangular domain). The use of a Volterra transformation of the second40

kind to transform a PDE into another one was also introduced at almost the same time in [Col77].41

Therein, the author showed that a one-dimensional perturbed heat equation, with a time and space42

dependent perturbation, can be transformed into the classical heat equation by means of a Volterra43

transformation of the second kind whose kernel has to satisfy some PDE posed on a non-standard44

domain which is triangular. The equation that the kernel has to satisfy is now commonly referred to45

as the �kernel equation� and the method was then referred by the author of [Col77] to as the �method46

of integral operators�. The result of [Col77] was notably applied in [Sei84] to deduce the boundary47

null-controllability in one space dimension of the perturbed heat equation from that of the classical48

heat equation.49

In the 90's a method with similar spirit appeared under the name of �backstepping method�. This50

method was primarily designed to transform, thanks to a recursive procedure, �nite-dimensional con-51

trol systems, which may be nonlinear, into control systems which can be stabilized by means of simple52

feedback laws. This method was later on extended to linear PDEs. The �rst result in this direction53

is in [CdN98] for a beam equation; see also[LK00] for a Burgers' equation. However, the main break-54

through for the PDEs case are in [BKL01, BK02, Liu03], which deal with 1-D heat equations and55

where Volterra transformations of the second kind are introduced or used. In particular in [BK02]56

the backstepping recursive procedure in �nite dimension is applied to the semi-discretized �nite dif-57

ference approximation of these equations and it is proved that, as the spatial step size tends to 0, the58

backstepping transformation at the �nite dimensional level is converging to a Volterra transformation59

of the second kind. The fact that the transformation which appears with this approach is a Volterra60

transformation of the second kind comes from the recursive procedure of the backstepping method.61

With this method the authors, directly inspired by the backstepping in �nite dimension, indepen-62

dently arrived at the use of exactly the same transformation as in the two above mentioned pioneering63

references [Rus78] and [Col77]. This is the reason of the use of the terminology �backstepping� for the64

construction of stabilizing feedback laws relying on the use of Volterra transformations of the second65

kind to transform a given control PDE to another control PDE (called the target system) which can66

be easily stabilized (usually with the null feedback law).67

The use of Volterra transformations of the second kind also matches very well with the boundary68

stabilization of one-dimensional systems since this transformation somehow removes the undesirable69

terms (or adds desirable ones) of the equation by �bringing� them to the part of the boundary where70

the feedback is acting (through the kernel equations). This approach rapidly turned out to be very71

successful in the study of the boundary stabilization of various important PDEs such as heat equa-72

tions, wave equations, Schrödinger equations, Korteweg-de Vries equations, Kuramoto-Sivashinsky73

equations, etc. and it eventually leads to the by now reference book [KS08] on this subject. This74

method is nowadays systematically used as a standard tool to analyze the boundary stabilization for75

(mainly one-dimensional) PDEs. This method has also received some recent developments. Notably,76

the use of Volterra transformations of the second kind has started to show some serious limitation for77

some problems and it has been replaced by more general integral transformations such as Fredholm78

integral transformations (see e.g. [CL14, CL15, BAK15, CHO16, CHO17, CGM18]) or other kind of79

integral transformations (see e.g. [SGK09]). In these cases the transformation on the state does not80

have any special structure and the method is no longer related to the �nite dimensional backstepping81

approach. It is related to the older notion of feedback equivalence, as initiated in [Bru70]; see also82
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[Kal72], [Won85, Section 5.7], and [Son98, Section 5.2].83

Concerning more speci�cally systems of hyperbolic equations and the �nite-time stabilization84

property, which is the focus of this article, the �rst result was obtained in [CVKB13]. In this paper,85

the authors developed the original backstepping method to prove the boundary stabilization of a86

2 × 2 hyperbolic system in �nite time, with the best time that can be achieved. The generalization87

of the result of [CVKB13] to n × n systems was a non-trivial task which was eventually solved in88

[HDMVK16, HVDMK19] using the ideas introduced previously in [HDM15] for 3 × 3 systems. The89

key point was to add additional constraints on the kernel to obtain a speci�c structure of the coupling90

parameter in the target system. The time of stabilization found in [HDMVK16, HVDMK19] was then91

improved in [ADM16, CHO17], using two di�erent target systems.92

The goal of the present article is to extend the results of the previously mentioned references to93

time-dependent systems. For the �nite-time stabilization of non-autonomous hyperbolic systems, the94

only works that we are aware of are [DJK16] and [AA18] which concerned a single equation with95

constant speed. Therefore, the non-autonomous case for systems was still left without investigation.96

The introduction of the time variable in the coupling coe�cients obviously complicates the whole97

situation. As in [Col77, DJK16, AA18] we need to introduce integral transformations with time-98

dependent kernels, resulting in much more complex kernel equations to solve. Finally, in addition to99

the previous references, we would also like to mention the work [Wan06] on time-dependent quasilinear100

hyperbolic systems concerning the related notion of controllability and the works [SK05, KD19], with101

the references therein, concerning the stabilization of time-dependent parabolic systems (where strong102

regularity conditions are required to make the backstepping method work, because of the result of103

[Kan90]).104

The rest of this paper is organized as follows. In the remaining part of Section 1 we present in105

details the class of hyperbolic systems that we consider and we state our main result. In Section106

2 we perform several transformations to show that our initial system can be mapped to a target107

system which is �nite-time stable with desired settling time. In Section 3 we prove the existence108

and regularity of the kernels of the integral transformations that were used in the previous section.109

Finally, we gathered in Appendices A, B and C some auxiliary results.110

1.1 System description111

In this article, we focus on the following general n × n linear hyperbolic systems, which appear112

for instance in the linearized Saint-Venant equations, plug �ow chemical reactors equations, heat113

exchangers equations and many other physical models of balance laws (see e.g. [BC16, Chapter 1])114

around time-varying trajectories:115 

∂y

∂t
(t, x) + Λ(t, x)

∂y

∂x
(t, x) = M(t, x)y(t, x),

y−(t, 1) = u(t), y+(t, 0) = Q(t)y−(t, 0),

y(t0, x) = y0(x).

(1)116

In (1), t > t0 ≥ 0 and x ∈ (0, 1), y(t, ·) is the state at time t, y0 is the initial data at time t0 and117

u(t) is the control at time t. The matrix M couples the equations of the system inside the domain118

and the matrix Q couples the equations of the system on the boundary x = 0. We assume that the119

matrix Λ is diagonal:120

Λ = diag(λ1, . . . , , λn). (2)121

We denote by m ∈ {1, . . . , n− 1} the number of equations with negative speeds and by p = n−m ∈122

{1, . . . , n− 1} the number of equations with positive speeds (all along this work we assume that123

n ≥ 2, see Remark 1.11 below for the case m = n ≥ 1). We assume that there exists some ε > 0 such124
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that, for every t ≥ 0 and x ∈ [0, 1], we have125

λ1(t, x) < · · · < λm(t, x) < −ε < 0 < ε < λm+1(t, x) < · · · < λn(t, x), (3)126

and, for every i ∈ {1, . . . , n− 1},127

λi+1(t, x)− λi(t, x) > ε. (4)128

Assumptions (3) and (4) will be commented, respectively, in Remarks 1.9 and 1.10 below.129

All along this paper, for a vector (or vector-valued function) v ∈ Rn and a matrix (or matrix-valued
function) A ∈ Rn×n, we use the notation

v =

v−
v+

 , A =

A−− A−+

A+− A++

 ,

where v− ∈ Rm, v+ ∈ Rp and A−− ∈ Rm×m, A−+ ∈ Rm×p, A+− ∈ Rp×m, A++ ∈ Rp×p.130

We will always assume the following regularities for the parameters involved in the system (1):131

Λ ∈ C1([0,+∞)× [0, 1])n×n, M ∈ C0([0,+∞)× [0, 1])n×n, Q ∈ C0([0,+∞))p×m,

Λ,
∂Λ

∂x
,M ∈ L∞((0,+∞)× (0, 1))n×n, Q ∈ L∞(0,+∞)p×m.

(5)132

In this article, we use the notion of �solution along the characteristics� or �broad solution� for133

the system (1). The necessary background on this notion is given in Appendix A (see also [Bre00,134

Section 3.4] for more information). For the moment we only need to know that, for every F ∈135

L∞((0,+∞) × (0, 1))m×n, t0 ≥ 0 and y0 ∈ L2(0, 1)n, there exists a unique (broad) solution y ∈136

C0([t0,+∞);L2(0, 1)n) to the system (1) with137

u(t) =

∫ 1

0

F (t, ξ)y(t, ξ) dξ. (6)138

The relation (6) will be called the feedback law and the function F will be called the state-feedback139

gain function.140

Let us now give the notion of stability that we are interested in this article (see, for example,141

[BB98, De�nition], [BR05, Section 3.2] and [Cor07, De�nitions 11.11 and 11.27] for time-varying142

systems in �nite dimension).143

De�nition 1.1. Let T > 0. We say that the system (1) with feedback law (6) is �nite-time stable144

with settling time T if the following two properties hold:145

(i) Finite-time global attractor. For every t0 ≥ 0 and y0 ∈ L2(0, 1)n,146

y(t0 + T, ·) = 0. (7)147

(ii) Uniform stability. For every ε > 0, there exists δ > 0 such that, for every t0 ≥ 0 and148

y0 ∈ L2(0, 1)n,149 (∥∥y0
∥∥
L2(0,1)n

≤ δ
)

=⇒
(
‖y(t, ·)‖L2(0,1)n ≤ ε, ∀t ≥ t0

)
. (8)150

Remark 1.2. The property (8) guarantees that, inside any time interval of the form [t0, t0 + T ], the
solution is controlled solely by its value at the initial time t0, even if this time t0 is very large. For
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our system (1) this property is in fact a consequence of the �rst property (7) and that the state-
feedback gain function F is in L∞((0,+∞)× (0, 1))m×n (see Remark A.3). Such an implication is in
general not true for time-dependent hyperbolic systems. A simple example is the following transport
equation: 

∂y

∂t
(t, x)− ∂y

∂x
(t, x) = 0,

y(t, 1) = f(t)

∫ 1

0

y(t, ξ)dξ,

y(t0, x) = y0(x),

where f ∈ C∞([0,+∞)) is such that, for every k ∈ N,
f(t) = 0, ∀t ∈ [2k, 2k + 1],

f(t) = t, ∀t ∈
[
2k +

5

4
, 2k +

7

4

]
,

(note that f 6∈ L∞(0,+∞)). Then the �nite-time global attractor property holds (with T = 3) but151

the uniform stability property does not hold (consider the sequences y0
δ (x) = δ for every x ∈ (0, 1)152

and t0δ = 2
⌈

1
δ

⌉
+ 5

4 , where d·e denotes the ceiling function).153

Remark 1.3. As we are trying to �nd a state-feedback gain function F so that (1) with feedback law
(6) is �nite-time stable, let us �rst point out that, in general, F = 0 does not work. A simple example
is provided by the 2× 2 system with constant coe�cients (t0 = 0 to simplify)

∂y−
∂t

(t, x)− ∂y−
∂x

(t, x) = −cy+(t, x),

∂y+

∂t
(t, x) +

∂y+

∂x
(t, x) = −cy−(t, x),

y−(t, 1) = 0, y+(t, 0) = y−(t, 0),

y(0, x) = y0(x),

which is exponentially unstable for c > π (see e.g. [BC16, Proposition 5.12] with y−(t, x) = S1(t, 1−x)154

and y+(t, x) = S2(t, 1− x)), and thus not �nite-time stable.155

1.2 The characteristics156

To state the main result of this paper we need to introduce the characteristic curves associated with157

system (1). To this end, it is convenient to �rst extend Λ to a function of R2 (still denoted by Λ).158

Remark 1.4. This extension procedure can be done in such a way that the properties (2), (3), (4)
and (5) remain valid on R2. We can take for instance

λ̄i(t, x) =


λi(t, x) if t ≥ 0,

λi(0, x) + δ
(
λi(0, x)− λi

(
1− et/δ, x

))
if t < 0,

where δ > 0 is small enough so that −ε + 4δmaxi ‖λi‖L∞((0,1)×(0,1)) < −ε/2 to guarantee the159

properties (3) and (4) with ε/2 in place of ε. This extends the function to R × [0, 1]. We can use160

a similar procedure to then extend it to R2. We can check that the results of this paper do not161

depend on such a choice of extension (all the important data are uniquely determined on the domain162

of interest (0,+∞)× (0, 1)).163
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1.2.1 The �ow164

For every i ∈ {1, · · · , n}, let χi be the �ow associated with λi, i.e. for every (t, x) ∈ R × R, the165

function s 7→ χi(s; t, x) is the solution to the ODE166 
∂χi
∂s

(s; t, x) = λi(s, χi(s; t, x)), ∀s ∈ R,

χi(t; t, x) = x.

(9)167

The existence and uniqueness of the solution to the ODE (9) follows from the (local) Cauchy-Lipschitz168

theorem and this solution is global since λi is bounded (by the �nite time blow-up theorem, see e.g.169

[Har02, Theorem II.3.1]). The uniqueness of the solution to the ODE (9) also yields the group170

property171

χi (σ; s, χi(s; t, x)) = χi(σ; t, x), ∀σ ∈ R. (10)172

By classical regularity results on ODEs (see e.g. [Har02, Theorem V.3.1]), χi has the regularity173

χi ∈ C1(R3), (11)174

and, for every s, t, x ∈ R, we have175

∂χi
∂t

(s; t, x) = −λi(t, x)e
∫ s
t

∂λi
∂x (θ,χi(θ;t,x)) dθ,

∂χi
∂x

(s; t, x) = e
∫ s
t

∂λi
∂x (θ,χi(θ;t,x)) dθ. (12)176

Note in particular that177 

∂χi
∂t

(s; t, x) > 0 if i ∈ {1, . . . ,m} ,

∂χi
∂t

(s; t, x) < 0 if i ∈ {m+ 1, . . . , n} ,

∂χi
∂x

(s; t, x) > 0.

(13)178

1.2.2 The entry and exit times179

For every i ∈ {1, · · · , n}, t ∈ R and x ∈ [0, 1], let sin
i (t, x), sout

i (t, x) ∈ R be the entry and exit times180

of the �ow χi(·; t, x) inside the domain [0, 1], i.e. the respective unique solutions to181 
χi(s

in
i (t, x); t, x) = 1, χi(s

out
i (t, x); t, x) = 0, if i ∈ {1, . . . ,m} ,

χi(s
in
i (t, x); t, x) = 0, χi(s

out
i (t, x); t, x) = 1, if i ∈ {m+ 1, . . . , n} .

(14)182

The existence and uniqueness of sout
i (t, x) and sin

i (t, x) are guaranteed by the assumption (3). Note183

that we always have184

sin
i (t, x) ≤ t ≤ sout

i (t, x) (15)185

and the cases of equalities are given by186 
sin
i (t, x) = t ⇐⇒ x = 1, sout

i (t, x) = t ⇐⇒ x = 0, if i ∈ {1, . . . ,m} ,

sin
i (t, x) = t ⇐⇒ x = 0, sout

i (t, x) = t ⇐⇒ x = 1, if i ∈ {m+ 1, . . . , n} .
(16)187

It readily follows from (10) and the uniqueness of sin
i , s

out
i that, for every s ∈ [sin

i (t, x), sout
i (t, x)],188

sin
i (s, χi(s; t, x)) = sin

i (t, x), sout
i (s, χi(s; t, x)) = sout

i (t, x). (17)189
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From (11) and by the implicit function theorem, we have190

sin
i , s

out
i ∈ C1(R× [0, 1]). (18)191

Moreover, integrating the ODE (9) and using the assumption (3), we have the following bounds, valid192

for every t ∈ R and x ∈ [0, 1],193

t− sin
i (t, x) <

1

ε
, sout

i (t, x)− t < 1

ε
. (19)194

On the other hand, di�erentiating (14) and using (13) with (3), we see that, for every t ∈ R and195

x ∈ [0, 1], we have196 

∂sin
i

∂t
(t, x) > 0,

∂sout
i

∂t
(t, x) > 0,

∂sin
i

∂x
(t, x) > 0,

∂sout
i

∂x
(t, x) > 0 if i ∈ {1, . . . ,m} ,

∂sin
i

∂x
(t, x) < 0,

∂sout
i

∂x
(t, x) < 0 if i ∈ {m+ 1, . . . , n} .

(20)197

Finally, from the assumption (3) and classical results on comparison for ODEs (see e.g. [Har02,198

Corollary III.4.2]), we have, for every t ∈ R and x ∈ [0, 1],199 
sin
m(t, x) < . . . < sin

1 (t, x) if x 6= 1, sout
1 (t, x) < . . . < sout

m (t, x) if x 6= 0,

sin
m+1(t, x) < . . . < sin

n (t, x) if x 6= 0, sout
n (t, x) < . . . < sout

m+1(t, x) if x 6= 1.

(21)200

1.3 Main result and comments201

We are now in position to state the main result of this paper:202

Theorem 1.5. Let Λ, M and Q satisfy (2), (3), (4) and (5). Then, there exists a state-feedback gain203

function F ∈ L∞((0,+∞) × (0, 1))m×n such that the system (1) with feedback law (6) is �nite-time204

stable with settling time Tunif(Λ) de�ned by205

Tunif(Λ) = sup
t0≥0

sout
m+1

(
sout
m

(
t0, 1

)
, 0
)
− t0. (22)206

Moreover, if for some τ > 0, Λ, M and Q are τ -periodic with respect to time (that is Λ(t + τ, x) =207

Λ(t, x) for every t ≥ 0 and x ∈ [0, 1], same for M and Q) then one can also impose to F to be208

τ -periodic with respect to time (almost everywhere).209

Let us remark that, thanks to (15), (16) and (19), we always have

0 < Tunif(Λ) <
2

ε
.

Note as well, thanks to (21) and the �rst line in (20), that we have

Tunif(Λ) = max
j∈{m+1,...,n}

max
i∈{1,...,m}

sup
t0≥0

sout
j

(
sout
i

(
t0, 1

)
, 0
)
− t0.

7



Example 1.6. Theorem 1.5 applies for instance to the following coupled 2× 2 system:210 

∂y1

∂t
(t, x)− ∂y1

∂x
(t, x) = m11(t, x)y1(t, x) +m12(t, x)y2(t, x),

∂y2

∂t
(t, x) +

(
1 +

1

1 + t

)
∂y2

∂x
(t, x) = m21(t, x)y1(t, x) +m22(t, x)y2(t, x),

y1(t, 1) = u(t), y2(t, 0) = q(t)y1(t, 0),

y(t0, x) = y0(x),

(23)211

where M = (mij)1≤i,j≤2 and Q = (q) are any parameters with the regularity (5). Let us show how

to compute Tunif(Λ) for this example. First of all, it is clear that χ1(s; t, x) = −s + t + x, so that
sout

1 (t0, 1) = t0 +1. On the other hand, we have χ2(s; t, x) = s+ln(1+s)−t− ln(1+t)+x. Therefore,
h(t0) = sout

2 (t0 + 1, 0)− t0 solves Ψ(h(t0), t0) = 0, where

Ψ(h, t0) = h+ ln(1 + h+ t0)− 2− ln(2 + t0).

Taking the derivative of the relation Ψ(h(t0), t0) = 0 and using the fact that h ≥ 1 by (15), we see that
h′(t0) ≥ 0, so that h is non-decreasing. Since h ≤ 2 by (19), the function h is thus a bounded non-
decreasing function and, consequently, limt0→+∞ h(t0) exists and is equal to supt0≥0 h(t0) = Tunif(Λ).
Writing the relation Ψ(h(t0), t0) = 0 as follows for t0 > 0

h(t0) + ln

(
1

t0
+
h(t0)

t0
+ 1

)
− 2− ln

(
2

t0
+ 1

)
= 0,

and letting t0 → +∞ we obtain the value Tunif(Λ) = 2.212

Remark 1.7. Observe that the time Tunif(Λ) does not depend on the parametersM and Q. It depends
only on Λ on [0,+∞)× (0, 1). Moreover, this is the best time one can obtain, uniformly with respect
to all the possible choices of M and Q (this explains our notation �Tunif(Λ)�). More precisely,

Tunif(Λ) = minE,

where E is the set of T > 0 such that, for every M and Q with the regularity (5), there exists a
state-feedback gain function F ∈ L∞((0,+∞)× (0, 1))m×n so that the system (1) with feedback law
(6) is �nite-time stable with settling time T . Indeed, Theorem 1.5 establishes that Tunif(Λ) ∈ E, so
that E 6= ∅. On the other hand, taking M = 0 and the constant matrix

Q =

 0 1

0 0


}

1}
p− 1︸ ︷︷ ︸

m−1

︸︷︷︸
1

.

we can check from the very de�nition of broad solution (see De�nition A.1) that, if T < Tunif(Λ),213

then there exist t0 ≥ 0 and y0 ∈ L2(0, 1)n such that the corresponding solution to (1) satis�es214

y(t0 + T, ·) 6= 0, whatever u ∈ L∞(t0, t0 + T )m is.215

Of course, for particular choices of M and Q one may obtain a better settling time (a trivial216

example being M = 0 and Q = 0). In the case of time-independent systems, the minimal time217

in which one can achieve the stabilization and related controllability properties has been recently218

discussed in [CN19] and [HO19] (see also the references therein).219
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Remark 1.8. If the speeds do not depend on time, i.e. λ`(t, x) = λ`(x) for every t ≥ 0, then we have220

a more explicit formula for the time Tunif(Λ), namely:221

Tunif(Λ) =

∫ 1

0

1

−λm(ξ)
dξ +

∫ 1

0

1

λm+1(ξ)
dξ. (24)222

The value (24) is obtained by integrating over ξ ∈ [0, 1] the di�erential equation satis�ed by the223

inverse functions ξ 7−→ χ−1
m (ξ; t, 1) and ξ 7−→ χ−1

m+1(ξ; t, 0).224

Remark 1.9. The assumption (3) that the negative (resp. positive) speeds are uniformly bounded
from above (resp. below), despite not being necessary for the existence of a solution to (1), is to be
expected for the system (1) to be �nite-time stable. This is an issue that is not speci�c to systems
and that already occurs for a single equation. Indeed, let us consider for instance the equation with
speed λ(t) = −e−t (and t0 = 0 to simplify):

∂y

∂t
(t, x)− e−t ∂y

∂x
(t, x) = 0,

y(t, 1) = u(t),

y(0, x) = y0(x).

Then, whatever y0 ∈ L2(0, 1) and u ∈ L∞(0,+∞) are, if y0 6= 0 in a neighborhood of 1 we have

y(T, ·) 6= 0, ∀T > 0.

This is easily seen thanks to the explicit representation of the solution (obtained by the characteristic
method):

y(t, x) =


y0 (1− (e−t − x)) if 0 < x < e−t,

u

(
ln

(
1

1 + e−t − x

))
if e−t < x < 1.

Remark 1.10. Contrary to (3), the assumption (4) is mainly technical. This assumption is needed225

because we will have to divide in the sequel by the quantities λj − λi (see in particular (67) below)226

and we will need this inverse function to be bounded. However, this condition is clearly not necessary227

for some systems (1) to be �nite-time stable. Indeed, consider for instance the following 3×3 system:228 

∂y1

∂t
(t, x)− ∂y1

∂x
(t, x) = y2(t, x),

∂y2

∂t
(t, x)−

(
1− e−t

2

)
∂y2

∂x
(t, x) = 0,

∂y3

∂t
(t, x) +

∂y3

∂x
(t, x) = 0,

y1(t, 1) = u1(t), y2(t, 1) = u2(t), y3(t, 0) = y2(t, 0),

y(t0, x) = y0(x).

(25)229

Then, using the characteristic method it is not di�cult to see that the system (25) with u1 = u2 = 0230

is �nite-time stable with settling time T + 1, where T is the unique positive solution to the equation231

T + e−T

2 = 3
2 .232

Remark 1.11. The case m = n ≥ 1 (no boundary conditions at x = 0) is easier and does not require233

the techniques presented in this paper. Indeed, it can be checked using for instance the constructive234

method of [LR03, Wan06] that in this case the system (1) with u = 0 is �nite-time stable with settling235

time equal to supt0≥0 s
out
m (t0, 1)− t0.236
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2 System transformations237

The goal of this section is to show that we can use several invertible transformations in order to238

remove or transform some coupling terms in the initial system (1) and to obtain in the end a system239

for which we can directly establish that it is �nite-time stable with settling time Tunif(Λ). The plan240

of this section is as follows:241

1) In Section 2.1, we use a diagonal transformation to remove the diagonal terms in M .242

2) Next, in Section 2.2, inspired by the seminal works [Col77, Rus78, BK02] for equations and243

[CVKB13, HDM15, HDMVK16, HVDMK19] for hyperbolic systems, we use a Volterra trans-244

formation of the second kind to transform the system obtained by the previous step into a new245

system in the so-called �control normal form� and with an additional triangular structure for246

the couplings.247

3) Finally, in Section 2.3, inspired by the work [CHO17] for time-independent systems, we use an248

invertible Fredholm integral transformation to transform the system obtained by the previous249

step into a new system with a very simple coupling structure that allows us to readily see that250

it is �nite-time stable with settling time Tunif(Λ).251

In Section 2 only the properties of the transformations and new systems are discussed. The252

existence of the transformations is the main technical point of this paper and will be proved in253

Section 3 below for the sake of the presentation.254

Finally, because of the nature of the transformations that we will use in the sequel, we are led to255

consider a class of systems that is slightly more general than (1). All the systems of this paper will256

have the following form:257 

∂y

∂t
(t, x) + Λ(t, x)

∂y

∂x
(t, x) = M(t, x)y(t, x) +G(t, x)y(t, 0),

y−(t, 1) =

∫ 1

0

F (t, ξ)y(t, ξ) dξ, y+(t, 0) = Q(t)y−(t, 0),

y(t0, x) = y0(x),

(26)258

where M and Q will have at least the regularity (5), F ∈ L∞((0,+∞)× (0, 1))m×n and

G ∈ C0([0,+∞)× [0, 1])n×n ∩ L∞((0,+∞)× (0, 1))n×n.

Therefore, (26) is similar to (1) but has the extra term with G. In what follows, we will also refer to
a system of the form (26) as

(M,G,F,Q).

Hyperbolic equations similar to (0, G, F,Q) were called in �control normal form� in the pioneering259

work [Rus78, p. 212] for the similarity with the �nite-dimensional setting (see also the earlier paper260

[Bru70]).261

2.1 Removal of the diagonal terms262

In this section we just perform a simple preliminary transformation in order to remove the diagonal263

terms in M . This is only a technical step, which is nevertheless necessary in view of the existence of264

the transformation that we will use in the next section, see Remark 2.7 below. This step is sometimes265

called �exponential pre-transformation� in the case of time-independent systems (see Remark 2.3266

below). More precisely, the goal of this section is to establish the following result:267
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Proposition 2.1. There exists M1 = (m1
ij)1≤i,j≤n ∈ C0([0,+∞) × [0, 1])n×n ∩ L∞((0,+∞) ×268

(0, 1))n×n with diagonal terms equal to zero:269

m1
ii = 0, ∀i ∈ {1, . . . , n} , (27)270

and there exists Q1 ∈ C0([0,+∞))p×m ∩ L∞(0,+∞)p×m such that, for every F 1 ∈ L∞((0,+∞) ×
(0, 1))m×n, there exists F ∈ L∞((0,+∞)× (0, 1))m×n such that the following property holds for every
T > 0:

(M1, 0, F 1, Q1) is �nite-time stable with settling time T

=⇒ (M, 0, F,Q) is �nite-time stable with settling time T. (28)

2.1.1 Formal computations271

To prove Proposition 2.1, the idea is to show that, for every F 1, there exists F such that we can272

transform a solution of (M, 0, F,Q) into a solution of (M1, 0, F 1, Q1). Let then y be the solution to273

the system (M, 0, F,Q) with state-feedback gain function F to be determined below and initial data274

y0. Let Φ : [0,+∞)× [0, 1] −→ Rn×n be a smooth matrix-valued function and set275

w(t, x) = Φ(t, x)y(t, x). (29)276

Let us now perform some formal computations in order to see what w can solve. Using the equation
satis�ed by y, we have

∂w

∂t
+ Λ

∂w

∂x
=

(
∂Φ

∂t
+ ΦM + Λ

∂Φ

∂x

)
y + (−ΦΛ + ΛΦ)

∂y

∂x
.

On the other hand, using the boundary condition satis�ed by y at x = 0, we have

w+(t, 0)−Q1(t)w−(t, 0)

=
(
Φ+−(t, 0) + Φ++(t, 0)Q(t)−Q1(t)Φ−−(t, 0)−Q1(t)Φ−+(t, 0)Q(t)

)
y−(t, 0).

Finally, at x = 1, we have

w−(t, 1)−
∫ 1

0

F 1(t, ξ)w(t, ξ) dξ =

∫ 1

0

(
Φ−−(t, 1)F (t, ξ)− F 1(t, ξ)Φ(t, ξ)

)
y(t, ξ) dξ+Φ−+(t, 1)y+(t, 1).

Thus, we see that w satis�es at x = 1 the boundary condition w−(t, 1) =
∫ 1

0
F 1(t, ξ)w(t, ξ) dξ if277

Φ−+(t, 1) = 0 and278

F (t, ξ) = Φ−−(t, 1)−1F 1(t, ξ)Φ(t, ξ), (30)279

provided that Φ−−(t, 1) is also invertible. Moreover, note that F belongs to L∞((0,+∞)×(0, 1))m×n280

provided that F 1 belongs to this space as well and281

∃C > 0,
∥∥Φ−−(·, 1)−1

∥∥
L∞(0,+∞)m×m

≤ C. (31)282

In summary, w de�ned by (29) is the solution of (M1, 0, F 1, Q1) with state-feedback gain function283

F 1 (which is assumed to be known) and initial data w0(·) = Φ(0, ·)y0(·) if we have the following four284

properties:285

(i) Λ(t, x)Φ(t, x) = Φ(t, x)Λ(t, x) for every t ≥ 0 and x ∈ [0, 1].286

(ii) The matrices Φ(t, x) and Φ−−(t, 0) + Φ−+(t, 0)Q(t) are invertible for every t ≥ 0 and x ∈ [0, 1].287

(iii) Φ−+(t, 1) = 0 for every t ≥ 0 (it then follows with (ii) that Φ−−(t, 1) is invertible).288

11



(iv) M1 and Q1 are de�ned by289 
M1(t, x) =

(
∂Φ

∂t
(t, x) + Λ(t, x)

∂Φ

∂x
(t, x) + Φ(t, x)M(t, x)

)
Φ(t, x)−1,

Q1(t) = (Φ+−(t, 0) + Φ++(t, 0)Q(t)) (Φ−−(t, 0) + Φ−+(t, 0)Q(t))
−1
.

(32)290

Finally, it is not di�cult to check that the stability property (28) is indeed satis�ed since the291

state-feedback gain function F is solely determined by the state-feedback gain function F 1 and, at292

every �xed t ≥ 0, the transformation (29) de�nes an injective (in fact, invertible) map of L2(0, 1)n.293

2.1.2 Existence of the transformation294

Let us now prove the existence of a function Φ with the properties listed above and which in addition295

ensures that the condition (27) on M1 holds.296

Proposition 2.2. There exists Φ with Φ, ∂Φ
∂t + Λ∂Φ

∂x ∈ C0([0,+∞) × [0, 1])n×n ∩ L∞((0,+∞) ×297

(0, 1))n×n such that the properties (i), (ii), (iii) and (31) are satis�ed and such that the matrix-298

valued function M1 de�ned in (32) satis�es (27).299

Proof. Let Φ be the diagonal matrix-valued function de�ned for every t ≥ 0 and x ∈ [0, 1] by

Φ(t, x) = diag(φ1(t, x), . . . , φn(t, x)),

where, for every i ∈ {1, . . . , n},300

φi(t, x) = e
−

∫ t
sin
i

(t,x)
mii(σ,χi(σ;t,x)) dσ

, (33)301

wheremii is extended to negative times by an arbitrary function that keeps the regularity (5). Clearly,302

φi ∈ C0([0,+∞)× [0, 1]) and it follows from (19) that φi ∈ L∞((0,+∞)× (0, 1)).303

It is clear that the �rst property (i) holds since Λ and Φ are both diagonal matrices. Since
Φ−+ = 0, the third property (iii) is automatically satis�ed. It also follows that, to check the second
property (ii), we only need to show that Φ(t, x) is invertible, which readily follows from the explicit
expression of φi. The estimate (31) is obviously true since Φ−−(t, 1) = IdRm×m (recall (16)). Finally,
M1 de�ned in (32) satis�es (27) since φi satis�es the following linear hyperbolic equation:

∂φi
∂t

(t, x) + λi(t, x)
∂φi
∂x

(t, x) +mii(t, x)φi(t, x) = 0.

304

Remark 2.3. There are obviously other possible choices for φi, for instance in the time-independent305

case we can take the slightly simpler function φi(t, x) = e
−

∫ x
0

mii(ξ)

λi(ξ)
dξ

(which coincides with (33) only306

for i ∈ {m+ 1, . . . , n}).307

2.2 Volterra transformation308

In this section we perform a second transformation to remove some coupling terms of the system.309

The system will then have a triangular coupling structure, which is the key point to show later on310

(Section 2.3 below) that this system is �nite-time stable with settling time Tunif(Λ). More precisely,311

the goal of this section is to establish the following result:312
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Proposition 2.4. There exists a strictly lower triangular matrix G2
−− = (g2

ij)1≤i,j≤m ∈ C
0([0,+∞)×313

[0, 1])m×m ∩ L∞((0,+∞)× (0, 1))m×m:314

g2
ij = 0, ∀ 1 ≤ i ≤ j ≤ m, (34)315

and there exists G2
+− ∈ C0([0,+∞) × [0, 1])p×m ∩ L∞((0,+∞) × (0, 1))p×m such that, for every

F 2 ∈ L∞((0,+∞) × (0, 1))m×n, there exists F 1 ∈ L∞((0,+∞) × (0, 1))m×n such that the following
property holds for every T > 0:

(0, G2, F 2, Q1) is �nite-time stable with settling time T

=⇒ (M1, 0, F 1, Q1) is �nite-time stable with settling time T, (35)

where316

G2 =

G2
−− 0

G2
+− 0

 . (36)317

Remark 2.5. Thanks to the triangular structure (34) and (36) of G2, we can check from the very
de�nition of broad solution (see De�nition A.1) that the system provided by Proposition 2.4 with
state-feedback gain function equal to zero, i.e. (0, G2, 0, Q1), is �nite-time stable with settling time
T (0, G2, 0, Q1) de�ned by

T (0, G2, 0, Q1) = sup
t0≥0

sout
m+1

(
Tm(t0), 0

)
− t0,

where 
T1(t0) = sout

1 (t0, 1),

Ti(t
0) = sout

i (Ti−1(t0), 1), ∀i ∈ {2, . . . ,m} .

We do not detail this point here because it is not needed, and we refer to the arguments used in the
proof of Proposition 2.12 below for an idea of the proof of this assertion. As a result, the combination
of Proposition 2.4 with Proposition 2.1 already shows that our initial system (M, 0, F,Q) is �nite-time
stable for some F , with settling time T (0, G2, 0, Q1). However, this time T (0, G2, 0, Q1) is always
strictly larger than the time Tunif(Λ) given in Theorem 1.5 (as long as m > 1). In the case of time-
independent systems, the time T (0, G2, 0, Q1) is the time obtained in [HDMVK16, HVDMK19] and
it has the more explicit expression

T (0, G2, 0, Q1) =

m∑
i=1

∫ 1

0

1

−λi(ξ)
dξ +

∫ 1

0

1

λm+1(ξ)
dξ.

2.2.1 Formal computations318

Let us now show how to establish Proposition 2.4. As before, the goal is to show that, for every319

F 2, there exists F 1 such that we can transform a solution of (M1, 0, F 1, Q1) into a solution of320

(0, G2, F 2, Q1). Let then w be the solution to the system (M1, 0, F 1, Q1) with state-feedback gain321

function F 1 to be determined below and initial data w0. Inspired by the works mentioned at the322

beginning of Section 2, we use a Volterra transformation of the second kind as follows:323

γ(t, x) = w(t, x)−
∫ x

0

K(t, x, ξ)w(t, ξ) dξ, (37)324
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where we suppose for the moment that the kernel K is smooth on T , where T is the in�nite triangular
prism de�ned by

T = {(t, x, ξ) ∈ (0,+∞)× (0, 1)× (0, 1), ξ < x} .

Let us now perform some formal computations to see what γ can solve. We have

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) =

∂w

∂t
(t, x) + Λ(t, x)

∂w

∂x
(t, x)

−
∫ x

0

∂K

∂t
(t, x, ξ)w(t, ξ) dξ −

∫ x

0

K(t, x, ξ)
∂w

∂t
(t, ξ) dξ

− Λ(t, x)K(t, x, x)w(t, x)− Λ(t, x)

∫ x

0

∂K

∂x
(t, x, ξ)w(t, ξ) dξ.

Using the equation satis�ed by w, we obtain

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) = M1(t, x)w(t, x)

−
∫ x

0

∂K

∂t
(t, x, ξ)w(t, ξ) dξ −

∫ x

0

K(t, x, ξ)

(
−Λ(t, ξ)

∂w

∂ξ
(t, ξ) +M1(t, ξ)w(t, ξ)

)
dξ

− Λ(t, x)K(t, x, x)w(t, x)− Λ(t, x)

∫ x

0

∂K

∂x
(t, x, ξ)w(t, ξ) dξ.

Integrating by parts the third term of the right hand side and using the boundary condition w+(t, 0) =325

Q1(t)w−(t, 0), we �nally obtain326

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) =

∫ x

0

(
− ∂K

∂t
(t, x, ξ)− ∂K

∂ξ
(t, x, ξ)Λ(t, ξ)−K(t, x, ξ)

∂Λ

∂ξ
(t, ξ)

−K(t, x, ξ)M1(t, ξ)− Λ(t, x)
∂K

∂x
(t, x, ξ)

)
w(t, ξ) dξ

+
(
M1(t, x) +K(t, x, x)Λ(t, x)− Λ(t, x)K(t, x, x)

)
w(t, x)−K(t, x, 0)Λ(t, 0)

IdRm×m

Q1(t)

w−(t, 0).

On the other hand, since γ(t, 0) = w(t, 0), γ satis�es the same boundary condition as w at x = 0:

γ+(t, 0)−Q1(t)γ−(t, 0) = w+(t, 0)−Q1(t)w−(t, 0) = 0.

Finally, at x = 1, we have

γ−(t, 1)−
∫ 1

0

F 2(t, ξ)γ(t, ξ) dξ =∫ 1

0

(
F 1(t, ξ)−K−(t, 1, ξ)− F 2(t, ξ) +

∫ 1

ξ

F 2(t, ζ)K(t, ζ, ξ) dζ

)
w(t, ξ) dξ,

where K− denotes the m×n sub-matrix of K formed by its �rst m rows. Thus, we see that γ satis�es327

at x = 1 the boundary condition γ−(t, 1) =
∫ 1

0
F 2(t, ξ)γ(t, ξ) dξ if we take328

F 1(t, ξ) = K−(t, 1, ξ) + F 2(t, ξ)−
∫ 1

ξ

F 2(t, ζ)K(t, ζ, ξ) dζ. (38)329
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Note that F 1 belongs to L∞((0,+∞)× (0, 1))m×n provided that F 2 belongs to this space as well and

K ∈ L∞(T )n×n.

In summary, γ de�ned by (37) is the solution to (0, G2, F 2, Q1) with initial data γ0(x) = w0(x)−330 ∫ x
0
K(t0, x, ξ)w0(ξ) dξ if we have the following two properties:331

(i) For every (t, x, ξ) ∈ T ,332 

∂K

∂t
(t, x, ξ) + Λ(t, x)

∂K

∂x
(t, x, ξ) +

∂K

∂ξ
(t, x, ξ)Λ(t, ξ)

+K(t, x, ξ)

(
∂Λ

∂ξ
(t, ξ) +M1(t, ξ)

)
= 0,

K(t, x, x)Λ(t, x)− Λ(t, x)K(t, x, x) = −M1(t, x).

(39)333

(ii) G2 is de�ned by

G2 =

G2
−− 0

G2
+− 0

 ,

with334 
G2
−−(t, x) = −K−−(t, x, 0)Λ−−(t, 0)−K−+(t, x, 0)Λ++(t, 0)Q1(t),

G2
+−(t, x) = −K+−(t, x, 0)Λ−−(t, 0)−K++(t, x, 0)Λ++(t, 0)Q1(t).

(40)335

Finally, the stability property (35) is clearly satis�ed since, at every �xed t ≥ 0, the Volterra336

transformation (37) de�nes an injective map of L2(0, 1)n (see e.g. [Hoc73, Theorem 2.6]).337

2.2.2 The kernel equations338

We can prove that there exists K ∈ C0(T )n×n ∩ L∞(T )n×n that satis�es the so-called �kernel equa-339

tions� (39) in the sense of broad solutions. However, it is in general not enough to deduce sta-340

bility results for the initial system (M, 0, F,Q) since the investigation of the stability properties of341

the system (0, G2, F 2, Q1) is not an easier task without knowing any more information about it.342

The breakthrough idea of the conference paper [HDM15] in the time-independent case (see also343

[HDMVK16, HVDMK19]) was to construct a solution K to the kernel equations which, in addition,344

yields a simpler structure for the matrix G2
−− de�ned in (40). This is the key point to prove stability345

results for the system (0, G2, F 2, Q1) (see Remark 2.5 and Section 2.3 below). Such a construction346

is possible by adding some conditions for K−− at (t, x, 0) (see (40)) but the price to pay is that it347

introduces discontinuities for K−−, so that K will not be globally C0 anymore but only piecewise C0
348

in general. We will prove the following result:349

Theorem 2.6. There exists a n× n matrix-valued function K = (kij)1≤i,j≤n such that:350

(i) K ∈ L∞(T )n×n.351

(ii) For every i, j ∈ {1, . . . , n} with j 6∈ {i+ 1, . . . ,m}, we have kij ∈ C0(T ).352

(iii) For every i, j ∈ {1, . . . ,m} with i < j, we have kij ∈ C0(T −ij ) ∩ C0(T +
ij ), where (see Figure 1)

T −ij = {(t, x, ξ) ∈ T , ξ < ψij(t, x)} ,
T +
ij = {(t, x, ξ) ∈ T , ξ > ψij(t, x)} ,
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where ψij ∈ C1([0,+∞)× [0, 1]) satis�es the following semi-linear hyperbolic equation for every353

t ≥ 0 and x ∈ [0, 1]:354 
∂ψij
∂t

(t, x) + λi(t, x)
∂ψij
∂x

(t, x)− λj(t, ψij(t, x)) = 0,

ψij(t, 0) = 0.

(41)355

(iv) K is a broad solution of (39) in T (the exact meaning of this statement will be detailed during356

the proof of the theorem, in Section 3.2 below).357

(v) For every t ≥ 0 and x ∈ [0, 1], the matrix G2
−−(t, x) de�ned in (40) is strictly lower triangular,358

i.e. it satis�es (34) (it then follows from (ii) that G2
−− ∈ C0([0,+∞)× [0, 1])m×m).359

The proof of Theorem 2.6 is one of the main technical di�culties of this article and it is postponed360

to Section 3.2 below for the sake of the presentation. We conclude this section with some important361

remarks.362

Remark 2.7. Let us rewrite the second condition of (39) component-wise:363

(λj(t, x)− λi(t, x)) kij(t, x, x) = −m1
ij(t, x). (42)364

Therefore, we see that for i = j we shall necessarily have m1
ii = 0 and it explains why we had to365

perform a preliminary transformation in Section 2.1 to remove these terms (otherwise the equation366

(42), and thus the kernel equations (39), have no solution).367

Remark 2.8. It is in general not possible to solve (39) with G2
−− = 0, unless m = 1.368

Remark 2.9. Observe that, with the regularity stated in Theorem 2.6, we have in particular that, for
every w ∈ C0([t0,+∞);L2(0, 1)n), t0 ≥ 0,

(t, x) 7→
∫ x

0

K(t, x, ξ)w(t, ξ) dξ ∈ C0([t0,+∞)× [0, 1])n.

This follows from Lebesgue's dominated convergence theorem. This shows that γ de�ned by (37) has369

the good regularity to be a broad solution (see De�nition A.1), if so has w.370

Remark 2.10. Observe that the condition (iii) shows that the kernel has possible discontinuities on
ξ = ψij(t, x) for i < j ≤ m. Besides, these discontinuities also depend on the component of the kernel
that we consider. The appearance of such discontinuities is explained by the requirement of the last
condition (v) because we somehow force two boundary conditions at the points (t, 0, 0), one by the
condition already required in (39) (which concerns i 6= j, see Remark 2.7) and another one by (v)
(which only concerns i ≤ j ≤ m). This results in discontinuities along the characteristics passing
through these points. Note that this also complicates the justi�cation of formal computations that we
performed above since regularity problems will occur during the computation of the following term
(when i < j ≤ m):

∂

∂t

(∫ x

0

kij(t, x, ξ)wj(t, ξ) dξ

)
+ λi(t, x)

∂

∂x

(∫ x

0

kij(t, x, ξ)wj(t, ξ) dξ

)
.

More precisely, writing
∫ x

0
=
∫ ψij(t,x)

0
+
∫ x
ψij(t,x)

and using integration by parts, we see that the

following jump terms notably appear:(
∂ψij
∂t

(t, x)− λj(t, ψij(t, x)) + λi(t, x)
∂ψij
∂x

(t, x)

)
×
(
k−ij(t, x, ψij(t, x))− k+

ij(t, x, ψij(t, x))
)
wj(t, ψij(t, x)),
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where k−ij (resp. k
+
ij) denotes the trace of the restriction of kij to ∂T −ij (resp ∂T +

ij ). This is why it is
crucial to precise that ψij solves the �rst equation in (41) so that such undesired terms vanish in the
end. In the case of time-independent systems, we have in fact

ψij(t, x) = φ−1
j (φi(x)) ,

where we introduced φ`(x) =
∫ x

0
1

−λ`(ξ) dξ for ` ∈ {1, . . . ,m} (ψij is well de�ned because i < j). This371

is the same function as in [HVDMK19, (A.1)].372

ξ

x0 1

ξ = ψij(t, x)

T +
ij

T −ij

ξ = 0

ξ
=
x

373

Figure 1: 2D cross-section of the domain T at a �xed t374

2.3 Fredholm integral transformation375

We recall that at the moment we already know that the system (0, G2, F 2, Q1) of Proposition 2.4 is376

�nite-time stable if we take F 2 = 0, but only with a settling time which is strictly larger than Tunif(Λ)377

(unless m = 1), see Remark 2.5. In this section, we perform a third and last transformation to remove378

the coupling term G2
−− in the system (0, G2, F 2, Q1) and we show that the resulting system has the379

desired stability properties. More precisely, the goal of this section is to establish the two following380

results:381

Proposition 2.11. There exists F 2 ∈ L∞((0,+∞) × (0, 1))m×n such that the following property
holds for every T > 0:

(0, G3, 0, Q1) is �nite-time stable with settling time T

=⇒ (0, G2, F 2, Q1) is �nite-time stable with settling time T, (43)

where382

G3 =

 0 0

G2
+− 0

 . (44)383

Proposition 2.12. The system (0, G3, 0, Q1) is �nite-time stable with settling time Tunif(Λ) de�ned384

by (22).385

Note that the proof of our main result � Theorem 1.5 � will then be complete (recall Propositions386

2.1 and 2.4), except for the τ -periodicity statement which will be studied later on in Section 3.3.387
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2.3.1 Finite-time stability of the system (0, G3, 0, Q1)388

In this section we prove Proposition 2.12 in four steps.389

1) Let t0 ≥ 0 be �xed. From the very de�nition of broad solution (see De�nition A.1) and390

the simple structure of G3, we see that the �rst m components of the system vanish at time391

t0 + Tunif(Λ) if (recall that the feedback is equal to zero)392

sin
i (t0 + Tunif(Λ), x) > t0, ∀x ∈ [0, 1], ∀i ∈ {1, . . . ,m} , (45)393

and the remaining p components of the system vanish at time t0 + Tunif(Λ) if394 
sin
i (t0 + Tunif(Λ), x) > t0, ∀x ∈ [0, 1], ∀i ∈ {m+ 1, . . . , n}

sin
j

(
sin
i (t0 + Tunif(Λ), x), 0

)
> t0, ∀x ∈ [0, 1), ∀j ∈ {1, . . . ,m} , ∀i ∈ {m+ 1, . . . , n} .

(46)395

2) First of all, observe that, from (20), (17) and (16) we have the following inverse formula for396

every t, t̄ ∈ R:397 
sin
i (t, 0) > t̄ ⇐⇒ t > sout

i (t̄, 1), if i ∈ {1, . . . ,m} ,

sin
i (t, 1) ≥ t̄ ⇐⇒ t ≥ sout

i (t̄, 0), if i ∈ {m+ 1, . . . , n} .
(47)398

3) Let us establish (45). Let then i ∈ {1, . . . ,m} be �xed. We have:

sin
i (t0 + Tunif(Λ), x) > t0, ∀x ∈ [0, 1] ⇐⇒ sin

i (t0 + Tunif(Λ), 0) > t0, (by (20)),

⇐⇒ t0 + Tunif(Λ) > sout
i

(
t0, 1

)
, (by (47)),

and this last statement holds true since, by de�nition of Tunif(Λ) and (15)-(16), we have, for an
arbitrary j ∈ {m+ 1, . . . , n},

t0 + Tunif(Λ) ≥ sout
j (sout

i (t0, 1), 0) > sout
i (t0, 1).

4) Let us now establish (46). We focus on the second inequality since the �rst one is obtained
similarly to (45). Let then i ∈ {m+ 1, . . . , n} and j ∈ {1, . . . ,m} be �xed. We have:

sin
j

(
sin
i (t0 + Tunif(Λ), x), 0

)
> t0, ∀x ∈ [0, 1)

⇐⇒ sin
i (t0 + Tunif(Λ), x) > sout

j

(
t0, 1

)
, ∀x ∈ [0, 1), (by (47)),

⇐⇒ sin
i (t0 + Tunif(Λ), 1) ≥ sout

j

(
t0, 1

)
, (by (20)),

⇐⇒ t0 + Tunif(Λ) ≥ sout
i

(
sout
j

(
t0, 1

)
, 0
)
, (by (47)),

and this last statement holds true by de�nition of Tunif(Λ).399

400
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2.3.2 Proof of Proposition 2.11401

We start the proof with some computations. We will show that we can transform a solution of402

(0, G3, 0, Q1) into a solution of (0, G2, F 2, Q1) (note the di�erence in the order of the transformation403

with respect to the previous sections and see Remark 2.15 below for the reason). Let then z be the404

solution to the system (0, G3, 0, Q1) with initial data z0. Inspired by the work [CHO17] mentioned405

before (for time-independent systems), we propose to use a Fredholm integral transformation as406

follows:407

γ(t, x) = z(t, x)−
∫ 1

0

H(t, x, ξ)z(t, ξ) dξ, (48)408

where we suppose for the moment that the kernelH is smooth onR, whereR is the in�nite rectangular
prism de�ned by

R = (0,+∞)× (0, 1)× (0, 1).

Let us now perform some formal computations and see what γ can solve. We have

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) =

∂z

∂t
(t, x) + Λ(t, x)

∂z

∂x
(t, x)

−
∫ 1

0

∂H

∂t
(t, x, ξ)z(t, ξ) dξ −

∫ 1

0

H(t, x, ξ)
∂z

∂t
(t, ξ) dξ − Λ(t, x)

∫ 1

0

∂H

∂x
(t, x, ξ)z(t, ξ) dξ.

Using the equation satis�ed by z, we obtain

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) = G3(t, x)z(t, 0)−

∫ 1

0

∂H

∂t
(t, x, ξ)z(t, ξ) dξ

−
∫ 1

0

H(t, x, ξ)

(
−Λ(t, ξ)

∂z

∂ξ
(t, ξ) +G3(t, ξ)z(t, 0)

)
dξ − Λ(t, x)

∫ 1

0

∂H

∂x
(t, x, ξ)z(t, ξ) dξ.

Integrating by parts the third term of the right hand side, we obtain409

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) =

∫ 1

0

(
− ∂H

∂t
(t, x, ξ)− ∂H

∂ξ
(t, x, ξ)Λ(t, ξ)−H(t, x, ξ)

∂Λ

∂ξ
(t, ξ)

− Λ(t, x)
∂H

∂x
(t, x, ξ)

)
z(t, ξ) dξ

+H(t, x, 1)Λ(t, 1)z(t, 1) +

(
G3(t, x)−H(t, x, 0)Λ(t, 0)−

∫ 1

0

H(t, x, ξ)G3(t, ξ) dξ

)
z(t, 0).

Using the formula (48) with x = 0 we �nally obtain

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) =

∫ 1

0

(
− ∂H

∂t
(t, x, ξ)− ∂H

∂ξ
(t, x, ξ)Λ(t, ξ)−H(t, x, ξ)

∂Λ

∂ξ
(t, ξ)

− Λ(t, x)
∂H

∂x
(t, x, ξ) +

(
G3(t, x)−H(t, x, 0)Λ(t, 0)−

∫ 1

0

H(t, x, ζ)G3(t, ζ) dζ

)
H(t, 0, ξ)

)
z(t, ξ) dξ

+H(t, x, 1)Λ(t, 1)z(t, 1) +

(
G3(t, x)−H(t, x, 0)Λ(t, 0)−

∫ 1

0

H(t, x, ξ)G3(t, ξ) dξ

)
γ(t, 0).

Since410

z−(t, 1) = 0, (49)411
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the boundary term H(t, x, 1)Λ(t, 1)z(t, 1) vanishes if we require that H satis�es

H−+(t, x, 1) = H++(t, x, 1) = 0.

On the other hand, γ and z satisfy the same boundary condition at x = 0 provided that

H(t, 0, ξ) = 0.

Finally, at x = 1, we have (recall (49))

γ−(t, 1)−
∫ 1

0

F 2(t, ξ)γ(t, ξ) dξ =

∫ 1

0

(
−H−(t, 1, ξ)− F 2(t, ξ) +

∫ 1

0

F 2(t, ζ)H(t, ζ, ξ) dζ

)
z(t, ξ) dξ,

where H− denotes again the m × n sub-matrix of H formed by its �rst m rows. Thus, we see that412

γ satis�es at x = 1 the boundary condition γ−(t, 1) =
∫ 1

0
F 2(t, ξ)γ(t, ξ) dξ if F 2(t, ·) satis�es the413

following Fredholm integral equation (at t �xed):414

F 2(t, ξ)−
∫ 1

0

F 2(t, ζ)H(t, ζ, ξ) dζ = −H−(t, 1, ξ). (50)415

In summary, γ de�ned by (48) is the solution of (0, G2, F 2, Q1) with state-feedback gain function416

F 2 satisfying (50) (whenever it exists) and initial data γ0(x) = z0(x) −
∫ 1

0
H(t0, x, ξ)z0(ξ) dξ if we417

have the following two properties:418

(i) For every (t, x, ξ) ∈ R,419 
∂H

∂t
(t, x, ξ) + Λ(t, x)

∂H

∂x
(t, x, ξ) +

∂H

∂ξ
(t, x, ξ)Λ(t, ξ) +H(t, x, ξ)

∂Λ

∂ξ
(t, ξ) = 0,

H−+(t, x, 1) = H++(t, x, 1) = H(t, 0, ξ) = 0.

(51)420

(ii) G3 satis�es the Fredholm integral equation421

G3(t, x)−
∫ 1

0

H(t, x, ξ)G3(t, ξ) dξ = G2(t, x) +H(t, x, 0)Λ(t, 0). (52)422

Finally, the stability property (43) is clearly satis�ed if, for every t ≥ 0, the Fredholm transformation423

(48) de�nes a surjective map of L2(0, 1)n.424

It remains to prove the existence of F 2 and H satisfying the above properties and so that the425

Fredholm transformation (48) is invertible (let us recall that, unlike Volterra transformations of the426

second kind, Fredholm transformations are not always invertible). Note that H = 0 is a solution of427

(51). Taking into account the very particular structure (36) of G2, this motivates our attempt to428

look for a kernel H with the following simple structure:429

H =

H−− 0

0 0

 . (53)430

This structure implies that the Fredholm equation (52) is equivalent to

G3
−−(t, x)−

∫ 1

0

H−−(t, x, ξ)G3
−−(t, ξ) dξ = G2

−−(t, x) +H−−(t, x, 0)Λ−−(t, 0),

G3
−+(t, x)−

∫ 1

0

H−−(t, x, ξ)G3
−+(t, ξ) dξ = 0,

G3
+−(t, x) = G2

+−(t, x),

G3
++(t, x) = 0.
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These equations are easily solved by taking G3
−− = G3

−+ = 0 (so that G3 is indeed given by (44)) if
we impose the following condition for H−− at (t, x, 0):

H−−(t, x, 0) = −G2
−−(t, x)Λ−−(t, 0)−1.

We point out that this last condition may introduce discontinuities in the kernel, because of possible431

compatibility conditions at (t, 0, 0) with the previous requirement that H−−(t, 0, ξ) = 0.432

Finally, since G2
−− is in fact strictly lower triangular (34), we also look for H−− with the same433

structure. Note that this structure in particular ensures that the Fredholm transformation (48) is434

invertible and that the Fredholm equation (50) always has a unique solution F 2 ∈ L∞((0,+∞) ×435

(0, 1))m×n, provided that H−− ∈ L∞(R)m×m (see for instance [CHO17, Appendix] for more details).436

This property was a priori not guaranteed without additional information (we emphasize again that437

Fredholm transformations are not always invertible).438

The �nal step is to prove the existence of H−− that satis�es all the properties mentioned above.439

This is the goal of the following theorem, the proof of which is given in Section 3.1 below.440

Theorem 2.13. There exists a m×m matrix-valued function H−− = (hij)1≤i,j≤m such that:441

(i) H−− ∈ L∞(R)m×m.442

(ii) For i ≤ j, we have hij = 0 (i.e. H−− is strictly lower triangular).443

(iii) For i > j, we have hij ∈ C0(R−ij) ∩ C0(R+
ij), where

R−ij = {(t, x, ξ) ∈ R, ξ < ψij(t, x)} ,
R+
ij = {(t, x, ξ) ∈ R, ξ > ψij(t, x)} ,

where ψij ∈ C1([0,+∞)× [0, 1]) satis�es the semi-linear hyperbolic equation (41).444

(iv) H−− is the unique broad solution in R of the system445 

∂H−−
∂t

(t, x, ξ) + Λ−−(t, x)
∂H−−
∂x

(t, x, ξ) +
∂H−−
∂ξ

(t, x, ξ)Λ−−(t, ξ)

+H−−(t, x, ξ)
∂Λ−−
∂ξ

(t, ξ) = 0,

H−−(t, 0, ξ) = 0,

H−−(t, x, 0) = −G2
−−(t, x)Λ−−(t, 0)−1,

(54)446

(once again, the exact meaning of this statement will be detailed during the proof of the theorem,447

in Section 3.1 below).448

This concludes the proof of Proposition 2.11.449

450

Remark 2.14. Observe once again that the kernel is discontinuous. This introduces some additional451

boundary terms along these discontinuities in the formal computations performed above but, as452

mentioned before in Remark 2.10, these terms cancel each other out thanks to the equation satis�ed453

by ψij in (41). As in the time-independent case ([CHO17, Section 3]), the system (54) is easy to solve454

and its solution is even explicit (see (60)-(58) below).455
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Remark 2.15. If we prefer to use the inverse transformation456

z(t, x) = γ(t, x)−
∫ 1

0

L(t, x, ξ)γ(t, ξ) dξ, (55)457

where L has the same structure as H (i.e. only L−− is not zero), then the corresponding kernel
equations are

∂L−−
∂t

(t, x, ξ) + Λ−−(t, x)
∂L−−
∂x

(t, x, ξ) +
∂L−−
∂ξ

(t, x, ξ)Λ−−(t, ξ)

+L−−(t, x, ξ)
∂Λ−−
∂ξ

(t, ξ)− L−−(t, x, 1)Λ−−(t, 1)L−−(t, 1, ξ) = 0,

L−−(t, 0, ξ) = 0,

L−−(t, x, 0) =

(
G2
−−(t, x)−

∫ 1

0

L−−(t, x, ξ)G2
−−(t, ξ)dξ

)
Λ−−(t, 0)−1.

We see that these equations are slightly more complicated than (54) since there is a nonlinear458

and nonlocal term. This explains why we had a preference for the transformation (48) over (55) but459

there is no obstruction to work with (55).460

3 Existence of a solution to the kernel equations461

In this section we prove Theorem 2.6 and Theorem 2.13, which are the two key results for the present462

article, and we describe in Section 3.3 how to obtain a time-periodic feedback. We propose to start463

with the proof of Theorem 2.13 because it is far more simpler (in particular, no �xed-point argument464

is needed).465

3.1 Kernel for the Fredholm transformation466

In this section we prove Theorem 2.13, that is we prove the existence of a suitably smooth matrix-467

valued function H−− = (hij)1≤i,j≤m which is strictly lower triangular and satis�es (54) (in some468

sense).469

Writing (54) component-wise, this gives470 

∂hij
∂t

(t, x, ξ) + λi(t, x)
∂hij
∂x

(t, x, ξ) + λj(t, ξ)
∂hij
∂ξ

(t, x, ξ) +
∂λj
∂ξ

(t, ξ)hij(t, x, ξ) = 0,

hij(t, 0, ξ) = 0,

hij(t, x, 0) = −
g2
ij(t, x)

λj(t, 0)
.

(56)471

Since we see that the equations are uncoupled, we can �x the indices i, j for the remainder of Section
3.1:

i, j ∈ {1, . . . ,m} are �xed.

3.1.1 The characteristics of (56)472

For each (t, x, ξ) ∈ R3 �xed, we introduce the characteristic curve χij(·; t, x) associated with the
hyperbolic equation (56) passing through the point (t, x, ξ), i.e.

χij(s; t, x, ξ) = (s, χi(s; t, x), χj(s; t, ξ)), ∀s ∈ R,
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where we recall that χi and χj are de�ned in (9). For every (t, x, ξ) ∈ R, we have

χij(s; t, x, ξ) ∈ R, ∀s ∈ (sin
ij(t, x, ξ), s

out
ij (t, x, ξ)),

where we introduced

sin
ij(t, x, ξ) = max

{
0, sin

i (t, x), sin
j (t, ξ)

}
> 0, sout

ij (t, x, ξ) = min
{
sout
i (t, x), sout

j (t, ξ)
}
.

Since the speeds λi, λj are negative (i, j ≤ m), when s is increasing, s 7→ χi(s; t, x), s 7→ χj(s; t, ξ)
are decreasing. Therefore, the associated characteristic χij(·; t, x, ξ) will exit the domain R through
the planes x = 0 or ξ = 0. This is why we can impose boundary conditions at (t, 0, ξ) and (t, x, 0)
(see (56)) and this is why it is enough to (uniquely) determine a solution on R. To be more precise,
we can split R into three disjoint subsets:

R = R+
ij ∪R

−
ij ∪ Dij ,

where

R+
ij =

{
(t, x, ξ) ∈ R, sout

i (t, x) < sout
j (t, ξ)

}
,

R−ij =
{

(t, x, ξ) ∈ R, sout
i (t, x) > sout

j (t, ξ)
}
,

Dij =
{

(t, x, ξ) ∈ R, sout
i (t, x) = sout

j (t, ξ)
}
.

With these notations, the characteristic χij(·; t, x, ξ) will either exit the domain R through the plane473

x = 0 if (t, x, ξ) ∈ R+
ij or through the plane ξ = 0 if (t, x, ξ) ∈ R−ij :474

Proposition 3.1.475

(i) For every (t, x, ξ) ∈ R+
ij, we have χij(s; t, x, ξ) ∈ R+

ij for every s ∈ (t, sout
i (t, x)).476

(ii) For every (t, x, ξ) ∈ R−ij, we have χij(s; t, x, ξ) ∈ R−ij for every s ∈ (t, sout
j (t, ξ)).477

(iii) For every (t, x, ξ) ∈ Dij, we have χij(s; t, x, ξ) ∈ Dij for every s ∈ (t, sout
i (t, x)) = (t, sout

j (t, ξ)).478

These three points directly follow from (17).479

3.1.2 Existence and regularity of a solution to (56)480

Writing the solution of (56) along the characteristic curve χij(s; t, x, ξ) for s ∈ [sin
ij(t, x, ξ), s

out
ij (t, x, ξ)]481

and using the boundary conditions, we obtain the following ODE:482 
d

ds
hij(χij(s; t, x, ξ)) = −∂λj

∂ξ
(s, χj(s; t, ξ))hij(χij(s; t, x, ξ)),

hij(χij(s
out
ij (t, x, ξ); t, x, ξ)) = bij(t, x, ξ),

(57)483

where484

bij(t, x, ξ) =


0 if (t, x, ξ) ∈ R+

ij ,

−
g2
ij(s

out
j (t, ξ), χi(s

out
j (t, ξ); t, x))

λj(sout
j (t, ξ), 0)

if (t, x, ξ) ∈ R−ij .
(58)485

Integrating this ODE over [t, sout
ij (t, x, ξ)] yields the integral equation486

hij(t, x, ξ) = bij(t, x, ξ) +

∫ sout
ij (t,x,ξ)

t

∂λj
∂ξ

(s, χj(s; t, ξ))hij(χij(s; t, x, ξ)) ds. (59)487
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In this case, this integral equation is very easily solved by taking (as it is in fact directly seen from488

the ODE (57)):489

hij(t, x, ξ) = bij(t, x, ξ)e
∫ sout
ij (t,x,ξ)

t

∂λj
∂ξ (s,χj(s;t,ξ)) ds. (60)490

Clearly, hij = 0 for i ≤ j (i.e. H−− is indeed strictly lower triangular) since g2
ij = 0 for such indices

(see (34)). Obviously, hij ∈ C0(R+
ij) ∩ L∞(R+

ij). On the other hand, thanks in particular to the

regularities (11), (18), the bounds (19) and the assumption ∂Λ
∂x ∈ L

∞((0,+∞) × (0, 1))n×n, we can
check that

hij ∈ C0(R−ij) ∩ L
∞(R−ij).

3.1.3 Characterization of R±ij and Dij491

Let us now show that492

R−ij = {(t, x, ξ) ∈ R, ξ < ψij(t, x)} ,

R+
ij = {(t, x, ξ) ∈ R, ξ > ψij(t, x)} ,

(61)493

where ψij ∈ C1([0,+∞) × [0, 1]) satis�es the semi-linear hyperbolic equation (41). First of all, it494

follows from (20) and the implicit function theorem that there exists a function ψij ∈ C1([0,+∞)×495

[0, 1]), 0 ≤ ψij ≤ 1, such that496

sout
i (t, x) = sout

j (t, ξ) ⇐⇒ ξ = ψij(t, x). (62)497

This shows that498

Dij = {(t, x, ξ) ∈ R, ξ = ψij(t, x)} . (63)499

On the other hand, thanks to (20) and (62) we have

ξ > ψij(t, x) ⇐⇒ sout
j (t, ξ) > sout

j (t, ψij(t, x)) = sout
i (t, x).

This shows the equality (61) for R+
ij . The equality for R−ij can be proved similarly.500

It remains to show that ψij satis�es the semi-linear hyperbolic equation (41). This in fact follows
from (63) and (iii) of Proposition 3.1. Indeed, thanks to these results, we have

χj(s; t, ψij(t, x)) = ψij(s, χi(s; t, x)), ∀s ∈ (t, sout
i (t, x)) = (t, sout

j (t, ψij(t, x))).

Taking the derivative of this identity at s = t+, we immediately obtain the equation in (41). On501

the other hand, letting s → sout
i (t, x)− = sout

j (t, ψij(t, x))− and then letting x → 0+, we obtain the502

second condition ψij(t, 0) = 0.503

3.2 Kernel for the Volterra transformation504

In this section we prove Theorem 2.6, that is we prove the existence of a suitably smooth matrix-505

valued function K = (kij)1≤i,j≤n such that506 
∂K

∂t
(t, x, ξ) + Λ(t, x)

∂K

∂x
(t, x, ξ) +

∂K

∂ξ
(t, x, ξ)Λ(t, ξ) +K(t, x, ξ)M̃1(t, ξ) = 0,

K(t, x, x)Λ(t, x)− Λ(t, x)K(t, x, x) = −M1(t, x),

(64)507

where we introduced the notation508

M̃1(t, ξ) =
∂Λ

∂ξ
(t, ξ) +M1(t, ξ). (65)509
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Note in particular that M̃1 ∈ L∞((0,+∞) × (0, 1))n×n thanks to the assumption (5). Besides,510

noticing (40), we also want the matrix511

−K−−(t, x, 0)Λ−−(t, 0)−K−+(t, x, 0)Λ++(t, 0)Q1(t) to be strictly lower triangular. (66)512

3.2.1 Preliminaries513

Let us rewrite (64) by block. It is equivalent to the following four sub-systems:

∂K−−
∂t

(t, x, ξ) + Λ−−(t, x)
∂K−−
∂x

(t, x, ξ) +
∂K−−
∂ξ

(t, x, ξ)Λ−−(t, ξ)

+K−−(t, x, ξ)M̃1
−−(t, ξ) +K−+(t, x, ξ)M̃1

+−(t, ξ) = 0,

K−−(t, x, x)Λ−−(t, x)− Λ−−(t, x)K−−(t, x, x) = −M1
−−(t, x),



∂K−+

∂t
(t, x, ξ) + Λ−−(t, x)

∂K−+

∂x
(t, x, ξ) +

∂K−+

∂ξ
(t, x, ξ)Λ++(t, ξ)

+K−−(t, x, ξ)M̃1
−+(t, ξ) +K−+(t, x, ξ)M̃1

++(t, ξ) = 0,

K−+(t, x, x)Λ++(t, x)− Λ−−(t, x)K−+(t, x, x) = −M1
−+(t, x),



∂K+−

∂t
(t, x, ξ) + Λ++(t, x)

∂K+−

∂x
(t, x, ξ) +

∂K+−

∂ξ
(t, x, ξ)Λ−−(t, ξ)

+K+−(t, x, ξ)M̃1
−−(t, ξ) +K++(t, x, ξ)M̃1

+−(t, ξ) = 0,

K+−(t, x, x)Λ−−(t, x)− Λ++(t, x)K+−(t, x, x) = −M1
+−(t, x),



∂K++

∂t
(t, x, ξ) + Λ++(t, x)

∂K++

∂x
(t, x, ξ) +

∂K++

∂ξ
(t, x, ξ)Λ++(t, ξ)

+K+−(t, x, ξ)M̃1
−+(t, ξ) +K++(t, x, ξ)M̃1

++(t, ξ) = 0,

K++(t, x, x)Λ++(t, x)− Λ++(t, x)K++(t, x, x) = −M1
++(t, x),

Remark 3.2. We see that K−− is coupled only with K−+ and that K+− is coupled only with K++.
Moreover, the systems satis�ed by (K−−,K−+) and by (K+−,K++) are similar. Therefore, from
now on we only focus on the system satis�ed by (K−−,K−+) (note that the extra condition (66) only
concerns this system). In addition, because of the nature of the coupling terms inside the domain
(namely, matrix multiplication by the right), we see that the entries from di�erent rows are not
coupled. Therefore, for the rest of Section 3.2, we assume that

i ∈ {1, . . . ,m} is �xed.

Let us now rewrite the equations for K−− and K−+ component-wise. For convenience, we intro-514

duce515

rij(t, x) =
−m1

ij(t, x)

λj(t, x)− λi(t, x)
(j 6= i). (67)516

Note that rij ∈ C0([0,+∞)× [0, 1]). Moreover, rij ∈ L∞((0,+∞)× (0, 1)) thanks to (4).517

We have:518
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1) If j 6= i, then519 
∂kij
∂t

(t, x, ξ) + λi(t, x)
∂kij
∂x

(t, x, ξ) + λj(t, ξ)
∂kij
∂ξ

(t, x, ξ) +

n∑
`=1

ki`(t, x, ξ)m̃
1
`j(t, ξ) = 0,

kij(t, x, x) = rij(t, x).

(68)520

2) If j = i, then521

∂kii
∂t

(t, x, ξ) + λi(t, x)
∂kii
∂x

(t, x, ξ) + λi(t, ξ)
∂kii
∂ξ

(t, x, ξ) +

n∑
`=1

ki`(t, x, ξ)m̃
1
`i(t, ξ) = 0. (69)522

The geometric situation of the characteristics is more complicated than in Section 3.1, it is detailed
in Section 3.2.2 below. For the moment, let us just point out that we will have to consider parameters
s < t (compare with Section 3.1) and, consequently, we should also add an arti�cial boundary
condition at t = 0 (the value of kij at a point (t, x, ξ) ∈ T for su�ciently small t can not be obtained
from its values on the planes ξ = x or x = 1). To avoid imposing such a condition we can equivalently
study (68)-(69) on the domain extended in time

P = {(t, x, ξ) ∈ R× (0, 1)× (0, 1), ξ < x} .

Therefore, we need the values of m̃1
`j and rij for negative t. We also need the values of q1

`j for negative
t since we want to consider the property (66). To this end we extend M to R× [0, 1] (recall that its
diagonal elements were already extended in the proof of Proposition 2.2) and we extend Q to R in
such a way that the property (5) is preserved. This extends m̃1

`j and rij to R × [0, 1] and q1
`j to R

through the formula (65), (67) and (32), (33), with

m̃1
`j , rij ∈ C0(R× [0, 1]) ∩ L∞(R× (0, 1)), q1

`j ∈ C0(R) ∩ L∞(R).

3.2.2 The characteristics of (68)-(69)523

For each (t, x, ξ) ∈ R3 �xed, we still denote by χij(·; t, x, ξ) the characteristic curve associated with
the hyperbolic system (68)-(69) passing through the point (t, x, ξ), i.e.

χij(s; t, x, ξ) = (s, χi(s; t, x), χj(s; t, ξ)), ∀s ∈ R.

We now need to �nd for which parameters s the characteristic χij(s; t, x, ξ) stays in the domain
P when (t, x, ξ) ∈ P. To this end, we introduce the following sets for j ∈ {1, . . . ,m}:

P in,+
ij =

{
(t, x, ξ) ∈ P, sin

i (t, x) < sin
j (t, ξ)

}
,

P in,−
ij =

{
(t, x, ξ) ∈ P, sin

i (t, x) > sin
j (t, ξ)

}
,

Din
ij =

{
(t, x, ξ) ∈ P, sin

i (t, x) = sin
j (t, ξ)

}
,

and

Pout,+
ij =

{
(t, x, ξ) ∈ P, sout

i (t, x) < sout
j (t, ξ)

}
,

Pout,−
ij =

{
(t, x, ξ) ∈ P, sout

i (t, x) > sout
j (t, ξ)

}
,

Dout
ij =

{
(t, x, ξ) ∈ P, sout

i (t, x) = sout
j (t, ξ)

}
.

As in Section 3.1.3 we can show that Pout,+
ij ∩T = T +

ij and Pout,−
ij ∩T = T −ij (we recall that T +

ij and524

T −ij are de�ned in the statement of Theorem 2.6).525

The following proposition gives precise information about the exit of the characteristics from the526

domain P (the proof is postponed to Appendix B for the sake of the presentation; we refer to Figures527

2, 3, 4 and 5 for a clari�cation of the geometric situation at a �xed t):528
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Proposition 3.3.529

(i) For every j ∈ {1, . . . , i− 1}, there exists a unique sin
ij ∈ C0(P) with (t, x, ξ) 7→ t− sin

ij(t, x, ξ) ∈
L∞(P) such that, for every t ∈ R and 0 ≤ ξ < x < 1, we have sin

ij(t, x, ξ) < t (and sin
ij(t, x, ξ) = t

otherwise) with
χij(s; t, x, ξ) ∈ P, ∀s ∈

(
sin
ij(t, x, ξ), t

)
,

and 
χj(s

in
ij(t, x, ξ); t, ξ) = χi(s

in
ij(t, x, ξ); t, x) if (t, x, ξ) ∈ P in,+

ij ,

χi(s
in
ij(t, x, ξ); t, x) = 1 if (t, x, ξ) ∈ P in,−

ij .

(ii) For j = i, there exists a unique sout
ii ∈ C0(P) with (t, x, ξ) 7→ sout

ii (t, x, ξ)−t ∈ L∞(P) such that,
for every t ∈ R and 0 < ξ ≤ x ≤ 1, we have sout

ii (t, x, ξ) > t (and sout
ii (t, x, ξ) = t otherwise)

and, if in addition ξ < x, then we have

χii(s; t, x, ξ) ∈ P, ∀s ∈
(
t, sout

ii (t, x, ξ)
)
,

and
χi(s

out
ii (t, x, ξ); t, ξ) = 0.

(iii) For every j ∈ {i+ 1, . . . ,m}, there exists a unique sout
ij ∈ C0(P) with (t, x, ξ) 7→ sout

ij (t, x, ξ) −
t ∈ L∞(P) such that, for every t ∈ R and 0 < ξ < x ≤ 1, we have sout

ij (t, x, ξ) > t (and
sout
ij (t, x, ξ) = t otherwise) with

χij(s; t, x, ξ) ∈ P, ∀s ∈
(
t, sout

ij (t, x, ξ)
)
,

and 
χj(s

out
ij (t, x, ξ); t, ξ) = χi(s

out
ij (t, x, ξ); t, x) if (t, x, ξ) ∈ Pout,+

ij ,

χj(s
out
ij (t, x, ξ); t, ξ) = 0 if (t, x, ξ) ∈ Pout,−

ij .

(iv) For every j ∈ {m+ 1, . . . , n}, there exists a unique sout
ij ∈ C0(P) with (t, x, ξ) 7→ sout

ij (t, x, ξ)−
t ∈ L∞(P) such that, for every t ∈ R and 0 ≤ ξ < x ≤ 1, we have sout

ij (t, x, ξ) > t (and
sout
ij (t, x, ξ) = t otherwise) with

χij(s; t, x, ξ) ∈ P, ∀s ∈
(
t, sout

ij (t, x, ξ)
)
,

and
χj(s

out
ij (t, x, ξ); t, ξ) = χi(s

out
ij (t, x, ξ); t, x).

ξ

x0 1

×
s = t

×s = sin
ij

×
s = t

×s = sin
ij

P in,+
ij P in,−

ij

ξ = 0

x = 1
ξ
=
x

Figure 2: De�nition of sin
ij

ξ

x0 1

×
s = t

×
s = sout

ii ξ = 0

x = 1
ξ
=
x

Figure 3: De�nition of sout
ii

530
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ξ

x0 1
ξ = 0

x = 1
ξ
=
x

Pout,+
ij

Pout,−
ij

×
s = sout

ij

×s = t×
s = sout

ij

×s = t

Figure 4: De�nition of sout
ij when i < j ≤ m

ξ

x0 1

×
s = t

×s = sout
ij

ξ = 0

x = 1
ξ
=
x

Figure 5: De�nition of sout
ij when j > m

531

In order to show that the system (68)-(69) is well-posed, we see from Proposition 3.3 that we need532

to add some conditions:533

1) when j ∈ {1, . . . , i− 1}, we will consider the following arti�cial boundary condition at x = 1:

kij(t, 1, ξ) = aij(t, ξ), ∀j ∈ {1, . . . , i− 1} ,

where aij ∈ C0(R × [0, 1]) ∩ L∞(R × (0, 1)) is any function that satis�es the corresponding534

C0-compatibility conditions at (t, x, ξ) = (t, 1, 1), namely:535

aij(t, 1) = rij(t, 1), ∀t ∈ R. (70)536

2) when j ∈ {i, . . . ,m}, we have some freedom for the boundary condition. We choose to consider
the following one in order to obtain (66):

kij(t, x, 0) =

p∑
`=1

ki,m+`(t, x, 0)q̃1
`j(t), ∀j ∈ {i, . . . ,m} ,

where we set

q̃1
`j(t) = − 1

λj(t, 0)
λm+`(t, 0)q1

`j(t).

Note that q̃1
`j ∈ C0(R) ∩ L∞(R).537

In summary, we are going to solve the following coupled hyperbolic system:538

1) If j ∈ {1, . . . , i− 1}, then539 

∂kij
∂t

(t, x, ξ) + λi(t, x)
∂kij
∂x

(t, x, ξ) + λj(t, ξ)
∂kij
∂ξ

(t, x, ξ) +

n∑
`=1

ki`(t, x, ξ)m̃
1
`j(t, ξ) = 0,

kij(t, x, x) = rij(t, x),

kij(t, 1, ξ) = aij(t, ξ).

(71)540

2) If j = i, then541 
∂kii
∂t

(t, x, ξ) + λi(t, x)
∂kii
∂x

(t, x, ξ) + λi(t, ξ)
∂kii
∂ξ

(t, x, ξ) +

n∑
`=1

ki`(t, x, ξ)m̃
1
`i(t, ξ) = 0,

kii(t, x, 0) =

p∑
`=1

ki,m+`(t, x, 0)q̃1
`i(t).

(72)542
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3) If j ∈ {i+ 1, . . . ,m}, then543 

∂kij
∂t

(t, x, ξ) + λi(t, x)
∂kij
∂x

(t, x, ξ) + λj(t, ξ)
∂kij
∂ξ

(t, x, ξ) +

n∑
`=1

ki`(t, x, ξ)m̃
1
`j(t, ξ) = 0,

kij(t, x, x) = rij(t, x),

kij(t, x, 0) =

p∑
`=1

ki,m+`(t, x, 0)q̃1
`j(t).

(73)544

4) If j ∈ {m+ 1, . . . , n}, then545 
∂kij
∂t

(t, x, ξ) + λi(t, x)
∂kij
∂x

(t, x, ξ) + λj(t, ξ)
∂kij
∂ξ

(t, x, ξ) +

n∑
`=1

ki`(t, x, ξ)m̃
1
`j(t, ξ) = 0,

kij(t, x, x) = rij(t, x).

(74)546

3.2.3 Transformation into integral equations547

To prove the existence and uniqueness of the solution to the kernel equations (71)-(74) on P, we use548

the classical strategy that consists in transforming these hyperbolic equations into integral equations.549

Then, in the next subsection, we will prove that this system of integral equations has a unique solution550

by using a �xed-point argument and appropriate estimates.551

Let us introduce

k̃0
ij(t, x, ξ) =



rij
(
sin
ij(t, x, ξ), χi

(
sin
ij(t, x, ξ); t, x

))
if j ∈ {1, . . . , i− 1} and (t, x, ξ) ∈ P in,+

ij ,

aij
(
sin
ij(t, x, ξ), χj

(
sin
ij(t, x, ξ); t, ξ

))
if j ∈ {1, . . . , i− 1} and (t, x, ξ) ∈ P in,−

ij ,

rij
(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

))
if j ∈ {i+ 1, . . . ,m} and (t, x, ξ) ∈ Pout,+

ij ,

rij
(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

))
if j ∈ {m+ 1, . . . , n} .

Thanks to the C0-compatibility condition (70), note in particular that552

k̃0
ij ∈ C0(P), ∀j ∈ {1, . . . , i− 1} . (75)553

Using now Proposition 3.3, we can obtain that554

1) For j ∈ {1, . . . , i− 1}, integrating (71) along the characteristic curve χij(s; t, x, ξ) for s ∈
(sin
ij(t, x, ξ), t) yields the following integral equation:

kij(t, x, ξ) = k̃0
ij(t, x, ξ)−

n∑
`=1

∫ t

sinij(t,x,ξ)

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds.

2) For j = i, integrating (72) along the characteristic curve χii(s; t, x, ξ) for s ∈ (t, sout
ii (t, x, ξ))

yields the following integral equation:

kii(t, x, ξ) =

p∑
`=1

ki,m+`

(
sout
ii (t, x, ξ), χi

(
sout
ii (t, x, ξ); t, x

)
, 0
)
q̃1
`i

(
sout
ii (t, x, ξ)

)
+

n∑
`=1

∫ sout
ii (t,x,ξ)

t

ki`(χii(s; t, x, ξ))m̃
1
`i(s, χi(s; t, ξ)) ds. (76)
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3) For j ∈ {i+ 1, . . . ,m}, integrating (73) along the characteristic curve χij(s; t, x, ξ) for s ∈
(t, sout

ij (t, x, ξ)) yields the following integral equations:

kij(t, x, ξ) = k̃0
ij(t, x, ξ)

+

n∑
`=1

∫ sout
ij (t,x,ξ)

t

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds, (t, x, ξ) ∈ Pout,+

ij ,

and

kij(t, x, ξ) =

p∑
`=1

ki,m+`

(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

)
, 0
)
q̃1
`j

(
sout
ij (t, x, ξ)

)
+

n∑
`=1

∫ sout
ij (t,x,ξ)

t

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds, (t, x, ξ) ∈ Pout,−

ij . (77)

4) For j ∈ {m+ 1, . . . , n}, integrating (74) along the characteristic curve χij(s; t, x, ξ) for s ∈555

(t, sout
ij (t, x, ξ)) yields the following integral equation:556

kij(t, x, ξ) = k̃0
ij(t, x, ξ) +

n∑
`=1

∫ sout
ij (t,x,ξ)

t

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds. (78)557

5) We now want to plug (78) into (76) and (77), respectively. From (78) we have

ki,m+`

(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

)
, 0
)

= k̃0
i,m+`

(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

)
, 0
)

+

n∑
q=1

∫ sout
i,m+`(s

out
ij (t,x,ξ),χi(sout

ij (t,x,ξ);t,x),0)

sout
ij (t,x,ξ)

kiq
(
χi,m+`

(
s; sout

ij (t, x, ξ), χi
(
sout
ij (t, x, ξ); t, x

)
, 0
))

× m̃1
q,m+`

(
s, χm+`

(
s; sout

ij (t, x, ξ), 0
))
ds. (79)

Plugging (79) into (76) and (77), we obtain, for every j ∈ {i, . . . ,m} and (t, x, ξ) ∈ Pout,−
ij ,

kij(t, x, ξ) = k̂0
ij(t, x, ξ)

+

p∑
`=1

(
n∑
q=1

∫ sout
i,m+`(s

out
ij (t,x,ξ),χi(sout

ij (t,x,ξ);t,x),0)

sout
ij (t,x,ξ)

kiq
(
χi,m+`

(
s; sout

ij (t, x, ξ), χi
(
sout
ij (t, x, ξ); t, x

)
, 0
))

× m̃1
q,m+`

(
s, χm+`

(
s; sout

ij (t, x, ξ), 0
))
ds

)
q̃1
`j

(
sout
ij (t, x, ξ)

)
+

n∑
`=1

∫ sout
ij (t,x,ξ)

t

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds,

where we introduced

k̂0
ij(t, x, ξ) =

p∑
`=1

k̃0
i,m+`

(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

)
, 0
)
q̃1
`j

(
sout
ij (t, x, ξ)

)
.

Note that558

k̂0
ij ∈ C0(Pout,−

ij ) ∩ L∞(Pout,−
ij ), ∀j ∈ {i+ 1, . . . ,m} , (80)559

and, since Pout,−
ii = P (because of (20)),560

k̂0
ii ∈ C0(P) ∩ L∞(P). (81)561
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Remark 3.4. Observe that, in general, for j ∈ {i+ 1, . . . ,m}, we have

k̂0
ij 6= k̃0

ij on Dout
ij .

This is the reason why we have to consider discontinuous kernels.562

3.2.4 Solution to the integral equations563

In this subsection we show that there exists a unique solution to the system of integral equations of564

the previous section. This will conclude the proof of Theorem 2.6.565

Fixed-point argument. As it is classical, we reformulate the existence of such a solution into the
existence of a �xed-point of the mapping de�ned by the right-hand sides of these equations. Let us
�rst introduce K0 = (k0

ij)1≤i≤m
1≤j≤n

de�ned by

k0
ij(t, x, ξ) =



k̃0
ij(t, x, ξ) if j ∈ {1, . . . , i− 1} ,

k̂0
ii(t, x, ξ) if j = i,

k̃0
ij(t, x, ξ) if j ∈ {i+ 1, . . . ,m} and (t, x, ξ) ∈ Pout,+

ij ,

k̂0
ij(t, x, ξ) if j ∈ {i+ 1, . . . ,m} and (t, x, ξ) ∈ Pout,−

ij ,

k̃0
ij(t, x, ξ) if j ∈ {m+ 1, . . . , n} .

Thanks in particular to (75), (80) and (81), we see that

k0
ij ∈ C0(Pout,+

ij ) ∩ C0(Pout,−
ij ) ∩ L∞(P) if j ∈ {i+ 1, . . . ,m} ,

k0
ij ∈ C0(P) ∩ L∞(P) otherwise.

It is this regularity that dictates the space in which we can work. More precisely, let us introduce566

the vector space B de�ned by567

B =

K = (kij)1≤i≤m
1≤j≤n

,
kij ∈ C0(Pout,+

ij ) ∩ C0(Pout,−
ij ) ∩ L∞(P) if j ∈ {i+ 1, . . . ,m} ,

kij ∈ C0(P) ∩ L∞(P) otherwise.

 . (82)568

We can check that B is a Banach space when equipped with the L∞ norm. Let us now introduce the
mapping

Φ : B −→ B,

de�ned, for every K ∈ B, by
Φ(K) = K0 + Φ1(K) + Φ2(K),

where, for every (t, x, ξ) ∈ P,

(Φ1(K))ij (t, x, ξ) =
−

n∑
`=1

∫ t

sinij(t,x,ξ)

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds, if j ∈ {1, . . . , i− 1} ,

n∑
`=1

∫ sout
ij (t,x,ξ)

t

ki`(χij(s; t, x, ξ))m̃
1
`j(s, χj(s; t, ξ)) ds, if j ∈ {i, . . . , n} ,

(83)
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and

(Φ2(K))ij (t, x, ξ) =

p∑
`=1

(
n∑
q=1

∫ sout
i,m+`(s

out
ij (t,x,ξ),χi(sout

ij (t,x,ξ);t,x),0)

sout
ij (t,x,ξ)

kiq
(
χi,m+`

(
s; sout

ij (t, x, ξ), χi
(
sout
ij (t, x, ξ); t, x

)
, 0
))

× m̃1
q,m+`

(
s, χm+`

(
s; sout

ij (t, x, ξ), 0
))
ds

)
q̃1
`j

(
sout
ij (t, x, ξ)

)
, (84)

if j ∈ {i, . . . ,m} and (t, x, ξ) ∈ Pout,−
ij , and (Φ2(K))ij (t, x, ξ) = 0 otherwise (recall that Pout,−

ii = P).569

Regularity of the mapping. First of all, we have to show that Φ is well de�ned, i.e. that for570

every K ∈ B, we have indeed571

Φ1(K) ∈ B, Φ2(K) ∈ B. (85)572

This is not obvious since the function s 7→ χij(s; t, x, ξ) may take values in the set Dout
i` , where ki` is573

discontinuous (even for j 6∈ {i+ 1, . . . ,m}, where we expect (Φ1(K))ij to be continuous by de�nition574

of B). The following result, close to Proposition 3.3, shows that this may happen only at one point:575

Proposition 3.5. Let ` ∈ {i+ 1, . . . ,m} be �xed.576

(i) For every j ∈ {1, . . . , i− 1}, for every (t, x, ξ) ∈ P, there is at most one sdisc
ij` ∈ (sin

ij(t, x, ξ), t)577

such that χij(s
disc
ij` ; t, x, ξ) ∈ Dout

i` .578

(ii) For every j ∈ {i, . . . , n} with j 6= `, for every (t, x, ξ) ∈ P, there is at most one sdisc
ij` ∈579

(t, sout
ij (t, x, ξ)) such that χij(s

disc
ij` ; t, x, ξ) ∈ Dout

i` .580

This result shows in fact a stronger regularity than (85), namely,

Φ1(K),Φ2(K) ∈ C0(P)m×n ∩ L∞(P)m×n.

The proof of Proposition 3.5 is postponed to Appendix B for the sake of the presentation.581

Contraction of the mapping. We will now prove that ΦN is a contraction for N ∈ N∗ large
enough. Therefore, the Banach �xed-point theorem can be applied, giving the existence (and unique-
ness) of K ∈ B such that

K = Φ(K).

This will conclude the proof of Theorem 2.6. Now, to show that ΦN is a contraction when N is large,582

it is su�cient to prove the following estimate:583

Proposition 3.6. There exists C > 0 such that, for every N ∈ N∗ and K,H ∈ B,584 ∥∥ΦN (K)− ΦN (H)
∥∥
L∞(P)m×n

≤ CN

N !
‖K −H‖L∞(P)m×n . (86)585

To establish (86) we will use the following key lemma:586

Lemma 3.7. For every i ∈ {1, . . . ,m}, there exist a function Ωi ∈ C1(P) ∩ L∞(P) and ε0 > 0 such587

that, for every (t, x, ξ) ∈ P, we have Ωi(t, x, ξ) ≥ 0 with588

∂Ωi
∂t

(t, x, ξ) + λi(t, x)
∂Ωi
∂x

(t, x, ξ) + λj(t, ξ)
∂Ωi
∂ξ

(t, x, ξ) ≥ ε0, ∀j ∈ {1, . . . , i− 1} , (87)589

and590

∂Ωi
∂t

(t, x, ξ) + λi(t, x)
∂Ωi
∂x

(t, x, ξ) + λj(t, ξ)
∂Ωi
∂ξ

(t, x, ξ) ≤ −ε0, ∀j ∈ {i, . . . , n} . (88)591
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The proof of Lemma 3.7 is postponed to Appendix C for the sake of the presentation.592

Remark 3.8. In the time-independent case, we can take Ωi(x, ξ) = φi(x) − νφi(ξ) (we recall that593

φi(x) =
∫ x

0
1

−λi(y) dy) where ν ∈ [0, 1) is any number such that ν > max1≤j<i≤m maxξ∈[0,1] λi(ξ)/λj(ξ).594

This function appeared for instance in [HDMVK16, Lemma 6.2] for systems with constant coe�cients595

and in [HVDMK19, (A.32)] for systems with time-independent coe�cients (see also [CVKB13, Lemma596

A.4] for 2× 2 systems, where it is enough to take ν = 0 since (87) becomes void).597

Remark 3.9. Observe that it follows from the estimate (88) that, for every j ∈ {i, . . . , n},

s 7→ Ωi (χij (s; t, x, ξ)) is strictly decreasing.

This is the analogue to [HDMVK16, Remark 10].598

We can now prove Proposition 3.6:599

Proof of Proposition 3.6. Let us denote by

R = max

{∥∥∥M̃1
∥∥∥
L∞(R×(0,1))n×n

,
∥∥∥Q̃1

∥∥∥
L∞(R)p×m

}
.

1) We start with the estimate of ‖Φ1(K)− Φ1(H)‖L∞(P)m×n . Set

C1 =
n

ε0
R.

Let j ∈ {1, . . . , i− 1}. From the de�nition (83) of Φ1 we see that∣∣∣(Φ1(K)− Φ1(H))ij (t, x, ξ)
∣∣∣ ≤ nR(∫ t

sinij(t,x,ξ)

1 ds

)
‖K −H‖L∞(P)m×n .

Thanks to the estimate (87) we can perform the change of variable s 7→ θ(s) = Ωi(χij(s; t, x, ξ))
and obtain

ε0

(∫ t

sinij(t,x,ξ)

1 ds

)
≤
∫ t

sinij(t,x,ξ)

dθ

ds
(s) ds = θ(t)− θ(sin

ij(t, x, ξ)) ≤ θ(t) = Ωi(t, x, ξ).

This gives the estimate∣∣∣(Φ1(K)− Φ1(H))ij (t, x, ξ)
∣∣∣ ≤ C1Ωi(t, x, ξ) ‖K −H‖L∞(P)m×n .

It is important to point out that the right-hand side does not depend on the second index j.
Computing Φ2

1(H) − Φ2
1(K) = Φ1(Φ1(H)) − Φ1(Φ1(K)) and using the previous estimate, we

obtain∣∣∣(Φ2
1(K)− Φ2

1(H)
)
ij

(t, x, ξ)
∣∣∣

≤ nRC1

(∫ t

sinij(t,x,ξ)

Ωi(χij(s; t, x, ξ)) ds

)
‖K −H‖L∞(P)m×n .

Using again the change of variable s 7→ θ(s) and (87), we obtain

ε0

(∫ t

sinij(t,x,ξ)

Ωi(χij(s; t, x, ξ)) ds

)
= ε0

∫ t

sinij(t,x,ξ)

θ(s) ds ≤
∫ t

sinij(t,x,ξ)

θ(s)
dθ

ds
(s) ds

=
θ(t)2

2
−
θ(sin

ij(t, x, ξ))
2

2
≤ θ(t)2

2
=

Ωi(t, x, ξ)
2

2
.
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This gives the estimate∣∣∣(Φ2
1(K)− Φ2

1(H)
)
ij

(t, x, ξ)
∣∣∣ ≤ C2

1Ωi(t, x, ξ)
2

2
‖K −H‖L∞(P)m×n .

By induction, we easily obtain that, for every N ∈ N∗,600 ∣∣∣(ΦN1 (K)− ΦN1 (H)
)
ij

(t, x, ξ)
∣∣∣ ≤ CN1 Ωi(t, x, ξ)

N

N !
‖K −H‖L∞(P)m×n . (89)601

Using the estimate (88) instead of (87), we can obtain exactly the same estimate as (89) for
j ∈ {i, . . . , n}. Since Ωi is bounded, it follows that∥∥ΦN1 (K)− ΦN1 (H)

∥∥
L∞(P)m×n

≤ CN

N !
‖K −H‖L∞(P)m×n ,

for some C independent of N and K,H.602

2) Let us now take care of Φ2(K)−Φ2(H). The idea to estimate this term is essentially the same
as before, with the extra use of the decreasing property stated in Remark 3.9. Set

C2 =
n

ε0
R2p.

From the de�nition (84) of Φ2 we see that, for j ∈ {i, . . . ,m} and (t, x, ξ) ∈ Pout,−
ij ,∣∣∣(Φ2(K)− Φ2(H))ij (t, x, ξ)

∣∣∣
≤ nR2

p∑
`=1

(∫ sout
i,m+`(s

out
ij (t,x,ξ),χi(sout

ij (t,x,ξ);t,x),0)

sout
ij (t,x,ξ)

1 ds

)
‖K −H‖L∞(P)m×n .

Thanks to the estimate (88) we can perform again the change of variable

s 7→ θ(s) = Ωi(χij(s; t, x, ξ)),

which is decreasing since j ≥ i (see Remark 3.9), and obtain

ε0

(∫ sout
i,m+`(s

out
ij (t,x,ξ),χi(sout

ij (t,x,ξ);t,x),0)

sout
ij (t,x,ξ)

1 ds

)

≤
∫ sout

i,m+`(s
out
ij (t,x,ξ),χi(sout

ij (t,x,ξ);t,x),0)

sout
ij (t,x,ξ)

−dθ
ds

(s) ds

= −θ
(
sout
i,m+`

(
sout
ij (t, x, ξ), χi

(
sout
ij (t, x, ξ); t, x

)
, 0
))

+ θ
(
sout
ij (t, x, ξ)

)
≤ θ(t) = Ωi(t, x, ξ).

This gives the estimate∣∣∣(Φ2(K)− Φ2(H))ij (t, x, ξ)
∣∣∣ ≤ C2Ωi(t, x, ξ) ‖K −H‖L∞(P)m×n .

Note that this estimate is also valid if j 6∈ {i, . . . ,m} or (t, x, ξ) 6∈ Pout,−
ij since (Φ2(·))ij = 0 in

this case. Reasoning by induction as before, it is now not di�cult to obtain the estimate∥∥ΦN2 (K)− ΦN2 (H)
∥∥
L∞(P)m×n

≤ CN

N !
‖K −H‖L∞(P)m×n ,

for some C independent of N and K,H.603

604
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3.3 On the time-periodicity of F605

In this section we assume that, for some τ > 0, Λ, M and Q are τ -periodic with respect to time606

and show that the above construction of F leads, with minor modi�cations, to a F which is also607

τ -periodic with respect to time.608

First of all, concerning the extension of Λ to a function of R2 (and ofM and Q whenever needed),609

it is clear that one can extend Λ to R× [0, 1] by just requiring the τ -periodicity with respect to time of610

this extension. This extension is still denoted by Λ. Then one extends Λ to R2 so that this extension,611

still denoted by Λ, is τ -periodic with respect to time and so that the properties (2), (3), (4) and (5)612

remain valid on R2 (see e.g. Remark 1.4).613

From the construction of F (see (30), (38) and (50)) it is clear that F is τ -periodic with respect614

to time if so are all the matrix-valued functions involved in the several transformations of this article.615

Now, in order to obtain the τ -periodicity of these transformations, the minor modi�cations/comments616

are essentially the following ones.617

1) Concerning the diagonal transformation to remove the diagonal terms in M (see Section 2.1),618

one simply observes that the function (33) is τ -periodic with respect to time if so is mii, thanks619

to the properties620

χi(s+ τ ; t+ τ, ξ) = χi(s; t, ξ), sin
i (t+ τ, ξ) = sin

i (t, ξ) + τ. (90)621

2) Concerning the kernel H of the Fredholm transformation (see Section 3.1) one easily checks that622

it is indeed τ -periodic with respect to time. This follows from the uniqueness of the solution to623

(59) and similar properties to (90).624

3) Concerning the kernel K of the Volterra transformation of the second kind (see Section 3.2),625

to construct it in such a way that it is τ -periodic with respect to time, it su�ces to observe626

that m̃1
`j , rij and q

1
`j become τ -periodic with respect to time once M and Q are, and to modify627

the de�nition of the space B given in (82) by adding the condition that the kij , 1 ≤ i ≤ m,628

1 ≤ j ≤ n, are τ -periodic with respect to time (alternatively, one can keep (82) and deduce629

from the uniqueness of the �xed point of Φ that it has to be τ -periodic with respect to time).630
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A Background on broad solutions638

We recall that all the systems of this paper have the following form:639 

∂y

∂t
(t, x) + Λ(t, x)

∂y

∂x
(t, x) = M(t, x)y(t, x) +G(t, x)y(t, 0),

y−(t, 1) =

∫ 1

0

F (t, ξ)y(t, ξ) dξ, y+(t, 0) = Q(t)y−(t, 0),

y(t0, x) = y0(x),

(91)640
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where M and Q have at least the regularity (5), F ∈ L∞((0,+∞)× (0, 1))m×n and

G ∈ C0([0,+∞)× [0, 1])n×n ∩ L∞((0,+∞)× (0, 1))n×n.

A.1 De�nition of broad solution641

Let us now introduce the notion of solution for such systems. To this end, we have to restrict
our discussion to the domain where the system (91) evolves, i.e. on (t0,+∞) × (0, 1). For every
(t, x) ∈ (t0,+∞)× (0, 1), we have

(s, χi(s; t, x)) ∈ (t0,+∞)× (0, 1), ∀s ∈ (s̄in
i (t0; t, x), sout

i (t, x)),

where we introduced
s̄in
i (t0; t, x) = max

{
t0, sin

i (t, x)
}
< t.

Formally, writing the i-th equation of the system (91) along the characteristic χi(s; t, x) for s ∈642

[s̄in
i (t0; t, x), sout

i (t, x)], and using the chain rules yields the ODE643 
d

ds
yi (s, χi(s; t, x)) =

n∑
j=1

mij (s, χi(s; t, x)) yj (s, χi(s; t, x)) +

n∑
j=1

gij (s, χi(s; t, x)) yj (s, 0) ,

yi
(
s̄in
i (t0; t, x), χi(s̄

in
i (t0; t, x); t, x)

)
= bi(y)(t, x),

(92)644

where the initial condition bi(y)(t, x) is given by the appropriate boundary or initial conditions of the
system (91):

bi(y)(t, x) =



n∑
j=1

∫ 1

0

fij(s
in
i (t, x), ξ)yj(s

in
i (t, x), ξ) dξ if sin

i (t, x) > t0 and i ∈ {1, . . . ,m} ,

m∑
j=1

qi−m,j(s
in
i (t, x))yj(s

in
i (t, x), 0) if sin

i (t, x) > t0 and i ∈ {m+ 1, . . . , n} ,

y0
i (χi(t

0; t, x)) if sin
i (t, x) < t0.

(93)

Integrating the ODE (92) over s ∈ [s̄in
i (t0; t, x), t], we obtain the following system of integral equations:

yi(t, x) = bi(y)(t, x) +

n∑
j=1

∫ t

s̄ini (t0;t,x)

mij(s, χi(s; t, x))yj(s, χi(s; t, x)) ds

+

n∑
j=1

∫ t

s̄ini (t0;t,x)

gij (s, χi(s; t, x)) yj (s, 0) ds. (94)

This leads to the following notion of �solution along the characteristics� or �broad solution�:645

De�nition A.1. Let t0 ≥ 0 and y0 ∈ L2(0, 1)n be �xed. We say that a function y : (t0,+∞) ×646

(0, 1) −→ Rn is a broad solution to the system (91) if647

y ∈ C0([t0, t0 + T ];L2(0, 1)n) ∩ C0([0, 1];L2(t0, t0 + T )n), ∀T > 0, (95)648

and if the integral equation (94) is satis�ed for every i ∈ {1, . . . , n}, for a.e. t > t0 and a.e. x ∈ (0, 1).649
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A.2 Well-posedness650

This section is devoted to the following well-posedness result regarding system (91):651

Theorem A.2. For every t0 ≥ 0 and y0 ∈ L2(0, 1)n, there exists a unique broad solution to (91).652

Moreover, there exists C > 0 such that, for every T > 0, t0 ≥ 0 and y0 ∈ L2(0, 1)n, the corresponding653

broad solution y satis�es654

‖y‖C0([t0,t0+T ];L2(0,1)n) + ‖y‖C0([0,1];L2(t0,t0+T )n) ≤ Ce
CT
∥∥y0
∥∥
L2(0,1)n

. (96)655

Remark A.3. It follows from the uniformity of the constant CeCT with respect to the initial time656

t0 in the estimate (96) that, for systems of the form (91), the uniform stability property (8) is a657

consequence of the �nite-time global attractor property (7) (simply take δ > 0 such that CeCT δ ≤ ε).658

Let us �rst point out that this well-posedness result for our initial system (1) for the particular659

F that we have constructed in Section 2 follows in fact from the well-posedness result for the �nal660

target system of Proposition 2.11 (easier to establish), since we have shown that both systems are661

equivalent by means of several invertible transformations. However, it is still important to have662

such a well-posedness result for any F within the class studied, which is a result that also has its663

own interest. We will provide a complete proof since, to the best of our knowledge, there are no664

references that show the well-posedness for the initial-boundary value problem (91) with non-local665

terms G(t, x)y(t, 0), with weak regularity (95) and with uniform estimate (96).666

Proof of Theorem A.2. We �rst remark that it is enough to prove the theorem for ‖Q‖L∞ small667

enough, say668

‖Q‖L∞ ≤ α, (97)669

where α > 0 does not depend on T, t0, y0 nor on M,G,F . This follows from the following change of
variable:

y = Dỹ, D =

 α
‖Q‖L∞+α IdRm 0

0 IdRp

 ,

where ỹ is the solution to the system (M̃, G̃, F̃ , Q̃) with

M̃ = D−1MD, G̃ = D−1GD, F̃ =

(
α

‖Q‖L∞ + α

)−1

FD, Q̃ =
α

‖Q‖L∞ + α
Q.

Let us now show how to prove the theorem under the smallness condition (97) with the Banach
�xed point theorem (α > 0 will be �xed adequately below). Let T > 0, t0 ≥ 0 and y0 ∈ L2(0, 1)n be
�xed for the remainder of the proof. It is clear that a function y : (t0,+∞) × (0, 1) −→ Rn satis�es
the integral equation (94) if, and only if, it is a �xed point of the map F : B −→ B, where

B = C0([t0, t0 + T ];L2(0, 1)n) ∩ C0([0, 1];L2(t0, t0 + T )n),

and (F(y))i(t, x) is given by the expression on the right-hand side of (94). It can be checked that
F indeed maps B into itself (actually, by computations similar to the upcoming ones). Let us now
make B a Banach space by equipping it with the following weighted norm:

‖y‖B = ‖y‖B1
+ ‖y‖B2

,

where

‖y‖B1
= max
t∈[t0,t0+T ]

e−
L1
2 (t−t0)

√√√√∫ 1

0

n∑
i=1

|yi(t, x)|2 e−L2x dx,
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and

‖y‖B2
= max
x∈[0,1]

e
L2
2 (1−x)

√√√√∫ t0+T

t0

n∑
i=1

|yi(t, x)|2 e−L1(t−t0) dt,

where L1, L2 > 0 are constants independent of T, t0 and y0 that will be �xed below. Our goal is to670

show that, for L1, L2 > 0 large enough,671 ∥∥F(y1)−F(y2)
∥∥
B
≤ 1

2

∥∥y1 − y2
∥∥
B
, ∀y1, y2 ∈ B. (98)672

It is then not di�cult to check that the �xed point of F satis�es the estimate (96). Indeed, using
(98), we easily see that the �xed point y of F will satisfy

1

2
‖y‖B ≤ ‖F(0)‖B ,

and some straightforward computations show that

‖y‖2C0([t0,t0+T ];L2(0,1)n) ≤ e
L2eL1T ‖y‖2B1

, ‖y‖2C0([0,1];L2(t0,t0+T )n) ≤ e
L1T ‖y‖2B2

,

‖F(0)‖2B ≤ 2

(
1 +

eL2

ε

)
e‖

∂Λ
∂x ‖L∞T

∥∥y0
∥∥2

L2(0,1)n
.

Let us now establish (98). We introduce

y = y1 − y2,

so that F(y1)−F(y2) is equal to the right-hand side of (94) with y0 = 0. We have to estimate four
types of terms in each ‖·‖Bi-norm (i = 1, 2). For convenience, we denote by

R1 = max

{
‖Λ‖L∞ ,

∥∥∥∥∂Λ

∂x

∥∥∥∥
L∞

}
, R2 = max {‖M‖L∞ , ‖G‖L∞ , ‖F‖L∞} .

We recall that it is crucial that α does not depend on R2.673

Estimate of the ‖·‖B1
-norm. Let t ∈ [t0, t0 + T ] be �xed. Let I =

{
x ∈ (0, 1), sin

i (t, x) > t0
}
.674

1) Let i ∈ {1, . . . ,m}. For a.e. x ∈ I, using Cauchy-Schwarz inequality, we have∣∣∣∣∣∣
n∑
j=1

∫ 1

0

fij(s
in
i (t, x), ξ)yj(s

in
i (t, x), ξ) dξ

∣∣∣∣∣∣
2

≤ nR2
2e
L2 ‖y‖2B1

eL1(sini (t,x)−t0).

Using a �ner version of (15), namely,675

1− x
R1

≤ t− sin
i (t, x), (99)676

(obtained similarly to (19)) we obtain the estimate

∫
I

∣∣∣∣∣∣
n∑
j=1

∫ 1

0

fij(s
in
i (t, x), ξ)yj(s

in
i (t, x), ξ) dξ

∣∣∣∣∣∣
2

e−L2x dx ≤

(
nR2

2

1
L1

R1
− L2

)
eL1(t−t0) ‖y‖2B1

,

provided that677

L1

R1
− L2 > 0. (100)678

38



2) Let i ∈ {m+ 1, . . . , n}. Using (15), we have

∫
I

∣∣∣∣∣∣
m∑
j=1

qi−m,j(s
in
i (t, x))yj(s

in
i (t, x), 0)

∣∣∣∣∣∣
2

e−L2x dx

≤ mα2eL1(t−t0)
m∑
j=1

∫
I

∣∣yj(sin
i (t, x), 0)

∣∣2 e−L1(sini (t,x)−t0) dx.

Doing the change of variables σ = sin
i (t, x) and using the estimate (see (14), (12) and (19))

∂sin
i (t, x)

∂x
=
−e
−

∫ t
sin
i

(t,x)

∂λi
∂x (θ,χi(θ;t,x)) dθ

λi(sin
i (t, x), 0)

≤ − 1

R1
e−

R1
ε ,

we obtain

∫
I

∣∣∣∣∣∣
m∑
j=1

qi−m,j(s
in
i (t, x))yj(s

in
i (t, x), 0)

∣∣∣∣∣∣
2

e−L2x dx ≤
(
mα2R1e

R1
ε e−L2

)
eL1(t−t0) ‖y‖2B2

.

3) For the next term, we have

∫ 1

0

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

mij(s, χi(s; t, x))yj(s, χi(s; t, x)) ds

∣∣∣∣∣∣
2

e−L2x dx

≤ nR2
2

1

ε

n∑
i=1

∫ 1

0

∫ t

s̄ini (t0;t,x)

n∑
j=1

|yj(s, χi(s; t, x))|2 ds dx.

Using the change of variable (σ, ξ) = (s, χi(s; t, x)), whose Jacobian determinant is (see (12))

det

 1 0

λi(s, χi(s; t, x)) ∂χi
∂x (s; t, x)

 = e−
∫ t
s

∂λi
∂x (θ,χi(θ;t,x)) dθ ≥ e−

R1
ε , ∀s ∈ (sin

i (t, x), t),

we obtain

∫ 1

0

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

mij(s, χi(s; t, x))yj(s, χi(s; t, x)) ds

∣∣∣∣∣∣
2

e−L2x dx

≤
(
n2R2

2

1

ε
e
R1
ε eL2

1

L1

)
eL1(t−t0) ‖y‖2B1

.

4) Finally, the estimate of the remaining term is easy:

∫ 1

0

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

gij (s, χi(s; t, x)) yj (s, 0) ds

∣∣∣∣∣∣
2

e−L2x dx

≤
(
n2R2

2

1

ε
e−L2

)
eL1(t−t0) ‖y‖2B2

.
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In summary, we have established the following estimate (provided that (100) holds):

∥∥F(y1)−F(y2)
∥∥2

B1
≤ 3

(
mnR2

2

1
L1

R1
− L2

+ n2R2
2

1

ε
e
R1
ε eL2

1

L1

)
‖y‖2B1

+ 3

(
(n−m)mα2R1e

R1
ε e−L2 + n2R2

2

1

ε
e−L2

)
‖y‖2B2

. (101)

Estimate of the ‖·‖B2
-norm. Let x ∈ [0, 1] be �xed. Let J =

{
t ∈ (t0, t0 + T ), sin

i (t, x) > t0
}
.679

1) Let i ∈ {1, . . . ,m}. We have

∫
J

∣∣∣∣∣∣
n∑
j=1

∫ 1

0

fij(s
in
i (t, x), ξ)yj(s

in
i (t, x), ξ) dξ

∣∣∣∣∣∣
2

e−L1(t−t0) dt

≤ nR2
2

∫ 1

0

∫
J

n∑
j=1

∣∣yj(sin
i (t, x), ξ)

∣∣2 e−L1(sini (t,x)−t0)eL1(sini (t,x)−t) dt

 dξ.

Using once again (99), (100), performing the change of variable σ = sin
i (t, x), and using the680

estimate (see (14), (12) and (19))681

∂sin
i (t, x)

∂t
=
λi(t, x)e

−
∫ t
sin
i

(t,x)

∂λi
∂x (θ,χi(θ;t,x)) dθ

λi(sin
i (t, x), 1)

≥ ε

R1
e−

R1
ε , (102)682

we obtain the estimate

∫
J

∣∣∣∣∣∣
n∑
j=1

∫ 1

0

fij(s
in
i (t, x), ξ)yj(s

in
i (t, x), ξ) dξ

∣∣∣∣∣∣
2

e−L1(t−t0) dt ≤
(
n
R1

ε
R2

2e
R1
ε

1

L2

)
e−L2(1−x) ‖y‖2B2

.

2) The next estimate is where we will need the smallness assumption on Q. Let i ∈ {m+ 1, . . . , n}.
Using (15) and the change of variables σ = sin

i (t, x) (recall the estimate (102)), we obtain

∫
J

∣∣∣∣∣∣
m∑
j=1

qi−m,j(s
in
i (t, x))yj(s

in
i (t, x), 0)

∣∣∣∣∣∣
2

e−L1(t−t0) dt ≤
(
mα2R1

ε
e
R1
ε

)
e−L2(1−x) ‖y‖2B1

.

3) For i ∈ {1, . . . ,m}, using the estimate

−R1(t− s) ≤ x− χi(s; t, x),

we have∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

mij(s, χi(s; t, x))yj(s, χi(s; t, x)) ds

∣∣∣∣∣∣
2

e−L1(t−t0)

≤ nR2
2

1

ε

∫ t

s̄ini (t0;t,x)

n∑
j=1

|yj(s, χi(s; t, x))|2 e−L1(s−t0)e−
L1
R1

(χi(s;t,x)−x) ds.
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Integrating and using the change of variable (σ, ξ) = (s, χi(s; t, x)), whose Jacobian determinant
is uniformly estimated for s ∈ (sin

i (t, x), t) by (see (12) and (19))∣∣∣∣∣∣∣∣det

 1 0

λi(s, χi(s; t, x)) ∂χi
∂t (s; t, x)


∣∣∣∣∣∣∣∣ = |λi(t, x)| e−

∫ t
s

∂λi
∂x (θ,χi(θ;t,x)) dθ ≥ εe−

R1
ε ,

we obtain (using also that x ≤ χi(s; t, x) ≤ 1)

∫ t0+T

t0

m∑
i=1

∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

mij(s, χi(s; t, x))yj(s, χi(s; t, x)) ds

∣∣∣∣∣∣
2

e−L1(t−t0) dt

≤ mnR2
2

1

ε2
e
R1
ε

∫ 1

x

∫ t0+T

t0

n∑
j=1

|yj(σ, ξ)|2 e−L1(σ−t0) dσ

 e−
L1
R1

(ξ−x) dξ

≤

(
mnR2

2

1

ε2
e
R1
ε

1
L1

R1
− L2

)
e−L2(1−x) ‖y‖2B2

,

provided that (100) holds. A similar reasoning shows that

∫ t0+T

t0

n∑
i=m+1

∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

mij(s, χi(s; t, x))yj(s, χi(s; t, x)) ds

∣∣∣∣∣∣
2

e−L1(t−t0) dt

≤

(
(n−m)nR2

2

1

ε2
e
R1
ε

1

L2 + L1

R1

)
e−L2(1−x) ‖y‖2B2

.

4) For the remaining term, using a similar reasoning to the one used in the previous step, we
obtain

∫ t0+T

t0

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

∫ t

s̄ini (t0;t,x)

gij(s, χi(s; t, x))yj(s, 0) ds

∣∣∣∣∣∣
2

e−L1(t−t0) dt

≤
(
n2R1R

2
2

1

ε2
e
R1
ε

1

L1

)
e−L2(1−x) ‖y‖2B2

.

In summary, we have established the following estimate (provided that (100) holds):

∥∥F(y1)−F(y2)
∥∥2

B2
≤ 3

(
(n−m)mα2R1

ε
e
R1
ε

)
‖y‖2B1

+ 3

(
mn

R1

ε
R2

2e
R1
ε

1

L2
+mnR2

2

1

ε2
e
R1
ε

1
L1

R1
− L2

+ (n−m)nR2
2

1

ε2
e
R1
ε

1

L2 + L1

R1

+ n2R1R
2
2

1

ε2
e
R1
ε

1

L1

)
‖y‖2B2

. (103)

Consequently, we see from (101) and (103) that F indeed satis�es the contraction property (98)683

if α is small enough (depending only on n −m,m,R1 and ε) and if we �x L2 > 0 and then L1 > 0684

large enough. This concludes the proof of Theorem A.2.685

686
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Remark A.4. It can be shown that the broad solution is also the classical solution if the data of the
system are smooth enough. It then follows by standard approximation arguments that the broad
solution is also the so-called weak solution. We recall that the notion of weak solution for (91) is
obtained by multiplying (91) by a smooth function and integrating by parts, that is, a function
y : (t0,+∞)× (0, 1) −→ Rn is a weak solution to (91) if y ∈ C0([t0,+∞);L2(0, 1)n) and if it satis�es:∫ 1

0

y(t0 + T, x) · ϕ(t0 + T, x) dx−
∫ 1

0

y0(x) · ϕ(t0, x) dx

+

∫ t0+T

t0

∫ 1

0

y(t, x) ·
(
−∂ϕ
∂t

(t, x)− Λ(t, x)
∂ϕ

∂x
(t, x)−

(
∂Λ

∂x
(t, x) +M(t, x)

Tr

)
ϕ(t, x)

)
dxdt

+

∫ t0+T

t0

∫ 1

0

y(t, ξ) · F (t, ξ)
Tr

Λ−−(t, 1)ϕ−(t, 1) dξdt = 0, (104)

for every T > 0 and every ϕ ∈ C1([t0, t0 + T ]× [0, 1])n such that, for every t ∈ [t0, t0 + T ],

ϕ+(t, 1) = 0,

ϕ−(t, 0) = −Λ−−(t, 0)−1

(
Q(t)

Tr
Λ++(t, 0)ϕ+(t, 0) +

(
IdRm Q(t)

Tr

)∫ 1

0

G(t, x)
Tr
ϕ(t, x) dx

)
.

In (104), we denoted by ATr the transpose of a matrix A and v1 · v2 denotes the canonical scalar687

product between two vectors v1, v2 of Rn.688

A.3 Justi�cation of the formal computations689

In this section, we �nally rigorously prove that the transformations that we used all along this paper690

are preserving broad solutions. We show how it works only for the Fredholm transformation of Section691

2.3 (because it is simpler to present) but the reasoning is general and can be used for the Volterra692

transformation of Section 2.2 as well. More precisely, the goal of this section is to prove the following693

result:694

Proposition A.5. Let H−− = (hij)1≤i,j≤m, where hij is the solution to the di�erential equation
(57). Let t0 ≥ 0 be �xed. Let z0 ∈ L2(0, 1)n and let z be the broad solution to

∂z

∂t
(t, x) + Λ(t, x)

∂z

∂x
(t, x) = G3(t, x)z(t, 0),

z−(t, 1) = 0, z+(t, 0) = Q1(t)z−(t, 0),

z(t0, x) = z0(x).

Then, the function γ de�ned by the Fredholm transformation (48) is the broad solution to

∂γ

∂t
(t, x) + Λ(t, x)

∂γ

∂x
(t, x) = G2(t, x)γ(t, 0),

γ−(t, 1) =

∫ 1

0

F 2(t, ξ)γ(t, ξ) dξ, γ+(t, 0) = Q1(t)γ−(t, 0),

γ(t0, x) = γ0(x),

where γ0(x) = z0(x)−
∫ 1

0
H(t0, x, ξ)z0(ξ) dξ.695
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We recall that H is given by (53), F 2 is the solution of (50), Q1 is provided by Proposition 2.1,696

G2 is provided by Proposition 2.4 and, �nally, G3 is given by (44).697

Remark A.6. Obviously, we could use the explicit expression (60)-(58) of the solution H to simplify698

the forthcoming arguments but we choose not to do so and to only use the di�erential equation (57) in699

order to give a general procedure that can also be used to justify the formal computations of Section700

2.2 as well.701

A similar result to Proposition A.5 can be found in [CN19, Proposition 3.5]. Here we propose a702

di�erent and self-contained proof, based on the following characterization of broad solutions:703

Lemma A.7. A function y : (t0,+∞)× (0, 1) −→ Rn is the broad solution to (91) if, and only if, y704

has the regularity (95) and, for every i ∈ {1, . . . , n}, for a.e. t > t0 and a.e. x ∈ (0, 1), the function705

s 7→ yi (s, χi(s; t, x)) belongs to H1(s̄in
i (t0; t, x), sout

i (t, x)) and it satis�es the ODE (92).706

The proof of Lemma A.7 is not di�cult, it simply relies on the properties (10) and (17).707

Proof of Proposition A.5.708

1) The required regularity

γ ∈ C0([t0, t0 + T ];L2(0, 1)n) ∩ C0([0, 1];L2(t0, t0 + T )n), ∀T > 0,

is clear since z also has this regularity and (t, x) 7→
∫ 1

0
H−−(t, x, ξ)z−(t, ξ) dξ is continuous (see709

e.g. Remark 2.9).710

2) The initial condition in the ODE formulation

γi
(
s̄in
i (t0; t, x), χi(s̄

in
i (t0; t, x); t, x)

)
= bi(γ)(t, x)

is not di�cult to check by using the boundary condition z−(t, 1) = 0 with the de�nition (50) of711

F 2 and Fubini's theorem (case sin
i (t, x) > t0 and i ∈ {1, . . . ,m}), the condition H−−(t, 0, ξ) = 0712

(case sin
i (t, x) > t0 and i ∈ {m+ 1, . . . , n}) and the de�nition of γ0 (case sin

i (t, x) < t0).713

3) It remains to check that, for every i ∈ {1, . . . , n}, for a.e. t > t0 and x ∈ (0, 1), the function714

s 7→ γi (s, χi(s; t, x)) belongs to H1(s̄in
i (t0; t, x), sout

i (t, x)) with715

d

ds
γi (s, χi(s; t, x)) =

m∑
j=1

g2
ij (s, χi(s; t, x)) γj (s, 0) . (105)716

By de�nition (48) of γ, we have

γi (s, χi(s; t, x)) = zi (s, χi(s; t, x))−
m∑
j=1

∫ 1

0

hij(s, χi(s; t, x), ξ)zj(s, ξ) dξ.

For i ∈ {m+ 1, . . . , n}, the identity (105) easily follows from the equation satis�ed by zi, the717

relation z(·, 0) = γ(·, 0), and the fact that hij = 0 for such indices (recall (53)).718

Let us now assume that i ∈ {1, . . . ,m}. The equation satis�ed by zi then gives

d

ds
zi (s, χi(s; t, x)) = 0, ∀i ∈ {1, . . . ,m} .

On the other hand, since we know some information of hij along the characteristic curve s 7→
χij(s; t, x, θ) = (s, χi(s; t, x), χj(s; t, θ)), we would like to perform the change of variable

ξ = χj(s; t, θ).
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Thanks to (13) and the implicit function theorem there exists θj ∈ C1(R3) such that, for every719

(s, t, ξ) ∈ R3, we have720

ξ = χj(s; t, θj(s; t, ξ)),
∂θj
∂ξ

(s; t, ξ) > 0. (106)721

Using this change of variable, we have

γi (s, χi(s; t, x)) = zi (s, χi(s; t, x))−
m∑
j=1

∫ bj(s)

aj(s)

ηij(s, θ) dθ,

where
aj(s) = θj(s; t, 0), bj(s) = θj(s; t, 1),

ηij(s, θ) = hij(χij(s; t, x, θ))zj(s, χj(s; t, θ))
∂χj
∂x

(s; t, θ).

We would like to use the formula

d

ds

(∫ bj(s)

aj(s)

ηij(s, θ) dθ

)
= b′j(s)ηij(s, bj(s))− a′j(s)ηij(s, aj(s)) +

∫ bj(s)

aj(s)

∂ηij
∂s

(s, θ) dθ.

Clearly, aj , bj ∈ C1(R). Di�erentiating the relation ξ = χj(s; t, θj(s; t, ξ)) with respect to s we
obtain

a′j(s) =
−λj(s, 0)

∂χj
∂x (s; t, θj(s; t, 0))

.

On the other hand, using (57) with ξ = 0, (106) and the boundary condition z−(·, 1) = 0, we
have

ηij(s, aj(s)) = −
g2
ij(s, χi(s; t, x))

λj(s, 0)
zj(s, 0)

∂χj
∂x

(s; t, θj(s; t, 0)), ηij(s, bj(s)) = 0.

Using the ODEs satis�ed along the characteristics by hij (see (57)) and zj , and using the
relation (see (12))

∂2χj
∂s∂x

(s; t, θ) =
∂λj
∂x

(s, χj(s; t, θ))
∂χj
∂x

(s; t, θ),

we can check that ηij has weak derivative with respect to s which is equal to zero:

∂ηij
∂s

(s, θ) = 0.

It follows from all the previous computations and the relation z(·, 0) = γ(·, 0) that

d

ds
γi (s, χi(s; t, x)) =

m∑
j=1

a′j(s)ηij(s, aj(s)) =

m∑
j=1

g2
ij(s, χi(s; t, x))γj(s, 0).

722
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B Constructions of sin
ij , s

out
ij and sdisc

ij`723

In this appendix, we give a proof of the existence sin
ij , s

out
ij and sdisc

ij` satisfying the properties stated724

in Proposition 3.3 and Proposition 3.5. We will make use of the following simple lemma:725

Lemma B.1. Let f ∈ C1([a, b]) (a < b) satisfy the following property:726

∀s ∈ [a, b], f(s) = 0 =⇒ f ′(s) < 0. (107)727

Then, there exists a unique c ∈ [a, b] such that

f(s) > 0, ∀s ∈ (a, c), f(s) < 0, ∀s ∈ (c, b).

Moreover, c has the properties listed in Table 1 (an ∅ means that such a situation can not occur).728

f(b) > 0 f(b) = 0 f(b) < 0

f(a) > 0 c = b c = b f(c) = 0

f(a) = 0 ∅ ∅ c = a

f(a) < 0 ∅ ∅ c = a

Table 1: Properties of c

Proof of Proposition 3.3. We recall that i ∈ {1, . . . ,m} and we refer to Figures 2, 3, 4 and 5 for a729

clari�cation of the geometric situation (at a �xed t). We only focus on the existence part since the730

uniqueness readily follows from the properties that have to be satis�ed.731

1) Assume that j ∈ {1, . . . , i− 1}. For every (t, x, ξ) ∈ P such that x < 1, we introduce the C1

function
f : s ∈

[
max

{
sin
i (t, x), sin

j (t, ξ)
}
, t
]
7→ χj(s; t, ξ)− χi(s; t, x).

Note that the interval has a non empty interior since x < 1 and ξ ≤ x < 1 (see (15)-(16)).
This function clearly satis�es the property (107) thanks to the ODE (9) and the assumption
(3) since j < i. Consequently, Lemma B.1 applies and gives the existence of sin

ij(t, x, ξ) with

max
{
sin
i (t, x), sin

j (t, ξ)
}
≤ sin

ij(t, x, ξ) ≤ t,

and such that
χj(s; t, ξ) < χi(s; t, x), ∀s ∈

(
sin
ij(t, x, ξ), t

)
.

Clearly, (t, x, ξ) 7→ t − sin
ij(t, x, ξ) ∈ L∞(P) thanks to (19). Moreover, it follows from Table 1732

that733 

sin
ij(t, x, ξ) = t if sin

i (t, x) < sin
j (t, ξ) and ξ = x,

f(sin
ij(t, x, ξ)) = 0 if sin

i (t, x) < sin
j (t, ξ) and ξ < x,

sin
ij(t, x, ξ) = sin

i (t, x) if sin
i (t, x) = sin

j (t, ξ) and ξ < x,

sin
ij(t, x, ξ) = sin

i (t, x) if sin
i (t, x) > sin

j (t, ξ) and ξ < x.

(108)734
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Let us now complete the de�nition of sin
ij on the remaining parts of P. The missing case in735

(108) is when sin
i (t, x) ≥ sin

j (t, ξ) and ξ = x. However, unless x = 1, these conditions are not736

compatible since sin
i (t, x) < sin

j (t, x) for j < i ≤ m (see (21)). Consequently, it only remains to737

de�ne sin
ij in the part where x = 1, which we do now by setting738

sin
ij(t, 1, ξ) = t. (109)739

We can check that sin
ij de�ned by (108)-(109) belongs to C0(P) (for the second case in (108)740

this follows from the implicit function theorem). Therefore, such a sin
ij clearly satis�es all the741

properties claimed in the statement of item (i) of Proposition 3.3.742

2) Assume that j = i. We will show that, in this case, we can simply take

sout
ii (t, x, ξ) = sout

i (t, ξ).

Clearly, sout
ii ∈ C0(P) with (t, x, ξ) 7→ sout

ii (t, x, ξ)−t ∈ L∞(P) thanks to (19) and sout
ii (t, x, ξ) > t

as long as ξ > 0 (see (15)-(16)). Let us now observe that, for ξ < x, we have from (13):

χi(s; t, ξ) < χi(s; t, x), ∀s ∈ R,

and χi(s; t, ξ) > 0 for s ∈ (t, sout
ii (t, x, ξ)) since sout

i (t, ξ) < sout
i (t, x) by (20) (recall that j = i ∈743

{1, . . . ,m}).744

3) The proof for the case j ∈ {i+ 1, . . . ,m} is similar to the proof of part 1) by considering, for745

each (t, x, ξ) ∈ P such that ξ, x > 0, the function746

f : s ∈
[
t,min

{
sout
i (t, x), sout

j (t, ξ)
}]
7→ χi(s; t, x)− χj(s; t, ξ). (110)747

4) The proof for the case j ∈ {m+ 1, . . . , n} is also similar to the proof of part 1) by considering,748

for each (t, x, ξ) ∈ P such that 0 ≤ ξ < x ≤ 1, the function f de�ned again by (110).749

750

Proof of Proposition 3.5. The di�erence with the proof of Proposition 3.3 is that we do not need to751

neither track the regularity of the point where the function f vanishes nor its sign on the left and752

right of this zero. It is a straightforward consequence of Lemma B.1 applied to the following functions753

(it is enough to consider non empty intervals):754

1) For j ∈ {1, . . . , i− 1}, we use

f : s ∈
[
sin
ij(t, x, ξ), t

]
7→ χj(s; t, ξ)− ψi` (s, χi(s; t, x)) .

Using the ODE (9) satis�ed by χj and using the equation (41) satis�ed by ψi`, we have

f ′(s) = λj (s, χj(s; t, ξ))− λ` (s, ψi` (s, χi(s; t, x))) .

Since j < `, this shows that such a f satis�es the property (107) of Lemma B.1.755

2) For j ∈ {i, . . . , `− 1}, we use756

f : s ∈
[
t, sout

ij (t, x, ξ)
]
7→ χj(s; t, ξ)− ψi` (s, χi(s; t, x)) . (111)757

3) For j ∈ {`+ 1, . . . ,m}, we use the function −f , where f is given by (111).758

4) For j ∈ {m+ 1, . . . , n}, we use the same function f given by (111) (in fact, the result then759

directly follows from the intermediate value theorem).760

761
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C Construction of Ωi762

This appendix is devoted to the proof of Lemma 3.7, that is to the existence of the key change of763

variable needed in the proof of Proposition 3.6. We recall that i ∈ {1, . . . ,m}.764

1) Inspired by the time-independent case (see Remark 3.6), we look for Ωi in the following form:

Ωi(t, x, ξ) = ω1
i (t, x)− ωνi (t, ξ),

where, at each �xed ν ∈ (0, 1], ωνi (·, ·) is the solution to the following linear hyperbolic equation:765 
∂ωνi
∂t

(t, x) +
λi(t, x)

ν

∂ωνi
∂x

(t, x) = 0,

ωνi (t, 0) = t,

t ∈ R, x ∈ [0, 1]. (112)766

The solution of (112) is explicit:767

ωνi (t, x) = ωνi (sout,ν
i (t, x), 0) = sout,ν

i (t, x), (113)768

where sout,ν
i (t, x) ≥ t (with sout,ν

i (t, x) = t⇐⇒ x = 0) is the unique number such that769

χνi (sout,ν
i (t, x); t, x) = 0, (114)770

where s 7→ χνi (s; t, x) is the solution to the ODE771 
∂χνi
∂s

(s; t, x) =
1

ν
λi(s, χ

ν
i (s; t, x)), ∀s ∈ R,

χνi (t; t, x) = x.

(115)772

We can check that the map (t, x, ν) 7→ ωνi (t, x) belongs to C1(R× [0, 1]× (0, 1]).773

2) We now prove that there exists δ > 0 such that, for every t ∈ R, x ∈ [0, 1] and ν ∈ (0, 1],774

∂ωνi
∂t

(t, x) ≥ εδ, ∂ωνi
∂x

(t, x) ≥ νδ, ∂ωνi
∂ν

(t, x) ≥ 0. (116)775

Using the equation (112) and the assumption (3), it is clear that the estimate for ∂ωνi /∂t follows
from the estimate of ∂ωνi /∂x. Note from (113) that ∂ωνi /∂x = ∂sout,ν

i /∂x. Taking the derivative
of (114) with respect to x, we obtain

1

ν
λi(s

out,ν
i (t, x), χνi (sout,ν

i (t, x); t, x))
∂sout,ν
i

∂x
(t, x) +

∂χνi
∂x

(sout,ν
i (t, x); t, x) = 0.

Since λi ∈ L∞(R × (0, 1)), we have to bound
∂χνi
∂x (sout,ν

i (t, x); t, x) from below by a positive
constant that does not depend on t, x and ν. From (115) we can show that

∂χνi
∂x

(s; t, x) = e
1
ν

∫ s
t

∂λi
∂x (θ,χνi (θ;t,x)) dθ,

so that
∂χνi
∂x

(sout,ν
i (t, x); t, x) ≥ e 1

ν (sout,ν
i (t,x)−t) infR×[0,1]

∂λi
∂x .

This establishes the desired lower bound since ∂λi
∂x ∈ L

∞(R×(0, 1)) and 0 ≤ sout,ν
i (t, x)−t ≤ x

ε ν776

(the proof is similar to the one of (19)). Note that it follows as well from this estimate that777

Ωi ∈ L∞(R× (0, 1)× (0, 1)).778
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To prove the remaining estimate in (116), we denote by γν = ∂ωνi /∂ν and observe that it
satis�es

∂γν

∂t
(t, x) +

λi(t, x)

ν

∂γν

∂x
(t, x) =

λi(t, x)

ν2

∂ωνi
∂x

(t, x) ≤ 0,

γν(t, 0) = 0,

t ∈ R, x ∈ [0, 1].

It immediately follows that γν ≥ 0.779

3) Let us now check the estimates (87) and (88). We have

∂Ωi
∂t

(t, x, ν) + λi(t, x)
∂Ωi
∂x

(t, x, ν) + λj(t, ξ)
∂Ωi
∂ξ

(t, x, ν)

=
∂ω1

i

∂t
(t, x) + λi(t, x)

∂ω1
i

∂x
(t, x)− ∂ωνi

∂t
(t, ξ)− λj(t, ξ)

∂ωνi
∂x

(t, ξ)

= −∂ω
ν
i

∂t
(t, ξ)

(
1− ν λj(t, ξ)

λi(t, ξ)

)
.

Since λj/λi ≤ 1 for i ≤ j and i ≤ m, we see that the estimate (88) is obtained by simply taking780

0 < ε0 ≤ εδ(1− ν), 0 < ν < 1. (117)781

On the other hand, let us introduce

r = max
1≤j<i

sup
t∈R

ξ∈[0,1]

λi(t, ξ)

λj(t, ξ)
.

Clearly, 0 < r ≤ 1. In fact, r < 1 since from (4) we have, for j < i ≤ m,

sup
t∈R

ξ∈[0,1]

λi(t, ξ)

λj(t, ξ)
≤ 1− ε

‖λj‖L∞
.

The estimate (87) now follows from (116) by taking782

0 < ε0 ≤ εδ
(ν
r
− 1
)
, r < ν ≤ 1. (118)783

Note that the conditions (117) and (118) are compatible by taking ν close enough to 1.784

4) It remains to check that Ωi ≥ 0 on P. Since both functions ν 7→ ωνi (t, x) and x 7→ ωνi (t, x) are
nondecreasing by (116) and ξ ≤ x, we have

ω1
i (t, x) ≥ ωνi (t, x) ≥ ωνi (t, ξ).

785

References786

[AA18] Henrik An�nsen and Ole Morten Aamo, Control of a time-variant 1�d linear hyperbolic787

pde using in�nite-dimensional backstepping, 26th Mediterranean Conference on Control788

and Automation (MED), 2018.789

48



[ADM16] Jean Auriol and Florent Di Meglio, Minimum time control of heterodirectional linear790

coupled hyperbolic PDEs, Automatica J. IFAC 71 (2016), 300�307.791

[BAK15] Federico Bribiesca-Argomedo and Miroslav Krstic, Backstepping-forwarding control and792

observation for hyperbolic PDEs with Fredholm integrals, IEEE Trans. Automat. Con-793

trol 60 (2015), no. 8, 2145�2160.794

[BB98] Sanjay P. Bhat and Dennis S. Bernstein, Continuous �nite-time stabilization of the795

translational and rotational double integrators, IEEE Trans. Automat. Control 43796

(1998), no. 5, 678�682.797

[BC16] Georges Bastin and Jean-Michel Coron, Stability and boundary stabilization of 1-D798

hyperbolic systems, Progress in Nonlinear Di�erential Equations and their Applications,799

vol. 88, Birkhäuser/Springer, [Cham], 2016, Subseries in Control.800

[BK02] Andreas Balogh and Miroslav Krstic, In�nite dimensional backstepping-style feedback801

transformations for a heat equation with an arbitrary level of instability, European802

Journal of Control 8 (2002), 165�175.803

[BKL01] Dejan M. Bo²kovi¢, Miroslav Krstic, and Weijiu Liu, Boundary control of an unstable804

heat equation via measurement of domain-averaged temperature, IEEE Trans. Automat.805

Control 46 (2001), no. 12, 2022�2028.806

[BR05] Andrea Bacciotti and Lionel Rosier, Liapunov functions and stability in control theory,807

second ed., Communications and Control Engineering Series, Springer-Verlag, Berlin,808

2005.809

[Bre00] Alberto Bressan, Hyperbolic systems of conservation laws, Oxford Lecture Series in810

Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000, The811

one-dimensional Cauchy problem.812

[Bru70] Pavol Brunovský, A classi�cation of linear controllable systems, Kybernetika (Prague)813

6 (1970), 173�188.814

[CdN98] Jean-Michel Coron and Brigitte d'Andréa Novel, Stabilization of a rotating body beam815

without damping, IEEE Trans. Automat. Control 43 (1998), no. 5, 608�618.816

[CGM18] Jean-Michel Coron, Ludovick Gagnon, and Morgan Morancey, Rapid stabilization of817

a linearized bilinear 1-D Schrödinger equation, J. Math. Pures Appl. (9) 115 (2018),818

24�73.819

[CHO16] Jean-Michel Coron, Long Hu, and Guillaume Olive, Stabilization and controllability of820

�rst-order integro-di�erential hyperbolic equations, J. Funct. Anal. 271 (2016), no. 12,821

3554�3587.822

[CHO17] , Finite-time boundary stabilization of general linear hyperbolic balance laws via823

Fredholm backstepping transformation, Automatica J. IFAC 84 (2017), 95�100.824

[CL14] Jean-Michel Coron and Qi Lü, Local rapid stabilization for a Korteweg-de Vries equation825

with a Neumann boundary control on the right, J. Math. Pures Appl. (9) 102 (2014),826

no. 6, 1080�1120.827

[CL15] , Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky828

equation, J. Di�erential Equations 259 (2015), no. 8, 3683�3729.829

[CN19] Jean-Michel Coron and Hoai-Minh Nguyen, Optimal time for the controllability of linear830

hyperbolic systems in one-dimensional space, SIAM J. Control Optim. 57 (2019), no. 2,831

1127�1156.832

49



[Col77] David Colton, The solution of initial-boundary value problems for parabolic equations833

by the method of integral operators, J. Di�erential Equations 26 (1977), no. 2, 181�190.834

[Cor07] Jean-Michel Coron, Control and nonlinearity, Mathematical Surveys and Monographs,835

vol. 136, American Mathematical Society, Providence, RI, 2007.836

[CVKB13] Jean-Michel Coron, Rafael Vazquez, Miroslav Krstic, and Georges Bastin, Local ex-837

ponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping,838

SIAM J. Control Optim. 51 (2013), no. 3, 2005�2035.839

[DJK16] Andreas Deutschmann, Lukas Jadachowski, and Andreas Kugi, Backstepping-based840

boundary observer for a class of time-varying linear hyperbolic PIDEs, Automatica841

J. IFAC 68 (2016), 369�377.842

[Har02] Philip Hartman, Ordinary di�erential equations, Classics in Applied Mathematics,843

vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,844

2002, Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA;845

MR0658490 (83e:34002)], With a foreword by Peter Bates.846

[HDM15] Long Hu and Florent Di Meglio, Finite-time backstepping boundary stabilization of 3×3847

hyperbolic systems, Proceedings of the European Control Conference (ECC), July 2015,848

pp. 67�72.849

[HDMVK16] Long Hu, Florent Di Meglio, Rafael Vazquez, and Miroslav Krstic, Control of homodi-850

rectional and general heterodirectional linear coupled hyperbolic PDEs, IEEE Trans.851

Automat. Control 61 (2016), no. 11, 3301�3314.852

[HO19] Long Hu and Guillaume Olive, Minimal time for the exact controllability of one-853

dimensional �rst-order linear hyperbolic systems by one-sided boundary controls, sub-854

mitted, preprint: https://arxiv.org/abs/1901.06005v2 (2019).855

[Hoc73] Harry Hochstadt, Integral equations, John Wiley & Sons, New York-London-Sydney,856

1973, Pure and Applied Mathematics.857

[HVDMK19] Long Hu, Rafael Vazquez, Florent Di Meglio, and Miroslav Krstic, Boundary exponen-858

tial stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems, SIAM859

J. Control Optim. 57 (2019), no. 2, 963�998.860

[Kal72] Rudolph E. Kalman, Kronecker invariants and feedback, Ordinary Di�erential Equa-861

tions, (L. Weiss, ed.), Academic Press, New York, 1972, pp. 459�471.862

[Kan90] Yakar Kannai, Nonexistence for a boundary value problem arising in parabolic theory,863

Israel J. Math. 71 (1990), no. 3, 349�351.864

[KD19] Simon Kerschbaum and Joachim Deutscher, Backstepping control of coupled linear865

parabolic pdes with space and time dependent coe�cients, IEEE Transactions on Auto-866

matic Control (2019).867

[KS08] Miroslav Krstic and Andrey Smyshlyaev, Boundary control of PDEs, Advances in De-868

sign and Control, vol. 16, Society for Industrial and Applied Mathematics (SIAM),869

Philadelphia, PA, 2008, A course on backstepping designs.870

[Liu03] Weijiu Liu, Boundary feedback stabilization of an unstable heat equation, SIAM J. Con-871

trol Optim. 42 (2003), no. 3, 1033�1043.872

[LK00] Weijiu Liu and Miroslav Krstic, Backstepping boundary control of Burgers' equation873

with actuator dynamics, Systems Control Lett. 41 (2000), no. 4, 291�303.874

50

https://arxiv.org/abs/1901.06005v2


[LR03] Ta-Tsien Li and Bo-Peng Rao, Exact boundary controllability for quasi-linear hyperbolic875

systems, SIAM J. Control Optim. 41 (2003), no. 6, 1748�1755.876

[Rus78] David L. Russell, Canonical forms and spectral determination for a class of hyperbolic877

distributed parameter control systems, J. Math. Anal. Appl. 62 (1978), no. 1, 186�225.878

[Sei84] Thomas I. Seidman, Two results on exact boundary control of parabolic equations, Appl.879

Math. Optim. 11 (1984), no. 2, 145�152.880

[SGK09] Andrey Smyshlyaev, Bao-Zhu Guo, and Miroslav Krstic, Arbitrary decay rate for Euler-881

Bernoulli beam by backstepping boundary feedback, IEEE Trans. Automat. Control 54882

(2009), no. 5, 1134�1140.883

[SK05] Andrey Smyshlyaev and Miroslav Krstic, On control design for PDEs with space-884

dependent di�usivity or time-dependent reactivity, Automatica J. IFAC 41 (2005), no. 9,885

1601�1608.886

[Son98] Eduardo D. Sontag, Mathematical control theory, second ed., Texts in Applied Mathe-887

matics, vol. 6, Springer-Verlag, New York, 1998, Deterministic �nite-dimensional sys-888

tems.889

[Wan06] Zhiqiang Wang, Exact controllability for nonautonomous �rst order quasilinear hyper-890

bolic systems, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 643�656.891

[Won85] W. Murray Wonham, Linear multivariable control, third ed., Applications of Mathe-892

matics (New York), vol. 10, Springer-Verlag, New York, 1985, A geometric approach.893

51


	Introduction and main result
	System description
	The characteristics
	The flow
	The entry and exit times

	Main result and comments

	System transformations
	Removal of the diagonal terms
	Formal computations
	Existence of the transformation

	Volterra transformation
	Formal computations
	The kernel equations

	Fredholm integral transformation
	Finite-time stability of the system (0,G3,0,Q1)
	Proof of Proposition 2.11


	Existence of a solution to the kernel equations
	Kernel for the Fredholm transformation
	The characteristics of (56)
	Existence and regularity of a solution to (56)
	Characterization of Rij and Dij

	Kernel for the Volterra transformation
	Preliminaries
	The characteristics of (68)-(69)
	Transformation into integral equations
	Solution to the integral equations

	On the time-periodicity of F

	Background on broad solutions
	Definition of broad solution
	Well-posedness
	Justification of the formal computations

	Constructions of sinij, soutij and sdiscij
	Construction of i

