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linear hyperbolic balance laws with coefficients depending on
time and space

Jean-Michel Coron? Long Hu! Guillaume Olive! Peipei Shang®

April 24, 2020

Abstract

In this article we are interested in the boundary stabilization in finite time of one-dimensional
linear hyperbolic balance laws with coefficients depending on time and space. We extend the so
called “backstepping method” by introducing appropriate time-dependent integral transforma-
tions in order to map our initial system to a new one which has desired stability properties. The
kernels of the integral transformations involved are solutions to non standard multi-dimensional
hyperbolic PDEs, where the time dependence introduces several new difficulties in the treat-
ment of their well-posedness. This work generalizes previous results of the literature, where only
time-independent systems were considered.

Keywords: Hyperbolic systems, Boundary stabilization, Non-autonomous systems, Backstep-
ping method.

1 Introduction and main result

In the present paper we are interested in the one-sided boundary stabilization in finite time of
one-dimensional linear hyperbolic balance laws when the coupling coefficients of the system depend
on both time and space variables. To investigate this stabilization property we use the by now so-
called “backstepping method”, a method that consists in transforming our initial system into another
system - called target system - for which the stabilization properties are simpler to study. In finite
dimension it relies on a recursive design procedure, which in the case of partial differential equations
leads to Volterra transformations of the second kind.

The idea of the possibility to transform a control system into another one in order to study
its controllability or stabilization properties already goes back to the development of the control
theory for linear finite-dimensional systems in the late 60’s, notably with the celebrated work [Bru70]
where the author introduced the so-called “control canonical form”. Concerning infinite-dimensional
systems, such as systems modeled by partial differential equations (PDEs), this approach is much
more complicated. The first attempt in this direction seems to be [Rus78|, where the author was
interested in the spectral determination (i.e. pole placement) of a particular 2x 2 first-order hyperbolic
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system. The difficult task in this approach is, in general, to find an invertible transformation that
allows to pass from one system to another and, to the best of our knowledge, there is no general
theory for infinite-dimensional systems so far (if possible). In [Rus78|, the author proposed to use
a Volterra transformation of the second kind to pass from what he called the “control normal form”
to the control canonical form of his hyperbolic system and, in this way, easily solved his spectral
determination problem. In that paper, the use of such a transformation was justified by the analogy
with finite-dimensional systems when using transformations of the simple form Id + K with K being
a triangular matrix (while for Volterra transformations of the second kind, K is an integral operator
whose kernel is supported in a triangular domain). The use of a Volterra transformation of the second
kind to transform a PDE into another one was also introduced at almost the same time in [Col77].
Therein, the author showed that a one-dimensional perturbed heat equation, with a time and space
dependent perturbation, can be transformed into the classical heat equation by means of a Volterra
transformation of the second kind whose kernel has to satisfy some PDE posed on a non-standard
domain which is triangular. The equation that the kernel has to satisfy is now commonly referred to
as the “kernel equation” and the method was then referred by the author of [Col77] to as the “method
of integral operators”. The result of [Col77] was notably applied in [Sei&4] to deduce the boundary
null-controllability in one space dimension of the perturbed heat equation from that of the classical
heat equation.

In the 90’s a method with similar spirit appeared under the name of “backstepping method”. This
method was primarily designed to transform, thanks to a recursive procedure, finite-dimensional con-
trol systems, which may be nonlinear, into control systems which can be stabilized by means of simple
feedback laws. This method was later on extended to linear PDEs. The first result in this direction
is in [CANO98]| for a beam equation; see also][LKO00| for a Burgers’ equation. However, the main break-
through for the PDEs case are in [BKL0I, BK02| [Liu03], which deal with 1-D heat equations and
where Volterra transformations of the second kind are introduced or used. In particular in [BK02]
the backstepping recursive procedure in finite dimension is applied to the semi-discretized finite dif-
ference approximation of these equations and it is proved that, as the spatial step size tends to 0, the
backstepping transformation at the finite dimensional level is converging to a Volterra transformation
of the second kind. The fact that the transformation which appears with this approach is a Volterra
transformation of the second kind comes from the recursive procedure of the backstepping method.
With this method the authors, directly inspired by the backstepping in finite dimension, indepen-
dently arrived at the use of exactly the same transformation as in the two above mentioned pioneering
references [Rus78| and [Col77]. This is the reason of the use of the terminology “backstepping” for the
construction of stabilizing feedback laws relying on the use of Volterra transformations of the second
kind to transform a given control PDE to another control PDE (called the target system) which can
be easily stabilized (usually with the null feedback law).

The use of Volterra transformations of the second kind also matches very well with the boundary
stabilization of one-dimensional systems since this transformation somehow removes the undesirable
terms (or adds desirable ones) of the equation by “bringing” them to the part of the boundary where
the feedback is acting (through the kernel equations). This approach rapidly turned out to be very
successful in the study of the boundary stabilization of various important PDEs such as heat equa-
tions, wave equations, Schrédinger equations, Korteweg-de Vries equations, Kuramoto-Sivashinsky
equations, etc. and it eventually leads to the by now reference book [KSO8| on this subject. This
method is nowadays systematically used as a standard tool to analyze the boundary stabilization for
(mainly one-dimensional) PDEs. This method has also received some recent developments. Notably,
the use of Volterra transformations of the second kind has started to show some serious limitation for
some problems and it has been replaced by more general integral transformations such as Fredholm
integral transformations (see e.g. [CL14, [CL15 BAK15, [CHO16, [CHO17, [CGM18]) or other kind of
integral transformations (see e.g. [SGK09]). In these cases the transformation on the state does not
have any special structure and the method is no longer related to the finite dimensional backstepping
approach. It is related to the older notion of feedback equivalence, as initiated in [Bru70]; see also
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[Kal72], [Won85, Section 5.7], and [Son98|, Section 5.2].

Concerning more specifically systems of hyperbolic equations and the finite-time stabilization
property, which is the focus of this article, the first result was obtained in [CVKB13]. In this paper,
the authors developed the original backstepping method to prove the boundary stabilization of a
2 x 2 hyperbolic system in finite time, with the best time that can be achieved. The generalization
of the result of [CVKB13| to n x n systems was a non-trivial task which was eventually solved in
[HDMVK16, HVDMK19| using the ideas introduced previously in [HDM15] for 3 x 3 systems. The
key point was to add additional constraints on the kernel to obtain a specific structure of the coupling
parameter in the target system. The time of stabilization found in [HDMVK16|, [ HVDMK19| was then
improved in [ADM16, [CHO17]|, using two different target systems.

The goal of the present article is to extend the results of the previously mentioned references to
time-dependent systems. For the finite-time stabilization of non-autonomous hyperbolic systems, the
only works that we are aware of are [DJK16] and [AAI8] which concerned a single equation with
constant speed. Therefore, the non-autonomous case for systems was still left without investigation.
The introduction of the time variable in the coupling coefficients obviously complicates the whole
situation. As in [Col77, [IDJK16, [AA18] we need to introduce integral transformations with time-
dependent kernels, resulting in much more complex kernel equations to solve. Finally, in addition to
the previous references, we would also like to mention the work [Wan06] on time-dependent quasilinear
hyperbolic systems concerning the related notion of controllability and the works [SK05, [KD19], with
the references therein, concerning the stabilization of time-dependent parabolic systems (where strong
regularity conditions are required to make the backstepping method work, because of the result of
[Kan9q]).

The rest of this paper is organized as follows. In the remaining part of Section [I] we present in
details the class of hyperbolic systems that we consider and we state our main result. In Section
we perform several transformations to show that our initial system can be mapped to a target
system which is finite-time stable with desired settling time. In Section [3] we prove the existence
and regularity of the kernels of the integral transformations that were used in the previous section.
Finally, we gathered in Appendices [A] [B] and [C] some auxiliary results.

1.1 System description

In this article, we focus on the following general n x n linear hyperbolic systems, which appear
for instance in the linearized Saint-Venant equations, plug flow chemical reactors equations, heat
exchangers equations and many other physical models of balance laws (see e.g. [BC16, Chapter 1])
around time-varying trajectories:

%(t7 x) + A(t, x)%(t, x) = M(t,z)y(t, z),
y—(t.1) = u(t), y+(t,0) =Q(t)y—(t,0), (1)

y(tov .’L‘) = yO(x)

In (), t > t° > 0 and = € (0,1), y(¢,-) is the state at time ¢, y° is the initial data at time ¢° and
u(t) is the control at time t. The matrix M couples the equations of the system inside the domain
and the matrix @) couples the equations of the system on the boundary x = 0. We assume that the
matrix A is diagonal:

A = diag(A1, ..., M) 2)

We denote by m € {1,...,n — 1} the number of equations with negative speeds and by p =n —m €
{1,...,n — 1} the number of equations with positive speeds (all along this work we assume that
n > 2, see Remark below for the case m = n > 1). We assume that there exists some € > 0 such
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that, for every ¢ > 0 and z € [0, 1], we have
A(t,x) < < Ap(t,2) < —e <0< e < App1(t,x) < -+ < At ), (3)
and, for every i € {1,...,n — 1},
)\i+1(t,l‘) — /\i(t,x) > €. (4)

Assumptions and will be commented, respectively, in Remarks and below.
All along this paper, for a vector (or vector-valued function) v € R™ and a matrix (or matrix-valued
function) A € R"*™, we use the notation

Ut A Ay

where v_ e R™, vy e RPand A__ e R™*™ A_, e R™*P A, e RP*™ A, € RP*P.
We will always assume the following regularities for the parameters involved in the system :

A € C([0,+00) x [0, 1])"*™, M € C°([0, +00) x [0,1])"*", Q € C°([0, 400))P*™,

A, %,M € L=((0,+00) x (0,1))™ ", Q € L(0, +oc)”™.

(5)

In this article, we use the notion of “solution along the characteristics” or “broad solution” for
the system . The necessary background on this notion is given in Appendix [A| (see also [Bre00,
Section 3.4] for more information). For the moment we only need to know that, for every F €
L%((0,4+00) x (0,1))™*" ¢ > 0 and y° € L?(0,1)", there exists a unique (broad) solution y €
CO([t°, +00); L2(0,1)™) to the system (1) with

u(t) = / F(t, €)y(t, €) de. (6)

The relation @ will be called the feedback law and the function F' will be called the state-feedback
gain function.

Let us now give the notion of stability that we are interested in this article (see, for example,
[BB98, Definition|, [BR0O3, Section 3.2] and [CorQ7, Definitions 11.11 and 11.27] for time-varying
systems in finite dimension).

Definition 1.1. Let 7' > 0. We say that the system with feedback law @ is finite-time stable
with settling time 7' if the following two properties hold:

(i) Finite-time global attractor. For every t° > 0 and y° € L?(0,1),

y(t°+1T,) =0. (7)

(ii) Uniform stability. For every ¢ > 0, there exists § > 0 such that, for every t > 0 and
y? € L*(0, 1),

(I8l ooy <0) = (Iu(t ey <& Ve 1), (8)

Remark 1.2. The property guarantees that, inside any time interval of the form [t°,t + T, the
solution is controlled solely by its value at the initial time t°, even if this time t° is very large. For
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our system (]| . this property is in fact a consequence of the first property (7) and that the state-
feedback gain function F isin L>((0,+00) x (0,1))™*™ (see Remark [A.3). Such an implication is in
general not true for time-dependent hyperbolic systems. A simple example is the following transport
equation:

dy dy
8t< T) — 67( z) =0,

y(t, 1) = f@t) | y(t,§)dé,

0
y(t’,2) =y’ (@),

where f € C*°([0,400)) is such that, for every k € N,

F(t) =0, Vte |2k 2k+1],

5 7
f@)=t, Vte |2k+-,2k+ -],
4 4
(note that f & L°°(0,400)). Then the finite-time global attractor property holds (with 7' = 3) but
the uniform stability property does not hold (consider the sequences y§(z) = ¢ for every z € (0,1)
and t§ =2 [}]| + 2, where [-] denotes the ceiling function).
Remark 1.3. As we are trying to find a state-feedback gain function F so that with feedback law
@ is finite-time stable, let us first point out that, in general, F' = 0 does not work. A simple example
is provided by the 2 x 2 system with constant coefficients (t° = 0 to simplify)

y— dy— _

at (t x) 8.’1) (t SU) - 7Cy+ (t3 ‘T),
Y+ Y+ _
W(taw)—i_%(tam) - Cy,(t“%‘),

Y- (t’ 1) =0, y+(t7 O) =Y- (tv O)a

y(0,2) = y°(x),

which is exponentially unstable for ¢ > 7 (see e.g. [BC16, Proposition 5.12] with y_(t,x) = S1(¢,1—x)
and y4 (t,z) = S2(t,1 — x)), and thus not finite-time stable.

1.2 The characteristics

To state the main result of this paper we need to introduce the characteristic curves associated with
system (). To this end, it is convenient to first extend A to a function of R? (still denoted by A).
Remark 1.4. This extension procedure can be done in such a way that the properties (2, (3),
and (5)) remain valid on R?. We can take for instance

)\Z(t,ZL') =

2i(0,2) + 6 ()\i((),a:) Y (1 - et/5,x>) if ¢ <0,

where § > 0 is small enough so that — + 46 max; [ Aill oo ((0,1)x(0,1)) < —€/2 to guarantee the
properties and (4) with ¢/2 in place of e. This extends the function to R x [0,1]. We can use
a similar procedure to then extend it to R2. We can check that the results of this paper do not
depend on such a choice of extension (all the important data are uniquely determined on the domain
of interest (0, +o00) x (0,1)).
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1.2.1 The flow

For every i € {1,---,n}, let x; be the flow associated with \;, i.e. for every (¢,z) € R x R, the
function s — x;(s;t,x) is the solution to the ODE

ONi (414, 2) = Mi(s, xalsit,2)), Vs €R,
88 (9)

xi(t;t,x) = .

The existence and uniqueness of the solution to the ODE () follows from the (local) Cauchy-Lipschitz
theorem and this solution is global since \; is bounded (by the finite time blow-up theorem, see e.g.
[Har02, Theorem II.3.1]). The uniqueness of the solution to the ODE @ also yields the group

property

Xi (038, xi(s;t,x)) = xi(o3t,x), Vo eR. (10)
By classical regularity results on ODEs (see e.g. [Har02, Theorem V.3.1]), x; has the regularity
xi € CH(R?), (11)

and, for every s,t,x € R, we have

689? (s:6,2) = —\ilt, x)eft T (Oxi(050,2)) dO 88?;2 (sit,x) = e T 0:xi(038,0)) dO (12)
Note in particular that
agii(s;t,:z:)>0 ifie{l,...,m},
%(s;t,x)<0 ifie{m+1,...,n}, (13)
a(.;;i(s,t,x) >0

1.2.2 The entry and exit times

For every i € {1,--- ,n}, t € R and x € [0,1], let si*(¢,x), s¢"*(t,2) € R be the entry and exit times
of the flow y;(-;¢, ) inside the domain [0, 1], i.e. the respective unique solutions to

Xi(si(te)it ) =1, xi(sfU(t, @)t @) =0, ifie{l,...,m}, (14
14

xi(si(t, x);t,z) =0, Xi (89U (¢, x);t, ) = 1, ifie{m+1,...,n}.

The existence and uniqueness of s¢"*(¢,z) and si"(t,z) are guaranteed by the assumption (3). Note
that we always have '
st ) <t < sPM(t ) (15)

and the cases of equalities are given by

sif(t,r) =t <= ax=1, s (tx) =t <<= =0, ifie{l,...,m}, 16)
16

si(tr)=t <= x=0, ()=t <<= x=1, ifie{m+1,...,n}.
It readily follows from and the uniqueness of si, s9U¢ that, for every s € [sii(t, z), sOU(¢, z)],

171

(s x(s:t,2) = s (t,a), 59 (s, (s ,2)) = 52 (1,2). (17)
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From and by the implicit function theorem, we have

sin 521 ¢ CH(R x [0, 1]). (18)

i 997

Moreover, integrating the ODE @ and using the assumption , we have the following bounds, valid
for every t € R and z € [0,1],

. 1 1
t—s"(tz) < =, sSU(tx)—t< -, (19)
5 5

On the other hand, differentiating and using with (3), we see that, for every ¢ € R and
x € [0,1], we have

Jsin dsgut

(¢ L (t
oy ()20 S5 (ta) >0
as® s

: g if 4 20
oo (t2) >0, Z—(ta) >0 ifie{l,...,m}, (20)
Jsin Osout

L L if 4 1,... .
o (t,z) <0, % (t,x) <0 ifie{m+1,...,n}

Finally, from the assumption and classical results on comparison for ODEs (see e.g. [Har02|
Corollary I11.4.2]), we have, for every t € R and z € [0, 1],

sta) <...<sit(te) ifax#l, s{U(ta) <...< s (t,x) ifx#£0,

s () <...<s(tz) ifx£0, s(x)<...<soM (tz) ifx#l

1.3 Main result and comments
We are now in position to state the main result of this paper:

Theorem 1.5. Let A, M and Q satisfy , , and . Then, there exists a state-feedback gain
function F € L>((0,+00) x (0,1))™*™ such that the system with feedback law (6) is finite-time
stable with settling time Tynir(A) defined by

Tunif(A) = tsou>% 5?;;_?_1 (Sg};t (to, 1) ,O) — tO. (22)

Moreover, if for some > 0, A, M and Q are T-periodic with respect to time (that is A(t + 7,x) =
A(t,z) for every t > 0 and = € [0,1], same for M and Q) then one can also impose to F to be
T-periodic with respect to time (almost everywhere).

Let us remark that, thanks to , and , we always have
2
0< Tunif(A) < g
Note as well, thanks to and the first line in , that we have

Tunit(A) = max max  sup O (50Ut (9, 1),0) —¢.
unit (A) je{m+1,...n} i€{l,... m} toz% 7 (’ ( ) )
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Example 1.6. Theorem applies for instance to the following coupled 2 x 2 system:

8y1 3y1

5 (1h2) = 5~ (t2) = mu(t )yt @) + mua(t, 2)ya(t @),
Y2 1\ Jye B
Do+ (1) oD = maon ) maanta.

a1 (tv 1) = u(t)a yQ(ta 0) = q(t)yl (ta 0)7

y(t°, ) = y°(x),

where M = (mi]‘)1<i7j<2 and Q = (¢) are any parameters with the regularity (5). Let us show how
to compute Tynie(A) for this example. First of all, it is clear that x;(s;t,z) = —s + ¢ + x, so that
s9ut (% 1) = 4+ 1. On the other hand, we have x2(s;t,7) = s+In(1+s) —t—In(1+¢) +z. Therefore,
h(t%) = s3ut(¢° 4+ 1,0) — ¢ solves W(h(t%),tY) = 0, where

U(h,t°) =h+In(l+h+1%) — 2 —In(2 +¢%).

Taking the derivative of the relation W(h(t°),°) = 0 and using the fact that » > 1 by (13]), we see that
R'(t°) > 0, so that h is non-decreasing. Since h < 2 by (19), the function h is thus a bounded non-
decreasing function and, consequently, limo_, o, h(t°) exists and is equal to sup;o~q h(t?) = Tynir(A).
Writing the relation W(h(t°),t%) = 0 as follows for t > 0 N

h(t0)+ln(tlo+h(t0) +1> —2—1n<2+1> =0,

10 10
and letting t° — +o0o we obtain the value T,ir(A) = 2.

Remark 1.7. Observe that the time T,n;r(A) does not depend on the parameters M and Q. It depends
only on A on [0, +00) x (0,1). Moreover, this is the best time one can obtain, uniformly with respect
to all the possible choices of M and @ (this explains our notation “Tyui¢(A)”). More precisely,

Tunit(A) = min E,

where E is the set of T" > 0 such that, for every M and @ with the regularity , there exists a
state-feedback gain function F' € L*((0,+00) x (0,1))™*™ so that the system with feedback law
@ is finite-time stable with settling time 7'. Indeed, Theorem establishes that Tinie(A) € E, so
that E # (. On the other hand, taking M = 0 and the constant matrix

01}1

Q= 0 0 }p—l
N——"
m—1 1

we can check from the very definition of broad solution (see Definition that, if T < Tunir(A),
then there exist t° > 0 and y° € L?(0,1)" such that the corresponding solution to satisfies
y(t® +T,-) # 0, whatever u € L (%% + T)™ is.

Of course, for particular choices of M and ) one may obtain a better settling time (a trivial
example being M = 0 and @ = 0). In the case of time-independent systems, the minimal time
in which one can achieve the stabilization and related controllability properties has been recently
discussed in [CN19] and [HO19| (see also the references therein).
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Remark 1.8. If the speeds do not depend on time, i.e. As(t,2) = A¢(x) for every ¢ > 0, then we have
a more explicit formula for the time Tynir(A), namely:

S | L |
T‘“‘“(A):/o o ®) d“/o A @ 29

The value is obtained by integrating over £ € [0,1] the differential equation satisfied by the
inverse functions £ — x,1(&;¢,1) and & — X;{H(f; t,0).

Remark 1.9. The assumption that the negative (resp. positive) speeds are uniformly bounded
from above (resp. below), despite not being necessary for the existence of a solution to (1)), is to be
expected for the system to be finite-time stable. This is an issue that is not specific to systems
and that already occurs for a single equation. Indeed, let us consider for instance the equation with
speed \(t) = —e~? (and t° = 0 to simplify):

Jy Oy _
at (t7 .']C) € 8.’1} (t7 .'.U) ]

y(tv 1) = u(t)a
y(0,2) = ().
Then, whatever y° € L?(0,1) and u € L>(0, 4+00) are, if 4 # 0 in a neighborhood of 1 we have

y(T,-) #0, VT >0.

This is easily seen thanks to the explicit representation of the solution (obtained by the characteristic
method):

YO (1— (et —x)) ifo<az<e™,

y(t,z) = 1
ulln| —m—— ifet<z<l.
l+et—x

Remark 1.10. Contrary to , the assumption is mainly technical. This assumption is needed
because we will have to divide in the sequel by the quantities A\; — X; (see in particular below)
and we will need this inverse function to be bounded. However, this condition is clearly not necessary
for some systems to be finite-time stable. Indeed, consider for instance the following 3 x 3 system:

0 0

G (1) = T (ta) = ya(t.),

Yo e t\ Oys B

E(tvx) - (1 - 2) E(tx) =0,

8 (,0) + 2 1,0) = 0, 2
Y1 (t7 1) = ul(t)v yQ(ta 1) = u2(t)a y3(t7 O) = yQ(ta 0)7

y(tovx) = yo(x)‘

Then, using the characteristic method it is not difficult to see that the system with w1 =us =0
is ﬁniteT—time stable with settling time 7'+ 1, where T is the unique positive solution to the equation
T+ =3,

Remark 1.11. The case m =n > 1 (no boundary conditions at x = 0) is easier and does not require
the techniques presented in this paper. Indeed, it can be checked using for instance the constructive
method of [LRO3|, [Wan06] that in this case the system (1)) with « = 0 is finite-time stable with settling
time equal to supjo~q soit(t%,1) — ¢°.
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2 System transformations

The goal of this section is to show that we can use several invertible transformations in order to
remove or transform some coupling terms in the initial system and to obtain in the end a system
for which we can directly establish that it is finite-time stable with settling time Tynif(A). The plan
of this section is as follows:

1) In Section [2.1) we use a diagonal transformation to remove the diagonal terms in M.

2) Next, in Section inspired by the seminal works [Col77, [Rus78, [BK02| for equations and
[CVKB13, [HDM15, HDMVKI16, HVDMK19] for hyperbolic systems, we use a Volterra trans-
formation of the second kind to transform the system obtained by the previous step into a new
system in the so-called “control normal form” and with an additional triangular structure for
the couplings.

3) Finally, in Section inspired by the work [CHO17] for time-independent systems, we use an
invertible Fredholm integral transformation to transform the system obtained by the previous
step into a new system with a very simple coupling structure that allows us to readily see that
it is finite-time stable with settling time Tynif(A).

In Section [2| only the properties of the transformations and new systems are discussed. The
existence of the transformations is the main technical point of this paper and will be proved in
Section |3| below for the sake of the presentation.

Finally, because of the nature of the transformations that we will use in the sequel, we are led to
consider a class of systems that is slightly more general than . All the systems of this paper will
have the following form:

%(t, x) + A(t, I)%(t,l’) = M(t,z)y(t,z) + G(t,x)y(t,0),
y_(t,1) = / F(E)y(t,€) de, g4 (,0) = Q(t)y—(,0), (26)

y(t°, ) = y°(x),
where M and @ will have at least the regularity (5)), F € L>((0,+00) x (0,1))™*" and
G € C°([0, +00) x [0,1])™*"™ N L>((0, +00) x (0,1))™*".

Therefore, is similar to (1)) but has the extra term with G. In what follows, we will also refer to
a system of the form as
(M7 G7 F7 Q) *

Hyperbolic equations similar to (0, G, F, Q) were called in “control normal form” in the pioneering
work |[Rus78| p. 212] for the similarity with the finite-dimensional setting (see also the earlier paper
[Bru70]).

2.1 Removal of the diagonal terms

In this section we just perform a simple preliminary transformation in order to remove the diagonal
terms in M. This is only a technical step, which is nevertheless necessary in view of the existence of
the transformation that we will use in the next section, see Remark [2.7] below. This step is sometimes
called “exponential pre-transformation” in the case of time-independent systems (see Remark
below). More precisely, the goal of this section is to establish the following result:

10
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1)
ij/1<ij<n

Proposition 2.1. There exists M' = (m € C[0,4+00) x [0,1])™>™ N L>((0,+00) x

(0,1))™*™ with diagonal terms equal to zero:
mp; =0, Vie{l,...,n}, (27)

and there ezists Q' € C([0,+00))P*™ N L>(0, +00)P*™ such that, for every F' € L*((0,+00) x
(0,1))™*" there exists F € L*°((0,400) x (0,1))™*"™ such that the following property holds for every
T>0:

(M*',0,F, Q") is finite-time stable with settling time T
= (M,0,F,Q) is finite-time stable with settling time T. (28)

2.1.1 Formal computations

To prove Proposition the idea is to show that, for every F', there exists F such that we can
transform a solution of (M, 0, F, Q) into a solution of (M*,0, F*,Q'). Let then y be the solution to
the system (M, 0, F, Q) with state-feedback gain function F' to be determined below and initial data
yY. Let @ : [0, +00) x [0,1] — R™ " be a smooth matrix-valued function and set

w(t,z) = ®(t, x)y(t, x). (29)

Let us now perform some formal computations in order to see what w can solve. Using the equation
satisfied by y, we have

ot Tt T

ow A ow o 0P dy
ot x oz’

-+ <I>M+Aa> y+ (—PA+ AD) =
On the other hand, using the boundary condition satisfied by y at x = 0, we have

W (t’ 0) - Ql (t)w* (tv 0)
= (D4 (1,0) + @14 (£,00Q(t) — Q' ()P _(t,0) — Q' ()P4 (,0)Q()) y—(¢,0).

Finally, at x = 1, we have
1 1
w— (ta 1)_/0 Fl (ta €)’lU(t, f) df = /(; ((I)**(t 1)F(t7 f) - Fl (ta E)é(t7 f)) y(t7 6) d£+¢'*+(t’ 1)y+(ta 1)

Thus, we see that w satisfies at # = 1 the boundary condition w_(¢,1) = fol FL(t,w(t, €) dE if
(I)__;,_(t, 1) =0 and
F(t,6) = @ (t, 1) F' (1, )2(t,), (30)

provided that ®__ (¢, 1) is also invertible. Moreover, note that F' belongs to L>((0, +00) x (0,1))™*"
provided that F'* belongs to this space as well and

ac>o, |e—_(, <C. (31)

]‘)_1HL°°(O,+oo)m><m —

In summary, w defined by is the solution of (M, 0, F', Q') with state-feedback gain function
F! (which is assumed to be known) and initial data w°(-) = ®(0,-)y°(-) if we have the following four
properties:

(i) A(t,z)®(t,z) = ®(¢, 2)A(t, z) for every t > 0 and z € [0, 1].
(ii) The matrices ®(t,z) and ®__(t,0) +P_(¢,0)Q(¢t) are invertible for every ¢t > 0 and z € [0, 1].
(iii) ®_4(¢t,1) =0 for every t > 0 (it then follows with that ®__(¢,1) is invertible).

11



289

290

201

292

300

301

303

304

306

307

309

310

312

(iv) M! and Q! are defined by

ox
QU(1) = (& (£,0) + B4 4 (1O)Q()) (B (1,0) + B4 (1,0)Q(1) .

M (t,z) = <%(f(t, z) + A(t, x)a—q)(t, z) + ®(t, x) M (t, x)) O(t,x) !, )

Finally, it is not difficult to check that the stability property is indeed satisfied since the
state-feedback gain function F is solely determined by the state-feedback gain function F' and, at
every fixed ¢ > 0, the transformation defines an injective (in fact, invertible) map of L?(0,1)".

2.1.2 Existence of the transformation

Let us now prove the existence of a function ® with the properties listed above and which in addition
ensures that the condition on M holds.

Proposition 2.2. There exists ® with ®, 22 4 Ag—f € %0, +o0) x [0,1])™*™ N L>((0, +00) x

(0,1))™*™ such that the properties ' and are satisfied and such that the matriz-
valued function M' defined in satisfies ([27).

Proof. Let ® be the diagonal matrix-valued function defined for every ¢t > 0 and « € [0,1] by

O(t, ) = diag(¢1(t, x), ..., Pu(t, 1)),

where, for every i € {1,...,n},

Stivu(t @) mii(o,xi(o3t,x)) do
n(e,

oi(t,z) =e , (33)
where m;; is extended to negative times by an arbitrary function that keeps the regularity . Clearly,
#i € CO(]0,+00) x [0,1]) and it follows from that ¢; € L>((0,+00) x (0,1)).

It is clear that the first property holds since A and ® are both diagonal matrices. Since
®_, =0, the third property is automatically satisfied. It also follows that, to check the second
property we only need to show that ®(¢, ) is invertible, which readily follows from the explicit
expression of ¢;. The estimate is obviously true since ®__(t,1) = Idgmxm (recall ) Finally,
M defined in satisfies since ¢; satisfies the following linear hyperbolic equation:

0¢; 0¢;
ot ox

(t,z) + \i(t,x)

(t, ) +myi(t, 2) ¢ (t, ) = 0.

O

Remark 2.3. There are obviously other possible choices for ¢;, for instance in the time-independent

xz my;(§)
case we can take the slightly simpler function ¢;(t,z) = e Jo X % (which coincides with only
forie {m+1,...,n}).

2.2 Volterra transformation

In this section we perform a second transformation to remove some coupling terms of the system.
The system will then have a triangular coupling structure, which is the key point to show later on
(Section below) that this system is finite-time stable with settling time Tynir(A). More precisely,
the goal of this section is to establish the following result:

12
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Proposition 2.4. There ezists a strictly lower triangular matriz G* _ = (gfj)Ki i<m € Co([0, +o00) x
[0, 1])™™ A L22((0, 400) x (0,1))™*™: -
g5, =0, V1<i<j<m, (34)

and there ezists G2_ € C°([0,+00) x [0,1])P*™ N L>((0,+0c) x (0,1))P*™ such that, for every
F? € L>=((0,400) x (0,1))™*" there exists F* € L>((0,+00) x (0,1))™*" such that the following
property holds for every T > 0:

(0,G% F?,Q") is finite-time stable with settling time T
— (M',0,F', Q") is finite-time stable with settling time T, (35)

where
G 0
G? — ) (36)
G2 0

Remark 2.5. Thanks to the triangular structure and of G?, we can check from the very
definition of broad solution (see Definition that the system provided by Proposition with
state-feedback gain function equal to zero, i.e. (0,G?,0,Q'), is finite-time stable with settling time
T(0,G2%,0,Q") defined by

T(0,G*,0,Q") = sup souty (T (t°),0) — ¢°,

t0>0

where

Ty () = s9t(19, 1),
T,(t%) = soU (T3, (£0),1), Vi€ {2,...,m}.

We do not detail this point here because it is not needed, and we refer to the arguments used in the
proof of Proposition below for an idea of the proof of this assertion. As a result, the combination
of Proposition 2.4 with Proposition [2.1] already shows that our initial system (M, 0, F, Q) is finite-time
stable for some F, with settling time 7'(0,G?,0,Q'). However, this time 7(0,G?,0,Q!) is always
strictly larger than the time Ty, (A) given in Theorem (as long as m > 1). In the case of time-
independent systems, the time 7'(0, G2,0, Q") is the time obtained in [HDMVEKI6, HVDMKI19] and
it has the more explicit expression

m 1 1 1 1
, B 1 L
T(0,G*,0,Q") = ;/0 —Xi(9) dg +/0 Am+1(8) *

2.2.1 Formal computations

Let us now show how to establish Proposition As before, the goal is to show that, for every
F?, there exists F' such that we can transform a solution of (M?!,0,F!, Q') into a solution of
(0,G%, F%,Q'). Let then w be the solution to the system (M0, F*, Q') with state-feedback gain
function F'' to be determined below and initial data w®. Inspired by the works mentioned at the
beginning of Section [2] we use a Volterra transformation of the second kind as follows:

At,x) = wlt,z) — / " Kt Ot €) d, (37)

13



326

where we suppose for the moment that the kernel K is smooth on 7, where 7T is the infinite triangular
prism defined by
T ={(z¢&) € (0,+00) x (0,1) x (0,1), E<ua}.

Let us now perform some formal computations to see what v can solve. We have

Oy

o B
Bt( x) + A(t, a:)a—x(t,x) =

w ow
E(t x) + A(t, x)%(t x)

,/0 %I:(tzg) (t,€)dé — /Ktosf) (t,€)d¢

- Al K (b a)ulte) - ) [ G (e ds.
Using the equation satisfied by w, we obtain

oy 0
E(t’ z) + A(t, ) =—(t,

Oz
o gu0d - [ Ko (-a0.0 5

t,x) = M (t,z)w(t, )

L6+ M (t,@w(m) e

A @)K (@, w)w(t ) — Al 2) /0 ’ %—I;(t, 2, w(t, €) de.

Integrating by parts the third term of the right hand side and using the boundary condition w (¢,0) =
Q' (t)w_(t,0), we finally obtain

oy oy (" 0K 0K
e >+A<m>ax<tx>—/0< O (60,9 — S (10, OA1.) ~ K(t,. 53 1.0

- K(t,:};‘7f)M1 (t7§) - A(ﬁ, x)%(ﬁ, x7€)>w(t7§) df

Idgpmxm
b (MMt 2) + K (12, 2)A(t 2) — At 2)K (t 2, 2)) wit,z) — K(t, 2, 00AE0) | w_(t,0).

Q'(t)
On the other hand, since 7(¢,0) = w(t,0), v satisfies the same boundary condition as w at = 0:
7+(t7 O) - Ql(t)’yf (t,0) = w4 (2, O) - Ql(t)w* (t7 0) =0.

Finally, at x = 1, we have

1
(1) - / F2(t, €)(t,€) de =

0

/ (Fl(t,o CK_(1.1,6) — FA(t.6) + / F2(t, K (1.C.€) dc) w(t,€) de.
0 3

where K_ denotes the m x n sub-matrix of K formed by its first m rows. Thus, we see that -y satisfies

at = 1 the boundary condition v_(¢,1) = fol F2(t,&)7(t, &) d€ if we take
1
FUE = K- (1,6 + F(,9) — [ PO, 9 (39)

14



Note that F'! belongs to L>°((0, +00) x (0,1))™*" provided that F? belongs to this space as well and
K e L (T)™ ™.

330 ~In summary, v defined by is the solution to (0, G%, F2, Q') with initial data v°(z) = w°(x) —
331 fol K(t° 2, &)wO(€) d¢ if we have the following two properties:

332 (i) For every (t,z,&) € T,

0 0 0
T 60O + A DG () + G (s DA

+K(t,2,¢) @2(@5) +M1<t,£)) =0,
K(t,z,x)A(t,z) — A(t,z)K(t,z,z) = =M (t,z).
333 (39)
(ii) G? is defined by

G2 0
GP=|
GZ_ 0

334 with

G%i(t, SL’) = —K,,(t, €, O)A**(ta 0) - K*Jr(ta €, O)A++(tv O)Ql(t)v

(40)
G _(t,x) = —Ki(t,,0)A__(t,0) — Ky (t,2,0)A4+(,0)Q"(¢).

336 Finally, the stability property is clearly satisfied since, at every fixed ¢t > 0, the Volterra
337 transformation defines an injective map of L?(0,1)" (see e.g. [Hoc73, Theorem 2.6]).

38 2.2.2 The kernel equations

13s  We can prove that there exists K € CO(T)"*™ N L*°(T)™*" that satisfies the so-called “kernel equa-
o tiong” in the sense of broad solutions. However, it is in general not enough to deduce sta-
sa1 bility results for the initial system (M, 0, F, @) since the investigation of the stability properties of
sz the system (0,G?, F2 Q') is not an easier task without knowing any more information about it.
sa3 The breakthrough idea of the conference paper [HDM15] in the time-independent case (see also
s« [HDMVKI16, HVDMK19]) was to construct a solution K to the kernel equations which, in addition,
sas  yields a simpler structure for the matrix G2 _ defined in . This is the key point to prove stability
sae  Tesults for the system (0, G?, F2, Q') (see Remark and Section below). Such a construction
37 is possible by adding some conditions for K__ at (¢,z,0) (see ) but the price to pay is that it
s introduces discontinuities for K__, so that K will not be globally C° anymore but only piecewise C°
sa9  in general. We will prove the following result:

3

B

ss0  Theorem 2.6. There exists a n X n matriz-valued function K = (k;;) such that:

1<i,j<n
351 (Z) K e LOO(T)nxn

ss2 (i) For everyi,j € {1,...,n} with j & {i +1,...,m}, we have k;; € C°(T).

(i1i) For everyi,j € {1,...,m} with i < j, we have k;; € Co(ﬁ) N Co(ﬁ), where (see Fz'gure

T =tz €T, &<yt )},

7;;:{(157‘@,5) ETv £>wij(t7x)}v

15
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where ;; € CL([0,4+00) x [0,1]) satisfies the following semi-linear hyperbolic equation for every
t>0 andz€l0,1]:

i oy _
6tj (t,l’) +)\1(t,33) 8.’13'J (t,l‘) - /\j(t7w2j(t7x)) - Oa (41)
'I/Jij (t, 0) - 0

(iv) K is a broad solution of in T (the exact meaning of this statement will be detailed during
the proof of the theorem, in Section below).

(v) For everyt >0 and x € [0, 1], the matriz G%_(t,z) defined in is strictly lower triangular,
i.e. it satisfies (it then follows fmmm that G2 _ € C°([0, +00) x [0, 1])™>™).

The proof of Theorem is one of the main technical difficulties of this article and it is postponed
to Section below for the sake of the presentation. We conclude this section with some important
remarks.

Remark 2.7. Let us rewrite the second condition of component-wise:
Nt z) — Nt 2)) ki (t, x, @) = —mzlj (t, ). (42)

Therefore, we see that for i = j we shall necessarily have m}, = 0 and it explains why we had to
perform a preliminary transformation in Section to remove these terms (otherwise the equation
, and thus the kernel equations , have no solution).

Remark 2.8. It is in general not possible to solve with G2 _ =0, unless m = 1.

Remark 2.9. Observe that, with the regularity stated in Theorem we have in particular that, for
every w € CO([t%, +o00); L2(0,1)?), t* > 0,

(t,x) — /Om K(t,z,&)w(t, &) dé € CO([t°, +o00) x [0,1])".

This follows from Lebesgue’s dominated convergence theorem. This shows that v defined by has
the good regularity to be a broad solution (see Definition |A.1)), if so has w.

Remark 2.10. Observe that the condition shows that the kernel has possible discontinuities on
& =1;;(t,z) for i < j < m. Besides, these discontinuities also depend on the component of the kernel
that we consider. The appearance of such discontinuities is explained by the requirement of the last
condition because we somehow force two boundary conditions at the points (¢,0,0), one by the
condition already required in (which concerns i # j, see Remark and another one by
(which only concerns i < j < m). This results in discontinuities along the characteristics passing
through these points. Note that this also complicates the justification of formal computations that we
performed above since regularity problems will occur during the computation of the following term
(when i < j <'m):

g (/ ki (t, @, )w; (t, £)d£> + it x) (/ kij (t, z, €)w;(t, §)d§>

. s T i (t,x) T . . .
More precisely, writing fo = fo ’ +f'¢’z‘j(tﬂ?) and using integration by parts, we see that the
following jump terms notably appear:

<ag};j (t, @) = Aj(t, (£, ) + At ) g}” (t, z))
x (ki (8, i (1)) — ki (8, 2, g (1, ) wj (8, 03 (8, 7)),
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where k;; (resp. k;) denotes the trace of the restriction of k;; to 07;; (resp 8’7;;) This is why it is
crucial to precise that v;; solves the first equation in so that such undesired terms vanish in the
end. In the case of time-independent systems, we have in fact

Pij(t,x) = o5t (di(2))

where we introduced ¢¢(z) = [ #(E) d¢ for ¢ € {1,...,m} (v;; is well defined because ¢ < j). This
is the same function as in [HVDMKI9, (A.1)].

3
§ = pi;(t, x)

Figure 1: 2D cross-section of the domain 7 at a fixed ¢

2.3 Fredholm integral transformation

We recall that at the moment we already know that the system (0, G2, F2, Q') of Proposition is
finite-time stable if we take F'2 = 0, but only with a settling time which is strictly larger than Ty, (A)
(unless m = 1), see Remark[2.5] In this section, we perform a third and last transformation to remove
the coupling term G2 _ in the system (0,G?, F?, Q') and we show that the resulting system has the

desired stability properties. More precisely, the goal of this section is to establish the two following
results:

Proposition 2.11. There exists F? € L*((0,+00) x (0,1))™*" such that the following property
holds for every T > 0:

(0,G3,0,Q") is finite-time stable with settling time T
—  (0,G? F?,Q") is finite-time stable with settling time T, (43)

where

0 0
G? = . (44)

2 o

Proposition 2.12. The system (0, G3,0,Q") is finite-time stable with settling time Tynir(A) defined

by .

Note that the proof of our main result — Theorem ﬂ* will then be complete (recall Propositions
and , except for the 7-periodicity statement which will be studied later on in Section
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s 2.3.1 Finite-time stability of the system (0,G3,0,Q")

sss  In this section we prove Proposition in four steps.

390 1) Let tY > 0 be fixed. From the very definition of broad solution (see Definition [A.1) and
301 the simple structure of G2, we see that the first m components of the system vanish at time
302 0 + Tyunit (A) if (recall that the feedback is equal to zero)

303 Sin(to + Tunif(A), l‘) > to, Vr € [0, 1], Vi € {1, e ,m} s (45)
304 and the remaining p components of the system vanish at time t° + Typnie(A) if

s + Tyt (A),2) > %, Vo e[0,1], Vie{m+1,...,n}

s (s(t0 + Tunie (M), 2),0) > 1°, Ve e[0,1), VYje{l,....m}, Vie{m+1,. .. ,n}.
395 (46)

396 2) First of all, observe that, from (20), and we have the following inverse formula for
307 every t,t € R:

si(t,0) > < t> s, 1), ifie{l,...,m},
398 (47)

st 1) >t = t>sP(£,0), ifie{m+1,...,n}.
3) Let us establish (45). Let then i € {1,...,m} be fixed. We have:

st + Tyunit(A),2) > 10, Vo €[0,1] <= s(t° + Tumt(A),0) > %, (by (20)),
= 0+ Tmie(A) > s (£°,1),  (by (@7)),

and this last statement holds true since, by definition of Tyyi¢(A) and (15)-(16), we have, for an
arbitrary j € {m+1,...,n},
0 4 Tomie(A) > 90 (s (10, 1),0) > 59420, 1).

T

4) Let us now establish . We focus on the second inequality since the first one is obtained
similarly to (45). Let then i € {m +1,...,n} and j € {1,...,m} be fixed. We have:

Sijn (s (t° + Tunie(A), 2),0) > %, Va €[0,1)
= sP(t" + Tonir(A), ) > s‘;“t (to, 1) , Vxel0,1), (by ),
= s+ Tumie(A), 1) > 9™ (1°,1),  (by (20)),
= 04 Tunie(A) > s (5?“t (to7 1) ,0) ,  (by ),

300 and this last statement holds true by definition of Typnir(A).
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a1 2.3.2 Proof of Proposition [2.11

a2  We start the proof with some computations. We will show that we can transform a solution of
a3 (0,G3,0,Q") into a solution of (0, G2, F2, Q') (note the difference in the order of the transformation
202 with respect to the previous sections and see Remark - 5| below for the reason). Let then z be the
aos  solution to the system (0,G?,0, Q') with initial data z°. Inspired by the work [CHOI7] mentioned
a6 before (for time-independent systems), we propose to use a Fredholm integral transformation as
a7 follows:

408 y(t,x) = z(t, z) — /0 H(t,xz,&)z(t, &) dE, (48)

where we suppose for the moment that the kernel H is smooth on R, where R is the infinite rectangular

prism defined by
R = (0,+00) x (0,1) x (0,1).

Let us now perform some formal computations and see what - can solve. We have

o oy Oz 0z
E(t,m) + A(t, x)%(t x) = E(t x) + A(t, x)%(t,x)
1
[ B0 [ men oL a0 [ 20,0020, dc

Using the equation satisfied by z, we obtain

YoH

oy ol
g Ot

oy B
5t (t,x) = G3(t,x)2(t,0) —

0 . €)(t,€) d

(t,x) + A(t,z) —
- [ e (409509 + 0.0:0.0) de - Atn) [ D t.ag)ete.00ac.

209 Integrating by parts the third term of the right hand side, we obtain

1
D (1) + M) L x>/< S (€8 = S n A0 - H(2, 5 (1.0

A I (1 s>>z<t,5> it
+ H(t,z, 1)A(t, 1)2(¢,1) + (G3(t, x) — H(t,z,0)A(t,0) — /1 H(t,z,8)G3(t,€) dg) 2(t,0).
0

Using the formula with 2 = 0 we finally obtain

) o) ! OH OH A
8—Z(t,m)+A(t,m)a—Z(t7x) :/0 ( e (0:8) = 5 (b m AL — (1,2, 52 (1:6)

— A(t, x)%H (t, 2, &) + <G3(t,x) — H(t,x,0)A(t,0) —/O H(t,z,0)G3(t,¢) d() H(t7075)> 2(t, &) d¢
+ H(t,z,1)A(t,1)2(t, 1) + (G3(t, x) — H(t,z,0)A(t,0) — /1 H(t,z,&)G3(t,€) d§> ¥(t,0).
0

a0 Since
411 Z_ (t, 1) = 0, (49)
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the boundary term H (¢, z,1)A(t,1)z(t,1) vanishes if we require that H satisfies
H_(t,x,1) = Hyy(t,x,1) = 0.
On the other hand, v and z satisfy the same boundary condition at x = 0 provided that
H(t,0,&) =0.
Finally, at = 1, we have (recall .

(t,1) /F2t§ (t,€) dé = /( L(1,6) — F2(1,6) + /F2t< (tcodc) o(t,€) de,

where H_ denotes again the m x n sub-matrix of H formed by its first m rows. Thus, we see that
~ satisfies at * = 1 the boundary condition v_(¢,1) = fol F2(t,6)7(t, &) d€ if F?(t,-) satisfies the
following Fredholm integral equation (at ¢ fixed):

F2(1,6) - / F2(6, O H(t,C.€)dC = —H_(1,1,6). (50)

In summary, fy defined by ([48) is the solution of (0, G?, F? Q ) with state-feedback gain function
F? satisfying (50) (whenever it ex1sts) and initial data ~°(z) fo H(t, x,6)2°(¢) d¢ if we
have the following two properties:

(i) For every (t,x,8) € R,

O AN + G INO F OO GO =0
H_+(t,$, 1) = H++(t,l’7 1) = H(tﬂ 075) =0.
(ii) G? satisfies the Fredholm integral equation
1
G*(t,@) - / H(t,w, §)G*(t,§) d€ = G*(t,w) + H(t, 7, 0)A(t, 0). (52)
0

Finally, the stability property is clearly satisfied if, for every ¢ > 0, the Fredholm transformation
defines a surjective map of L2(0,1)".

It remains to prove the existence of F? and H satisfying the above properties and so that the
Fredholm transformation is invertible (let us recall that, unlike Volterra transformations of the
second kind, Fredholm transformations are not always invertible). Note that H = 0 is a solution of
(51). Taking into account the very particular structure of G?, this motivates our attempt to
look for a kernel H with the following simple structure:

H=— . (53)

This structure implies that the Fredholm equation is equivalent to

G® _(t,x)— /1H__ t,x, )G _(t,6)dé =G> _(t,z) + H__(t,z,0)A__(t,0),
G? ,(t,z) / H__(t,2,6)G? ,(t,£)dé =0,

GL_(t,2) =G _(t,2),

G3, (t,x) = 0.
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These equations are easily solved by taking G2 _ = G?LJF =0 (so that G? is indeed given by ) if
we impose the following condition for H__ at (¢,x,0):

H__(t,z,0) = —G*_(t,x)A__(t,0)"".

We point out that this last condition may introduce discontinuities in the kernel, because of possible
compatibility conditions at (¢,0,0) with the previous requirement that H__(¢,0,¢) = 0.

Finally, since G? _ is in fact strictly lower triangular , we also look for H__ with the same
structure. Note that this structure in particular ensures that the Fredholm transformation is
invertible and that the Fredholm equation always has a unique solution F? € L>((0,+00) x
(0,1))™*™ provided that H__ € L>(R)™*"™ (see for instance [CHO17, Appendix] for more details).
This property was a priori not guaranteed without additional information (we emphasize again that
Fredholm transformations are not always invertible).

The final step is to prove the existence of H__ that satisfies all the properties mentioned above.
This is the goal of the following theorem, the proof of which is given in Section below.

Theorem 2.13. There exists a m x m matriz-valued function H__ = (hij)lgi,jgm such that:
(i) H-_ € L>®(R)™*™.
(ii) For i < j, we have h;j; =0 (i.e. H__ is strictly lower triangular).
(tii) For i > j, we have h;j € C’O(’Riifj) N CO(@), where
R = (s R, €< pylt.o)},
RE=A{(t,z,8) €R, &> ty(t,x)},
where ;; € C1([0,+00) x [0,1]) satisfies the semi-linear hyperbolic equation .

(iv) H__ is the unique broad solution in R of the system

%(m’g) +A__(t, x)%(t,x,g) + 6};&7 (1,2, E)A__ (L, €)

HH (10,0 5= (0.6 =0
H__(t,0,§) =0,
H__(t,z,0) =G> _(t,z)A__(t,0)"",

(54)
(once again, the exact meaning of this statement will be detailed during the proof of the theorem,

in Section below).

This concludes the proof of Proposition [2.11
O

Remark 2.14. Observe once again that the kernel is discontinuous. This introduces some additional
boundary terms along these discontinuities in the formal computations performed above but, as
mentioned before in Remark these terms cancel each other out thanks to the equation satisfied
by t;; in (41). As in the time-independent case ([CHO17, Section 3]), the system is easy to solve
and its solution is even explicit (see (60)-(58) below).
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Remark 2.15. If we prefer to use the inverse transformation

2(t,2) = 7(t,z) / L(t, 2, €)1, €) dE, (55)

where L has the same structure as H (i.e. only L__ is not zero), then the corresponding kernel
equations are

OL__ OL__ OL__
T(tﬁmf) + A**(t7x)aT(t7x>§) + Tg(tvimg)A**(t?g)
(. P (06— L (b DA (B DL (61,€) =0
L (t,0,6) =0,
1
L__(t,2,0) = <G2(t,m)—/ L(t,x,&)G2(t,§)d£> A__(t,0)7%
0

We see that these equations are slightly more complicated than since there is a nonlinear
and nonlocal term. This explains why we had a preference for the transformation over but
there is no obstruction to work with (55).

3 Existence of a solution to the kernel equations

In this section we prove Theorem and Theorem [2.13] which are the two key results for the present
article, and we describe in Section how to obtain a time-periodic feedback. We propose to start
with the proof of Theorem because it is far more simpler (in particular, no fixed-point argument
is needed).

3.1 Kernel for the Fredholm transformation

In this section we prove Theorem that is we prove the existence of a suitably smooth matrix-
valued function H__ = (h;;)i<i j<m which is strictly lower triangular and satisfies (in some
sense).

Writing component-wise, this gives

8tj (tvxvg) + )\Z(tﬂ .’E) 8.13J (tvxag) + )‘j(tvg) 6£J (t7$,f) + Tg(tag)hzj(tvxag) = 07
hij (ta 055) = 03 (56)
_ gz‘z'(tVT)
hij(t,l',()) = — )\j(t, 0) .

Since we see that the equations are uncoupled, we can fix the indices 4, j for the remainder of Section

B.1
i,j€{1,...,m} are fixed.

3.1.1 The characteristics of ([56))

For each (t,z,£) € R? fixed, we introduce the characteristic curve x;;(:;¢,z) associated with the
hyperbolic equation passing through the point (¢, z,£), i.e.

Xij(s;tvxaf) = (SaXi(S;tvx%Xj(s;tag))a Vs € Ra
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where we recall that x; and x; are defined in @D For every (t,z,£) € R, we have
Xij(sit,,6) € R, Vs € (sjj(t,2,€), 85 (t, 2, €)),
where we introduced

sip(t,2,€) = max {0, s (t,2), 57" (,€)} >0, s3i*(t,2,€) = min {sP"(t, 2), 5" (£,€) } -

Since the speeds A;, \; are negative (i, j < m), when s is increasing, s — x;(s;t,2), s — x;(s;t, &)
are decreasing. Therefore, the associated characteristic x;;(-;¢, z, &) will exit the domain R through
the planes = 0 or £ = 0. This is why we can impose boundary conditions at (¢,0,¢) and (¢, z,0)
(see (56) and this is why it is enough to (uniquely) determine a solution on R. To be more precise,
we can split R into three disjoint subsets:

PR
R =R} UR;, UDy,
where
R: = {(t,x,f) ER, sM(t,x) < s?‘“(t,f)} ,
Ry ={(t,z&eR, s"(xz)> s?“t(t,f)} ,
Dij = {(ta z,§) € R, S?Ut(tw’E) = S?ut(t7£)} :

With these notations, the characteristic x;;(-;t, , ) will either exit the domain R through the plane
x=0if (¢,2,6) € RZ or through the plane £ = 0 if (,2,£) € R;;:

Proposition 3.1.
(i) For every (t,x,&) € R

ij» we have x;;(s;t,x,§) € R; for every s € (t,s"(t,x)).

(ii) For every (t,z,€) € R;.

10 we have xij(s;t,2,&) € R;; for every s € (t,53"(t,€)).
(ii) For every (t,z,§) € Dyj, we have xij(s;t,2,€) € Dij for every s € (t, 58" (t,x)) = (t, 85" (t,€)).

These three points directly follow from .

3.1.2 Existence and regularity of a solution to
Writing the solution of along the characteristic curve x;;(s;t,z,§) for s € [si’;(t, x,€), 828t x, £)]

Ll ij
and using the boundary conditions, we obtain the following ODE:
O\;j

d
%hij (Xij(s; ta X, 5)) = 7875(53 X](Sv ta 5))}7’1] (le (5; t, x, 5))7 (57)

h’ij (Xij (s?]"lt (t7 €T, 5)7 l,x, g)) = bij (t7 €L, g)a

where

0 if (t,2,8) € R;i-j’
bij (t7x7£) = g?(s‘?ut(t,g)’ Xi(SQut (t,f); t,%)) ’ (58)
_JYy\Ty )\j(sgut(t7j§),o) if (t,x’g) c Rzg

Integrating this ODE over [t, s (¢, z, )] yields the integral equation

sf;t(t7:v,5)
hij(t,l',f) = bij(taxag) +Z 875(8,Xj(s;t,g))hij(Xij(s;tvxa'g)) ds. (59)
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In this case, this integral equation is very easily solved by taking (as it is in fact directly seen from
the ODE (57)):

hi(t,2,€) = by (6, )l T B ot ds (60)
Clearly, h;; = 0 for ¢ < j (i.e. H__ is indeed strictly lower triangular) since gfj = 0 for such indices
(see (34)). Obviously, h,; € C’O(R;) N LOO(R;;) On the other hand, thanks in particular to the

regularities (11)), (18), the bounds and the assumption g—ﬁ € L*>®((0,400) x (0,1))™*™, we can
check that L

hi]‘ S CO(R;) n LOO(R;J)
3.1.3 Characterization of Rf; and D;;

Let us now show that

R;j = {(t7l‘,§) € R7 5 < %‘j(t,m)},
(61)

where v;; € C*([0,+00) x [0,1]) satisfies the semi-linear hyperbolic equation (41)). First of all, it
follows from and the implicit function theorem that there exists a function ¢;; € C*([0, +00) x
[0,1]), 0 < ¢;; < 1, such that

s (t, ) = s (8, €) = € =i (t, x). (62)
This shows that
On the other hand, thanks to and we have
&>yt ) — s‘;“t(t,f) > s?ut(t,ipij(t,x)) = 59" (¢, x).

This shows the equality for R};. The equality for R;; can be proved similarly.
It remains to show that v;; satisfies the semi-linear hyperbolic equation (41)). This in fact follows
from and of Proposition Indeed, thanks to these results, we have

Xj (57 ta %g (t7 l‘)) = ,(/)’Lj (8, X1(57 t7 LIJ)), Vs € (ta S?Ut (ta ‘T)) = (ta S?Ut(t7 ’L/)ij(tv JJ)))
Taking the derivative of this identity at s = ¢+, we immediately obtain the equation in . On
the other hand, letting s — s?"*(¢,2)~ = s7"*(¢,%4;(t,2))” and then letting 2 — 0%, we obtain the
second condition v;;(t,0) = 0.
3.2 Kernel for the Volterra transformation

In this section we prove Theorem [2.6] that is we prove the existence of a suitably smooth matrix-
valued function K = (kij)lgi,jgn such that

0K 0K 0K o
E(Lwag) + A(ta ‘T)%(t,%,g) + 875(@ sz)A(ta 5) + K(t,l’,f)M (ta g) - Oa (64)

K(t,z,z)A(t,x) — A(t,z)K(t,z,z) = —M"(t, ),

where we introduced the notation

M (t.6) = %(t, €) + M(t,6). (65)

24



Note in particular that M! € L>((0,400) x (0,1))™*™ thanks to the assumption (5)). Besides,
noticing , we also want the matrix

—K__(t,z,0)A__(t,0) — K_ (t,z,0)A 1, (t,0)Q*(t) to be strictly lower triangular.  (66)

3.2.1 Preliminaries

Let us rewrite by block. It is equivalent to the following four sub-systems:

OK__ OK__

OK__
= (.8 + A (b)) = (b, §) + = (L a, A (18)

o€
FE__(tx, &)ML_(t,6) + K_4 (t,2, €)M _(1,6) = 0,

K__(t,os,x)A__(t,x) - A__(t,x)K__(t,x,x) = 7Mi—(tﬂ1")7

OK_, OK_, OK_,

SRt @, &) ML (1,6) + K_y (t,2, &) ML, (t,€) =0,

(t7 €T, §)A++ (tv 5)

K_ i (t,z,o)Aps(t,2) — A__(t,x)K_4 (t,z,2) = =M1 (t,2),

0K, _ 0K _ 0K _
a: (taxaf)+A++(t7$)T;(t?x7€)+ 82_ (t’xag)A——(t7§)

FE (2, ©)ML_(,€) + Ky (t, 2, §)ML_(£,€) =0,

K-‘r—(tvxax)A——(tv .TZ‘) - A++(ta I)K.;__(t,l‘,l') = —Mi_(t,l'),

0K+ 0K, 4

8K++
ot (t,x,€)+A++(t7£L’) or (tvxvf)—'—

¢
VR (ta, ©) MY (8,€) + Ky (t, 2, ) ML, (£,€) = 0,

(ta €, f)A++(t, f)

K++(t,m,x)A++(t, LC) - A++(ta x)K++(t,x, (E) = —M}r+(t7l'),

Remark 3.2. We see that K__ is coupled only with K_ and that K, _ is coupled only with K.
Moreover, the systems satisfied by (K__,K_.) and by (K,_,K ) are similar. Therefore, from
now on we only focus on the system satisfied by (K__, K_) (note that the extra condition only
concerns this system). In addition, because of the nature of the coupling terms inside the domain
(namely, matrix multiplication by the right), we see that the entries from different rows are not
coupled. Therefore, for the rest of Section [3.2] we assume that

ie{l,...,m} is fixed.

Let us now rewrite the equations for K__ and K_; component-wise. For convenience, we intro-
duce .
—my;(t, x)

Aj(t, ) — Nilt, x) (719 (67)

Note that r;; € C°([0, +00) x [0,1]). Moreover, r;; € L>((0,+00) x (0,1)) thanks to (4).
We have:

Tij(t7$) =
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1) If j # 4, then

i 0 A G+ (6. 05,9+ D elt O 1,6) =,
kij (t, Z, I‘) = Tij (t, l‘)
(68)
2) If j = i, then
o (1€)Xl @) 2 (4,6 + Milt, 6° ag +Zim (t, 2, )mg;(t,€) = 0. (69)

The geometric situation of the characteristics is more complicated than in Section[3.1} it is detailed
in Section [3.2:2|below. For the moment, let us just point out that we will have to consider parameters
s < t (compare with Section [3.1)) and, consequently, we should also add an artificial boundary
condition at ¢ = 0 (the value of k;; at a point (¢,z,£) € T for sufficiently small ¢ can not be obtained

from its values on the planes £ = z or z = 1). To avoid imposing such a condition we can equivalently
study (68)-(69) on the domain extended in time

P={(t,z,) € Rx (0,1) x (0,1), €& <a}.

Therefore, we need the values of ﬁ%}j and r;; for negative t. We also need the values of ¢; . for negative
t since we want to consider the property . To this end we extend M to R x [0,1] (recall that its
diagonal elements were already extended in the proof of Proposition and we extend @) to R in
such a way that the property is preserved. This extends mL,] and ri; to R x [0,1] and qzj to R

through the formula (65| , . and ., . with

mg;,ri; € CO(R % [0,1]) NL®(R x (0,1)),  q;; € CO(R) N L>(R).

3.2.2 The characteristics of -

For each (¢,z,&) € R? fixed, we still denote by x;;(-;¢,,&) the characteristic curve associated with
the hyperbolic system (68)-(69) passing through the point (¢, z,), i.e.
Xij(s;t7x7£) = (SaXi(3§t7x)7Xj(5§t7§))7 Vs eR.
We now need to find for which parameters s the characteristic x;;(s;t,x,&) stays in the domain

P when (t,2,€) € P. To this end, we introduce the following sets for j € {1,...,m}:
Pt ={(t,a,8) €P, sP(t,x) <sP(t€)},

1] J
m’ ={(t,z,§) € P, sin(t,x) > 51]“(15 o},
D;;?: {t,z,&) e P, s (t,x)=s"(t, 9},

and

Pt = {(tw. ) €P, SPM(tw) < 516}

ij
P = {(ta,€) € P, s9(t,x) > s (t,6)}
Dout {(t x,8) €P, s?ut(t’m) = S(?ut(t)g)}.

As in Section [3.1.3| we can show that P NT = 7,1 and P{i'" " NT =T;; (we recall that 7;] and
T,; are deﬁned in the statement of Theorem )

The following proposition gives precise in ormation about the exit of the characteristics from the
domain P (the proof is postponed to Appendixfor the sake of the presentation; we refer to Figures
and |5 for a clarification of the geometric situation at a fixed t):
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s20 Proposition 3.3.

(i) For every j € {1,. — 1}, there exists a unique Sm € COP) with (t,z,£) —t — sin(t x, &) €
L*>(P) such that, foreveryt ERand0<E&<z <1, wehaves Bt &) <t (and s (t,x,€) =t
otherwise) with

Xij(sit,x,§) € P, Vs € (sii(t,2,€),t),

and

X5 (st 2, )5 4,€) = xa(sin(t, 2, &) t,2) if (ta,€) € PLT,
X’L<Slzrjl(t?x7§)7tvx) =1 lf (t,l‘,f) € ’PZ-I’_.

(i) For j =i, there exists a unique st € CO(P) with (t,x,&) — set(t,z,£) —t € L>®(P) such that,
for everyt € R and 0 < £ < z < 1, we have s (¢t,x,£) > t (and sout(t,x,g) =t otherwise)
and, if in addition £ < x, then we have

xii(s;t,x, ) € P, Vs¢€ ( (e §))

and

Xi(s5 (8, 2, €)5¢,€) = 0.

(iii) For every j € {i+1,...,m}, there exists a unique s3}* € C°(P) with (t,x,£) — s (t,2,&) —
t € L®(P) such that for everyt € R and 0 < & < z < 1, we have sout(t x f) >t (and
s (t, @, &) =t otherwise) with

Xij(s;tvxag) € Pa Vs € ( OUt(t>x7£>) )

) ZJ

and
X5 (870t , €)1, €) = xa (s (t, 4, &)ty ) if (t,@,6) € 7’0ut+,
X5 (55 (. €):4,€) = 0 if (t.,€) € P
(iv) For every j € {m+1,...,n}, there exists a unique s}"* € C°(P) with (t,x,£) — sy (t,2,€) —
t € L>®(P) such that, for every t € R and 0 < & < r < 1, we have s3j*(t,x f) >t (and
s (t, @, &) =t otherwise) with

Xij(:ﬂt,fﬁ,&) € P? Vs € (t OUt(t T 5))

and
t t
X5 (85" (2, €)58,§) = xalsy)” (8 @, )3 b, ).
3 3
/
5= s”,?/ (s = 9‘,';
X
© / ! - $ s=t —
530 < X X o=t < et
s=1t s=1t
Pé;'* Pm -
0 5,: 1 x 0 5= sont —0 1 x
Figure 2: Definition of s;r; Figure 3: Definition of s9
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pontt s =5
® AT =1 ® ' v =1
531 r&)// s=t n r&)// s n
. \
sp= st P 3
/ \
7 Xs=1t X
- s=t
0 < cout 1 x 0 1 x
§ = Sij =0 £E=0
Figure 4: Definition of s when i < j <m Figure 5: Definition of 59 when j > m

532 In order to show that the system — is well-posed, we see from Propositionthat we need
533 to add some conditions:

1) when j € {1,...,i — 1}, we will consider the following artificial boundary condition at z = 1:
kij<t7la€):aij(t7£)a VjE{l,...,i—l},
s34 where a;; € C°(R x [0,1]) N L>(R x (0,1)) is any function that satisfies the corresponding
535 CP-compatibility conditions at (t,z,&) = (¢,1,1), namely:
536 Qjj (t, 1) =Tij (t, 1), Vvt € R. (70)
2) when j € {i,...,m}, we have some freedom for the boundary condition. We choose to consider

the following one in order to obtain (66):

p
kij (ta z, 0) = Z ki,er[(ta z, O)al}](t)v V] € {7’3 v am} ’

=1
where we set 1

G (1) = ————Amre(t,0)q;: (1)
QZ]( ) )\j(t,O) -‘r@( ) )QZ]( )

537 Note that a}j e CY (R) N L (R)

538 In summary, we are going to solve the following coupled hyperbolic system:

539 1) If je{1,...,i— 1}, then

Ok, Ok Ok = _
gp BT+ Xt e)Z (6, € + N () F (B, ) + 3 kit w, )y (t,€) =0,
=1

kij (t, Z, 3:) =Tij (t, l‘),

540 (71)
541 2) Ifj = i, then

Oki; Oki; Oki; = 1 _

at (t7 xv g) + >\Z(tﬂ (E) 813 (tv .’E, 5) + )\l(t7 f) 6§ (tﬂ .’E, 6) + ; kle(t7 .’L', g)m&(t’ 6) - 07
p
ki (ta z, O) = Z ki,m-i-f(t’ €, O)al}z (t)
=1

se2 (72)
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543 3) Ifje{i+1,...,m}, then

T 10.6) + Nilt,2) G (4., 4 (0.9 (1,2 +thummmwo
kij (t, xZ, IL’) = Tij (t, I‘),
P

k)ij (t, X, O) = Z ki,m_;,_g(t, Z, O)a}] (t)
- (73)
sas 4) If je {m+1,...,n}, then

Ok Okj

o (b7 + Xt )3%tx®+AU£>% +§ymtx§m@@®—0

kij (t, €, SC) = Tij (t, 1‘)

545 (74)

sez 3.2.3 Transformation into integral equations

sas 10 prove the existence and uniqueness of the solution to the kernel equations — on P, we use
sao  the classical strategy that consists in transforming these hyperbolic equations into integral equations.
sso  Then, in the next subsection, we will prove that this system of integral equations has a unique solution
ss1 by using a fixed-point argument and appropriate estimates.

Let us introduce

Tij (5 (t,z,8), x: ( (t,x,ﬁ);t,z)) ifje{l,...,i—1} and (¢,z,8) € 77;;-1’+,
E?j(t,x,f) _ aij (s‘ t,z,8),x; (s i—?(tw,f);t,&)) if je{l,...,i—1} and (t,z,§) € ’Pm’

rij (S50t 2,€), xi (s (L@, €)sthw)) i€ {i+1,...,m} and (t,z,€) € P

Tij ( Yt x, ), xi (sf}‘t(t,x,f);t,x)) ifje{m+1,...,n}.

2 Thanks to the C*-compatibility condition (70), note in particular that
553 k), € CO(P), Vje{l,....i—1}. (75)
ssa  Using now Proposition [3.3] we can obtain that

1) For j € {1,...,i— 1}, integrating along the characteristic curve x;;(s;t,z,§) for s €
(si3(t,x,€),1t) yields the following integral equation:

n oot
kij(tv x, 6) = k?j(tv x, 5) - Z / ( ) kif(Xij(S; ta (E,é-))ffléj(& Xj(s; tv 6)) ds

e=1"7 st

2) For j = i, integrating along the characteristic curve x;;(s;t,x,€) for s € (¢, s5 (¢, z,8))

yields the following integral equation:
kit ,€) = theHUxammﬂm@m@m%@?mm»
=1
n s§t (t,2,8)

+ Z/t kio(xai(s;t, 2, €))my, (s, xi(s;t,€)) ds.  (76)
=1
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3) For j € {i+1,...,m}, integrating along the characteristic curve x;;(s;t,2,§) for s €

(t, 59 (t,z,€)) yields the following integral equations:

out t:mf) o
+ Z zE(Xij(s;tvxag))m%j(Sa Xj(s;ta 5)) dS, (taxag) € P%Utﬂr’
=171
and
p
Fij(t,2,€) = ki (37 (6 2,€), xa (85 (1,,€)38,) ,0) @3 (597 (¢, 2, €))
(=1
n 9 (¢,2,8) . —_
Z kiZ(Xij(S;t7x7£))ij(S7Xj(s;tag)) d87 (t7$,f) € Pij e (77)
=

55 4) For j € {m+1,...,n}, integrating along the characteristic curve y;;(s;t,z,€) for s €

556 (t, s?j“t (t,x,£)) yields the following integral equation:
- n s‘;}‘t(t,x,f) .
557 kU(taxaE) = k/’”(t,l‘,g) + Z kzZ(XZ](S7t7x’£)>ij(87Xj(sata€>)ds (78)
=11t

5) We now want to plug into and , respectively. From we have

Fiante (855 (6, €)X (53 (8,2, 82) ,0) = K g (555 (8,2,€), 33 (53 (1, 2,3 8, ), 0)

n st (5 (8m.8) X (59 (8,2,€)5t,3),0) t
* / qu()ﬁm—i—é( o4 Zj (t‘rg) Xz(ou (t,z,€);t, ) O))

g=1755(t2,8)

X mqu (s Xerg( s; 55] Wt €), )) ds. (79)
Plugging into and (77), we obtain, for every j € {i,...,m} and (¢,,¢) € Pijt’_,

kit 2, €) = K (1,2, €)
s9mpe (8551 (6,2.) X (57 (1.2.8)it.2) 0)

+Z%§I Fig (it (51820 (t, 2, €), X (2 (1,2, €);,2) ,0))

qi out (t T 5)

X s (5. Xmre (5151 (62,€),0)) d )% (55201, )

SO (L,€)

+Z/ by (51,2, )ity 5,y (5:1,) s

where we introduced
P

t x g Z zm+£ t x 5) ( Out(t T f) ) 0) ql] ( OUt(t T f))

s58 Note that

B € COPYST)NL=(P™T), Vje{i+1,...,m}, (80)
560 and, since P""" = P (because of (20)),

k% € CO(P) N L>(P). (81)
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Remark 3.4. Observe that, in general, for j e{i+1,...,m}, we have
7& ko on DO‘“.

This is the reason why we have to consider discontinuous kernels.

3.2.4 Solution to the integral equations

In this subsection we show that there exists a unique solution to the system of integral equations of
the previous section. This will conclude the proof of Theorem

Fixed-point argument. As it is classical, we reformulate the existence of such a solution into the

existence of a fixed-point of the mapping defined by the right-hand sides of these equations. Let us

first introduce K° = (k:?])1<z<m defined by
1<j<n

7.0 f - .

kij(t @, &) ifjed{l,...,i—1},

E?i(t7x7§) lf] =i,

kit 2,8) = B(tw,6) ifjefi+1,...,m} and (t,2,8) € PO,

70 op - . out,—
kij(t,z,) ifje{i+1,...,m} and (t,2,§) € P,

70 e .
kiy(t,z,§) ifje{m+1,...,n}.
Thanks in particular to , and , we see that
k), € COPIT) N COPIY ) NL(P)  ifjefit1,...,m},
0 0/ 00 :
ki; € C°(P)NL>(P)  otherwise.

It is this regularity that dictates the space in which we can work. More precisely, let us introduce
the vector space B defined by

kij € CO(P )N CO(PT)NL>(P) if j € {i+1,...,m},
B=¢K = (kij)i<i<m, - (82)

tssn kij € C°(P) N L>(P) otherwise.
We can check that B is a Banach space when equipped with the L°° norm. Let us now introduce the

mapping
®: B — B,

defined, for every K € B, by
B(K) = K° + &1 (K) + ®2(K),

where, for every (t,z,£) € P,
(cbl(K))ij (t,z, &) =

n t
_Z/ - Fie(xij(s5t, @, €))mg; (s, x5 (s:6,€)) ds,  if j € {1,...,i—1},
— ij t,x

Out(t "E7£
Z/ Rie (i3 (s 6,2, )il (5, (:4,€)) ds,  if j € {i,...,m},
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582

584

585

and

(®2(K)),; (t,2,8) =

P s (s ) (5 ()it 0) t t
Z k‘.iq (Xi,m-‘r@ (57 5%‘,1 (t7 €L, 5)7 Xi (S?jl'l (ta o f)v t, 1’) ) O))

=1 \ =155 (t:x,6)

X mzll,erZ (S7Xm+e( S zg (t z 6) )) )% ( OUt(t xT 5)) (84)
if j € {i,...,m} and (t,z,8) € P, and (®a(K)),; (£,7,€) = 0 otherwise (recall that P5"" = P).

Regularity of the mapping. First of all, we have to show that ® is well defined, i.e. that for
every K € B, we have indeed

®,(K) € B, ®y(K) € B. (85)
This is not obvious since the function s — x;;(s; ¢, z,£) may take values in the set DS, where kg is
discontinuous (even for j & {i + 1,...,m}, where we expect (®1(K));; to be continuous by definition

of B). The following result, close to Proposition shows that this may happen only at one point:
Proposition 3.5. Let { € {z +1,...,m} be fized.

(i) For every j € {1, — 1}, for every (t,z,£) € P, there is at most one sfjljc € (si(t,x,€),t)
such that Xij(s?;jc;t,m,f) Doy,

(ii) For every j € {i,...,n} with j # (, for every (t,x,£) € P, there is at most one sdﬁc €

(t, 89 (t,,€)) such that Xl-j(sfjijc;t,x,g) € Do,

This result shows in fact a stronger regularity than (85]), namely,
D1 (K), Pa(K) € CO(P)™ ™ N L>®(P)™ ",

The proof of Proposition [3.5]is postponed to Appendix [B] for the sake of the presentation.

Contraction of the mapping. We will now prove that ®V is a contraction for N € N* large
enough. Therefore, the Banach fixed-point theorem can be applied, giving the existence (and unique-
ness) of K € B such that

K =9(K).

This will conclude the proof of Theorem Now, to show that ®" is a contraction when N is large,
it is sufficient to prove the following estimate:

Proposition 3.6. There exists C' > 0 such that, for every N € N* and K, H € B,

cN

H(I)N(K) - (I)N HLOO(P)"'X" = N'

1 = Hl e e (36)

To establish we will use the following key lemma:

Lemma 3.7. For every i € {1,...,m}, there exist a function Q; € C*(P) N L>*(P) and g9 > 0 such
that, for every (t,z,€) € P, we have Q;(t,z,£) > 0 with

o0 o0,
s Lt x, &) + Nt 1) ——

e (1,0:6) 4 Xy (1.6)

5(tﬂz“§)>80, Vie{l,...,i—1}, (87)

and o0 0Q;
(t, @, &) 4+ Nt z)——

- o Q(txé) €0, Vje {i,...,n}. (88)

(1, ,€) + X(t,€) a€
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594

595

596

599

The proof of Lemma [3.7)is postponed to Appendix [C] for the sake of the presentation.

Remark 3.8. In the time-independent case, we can take ;(z,§) = ¢;(x) — v¢;(§) (we recall that
oi(x) = fox ﬁ dy) where v € [0, 1) is any number such that v > maxi <j<i<m maxeepo,1] Ai(§)/A;(§)-
This function appeared for instance in [HDMVK16, Lemma 6.2] for systems with constant coefficients
and in [HVDMK19 (A.32)] for systems with time-independent coefficients (see also [CVKB13| Lemma
A.4] for 2 x 2 systems, where it is enough to take v = 0 since becomes void).

Remark 3.9. Observe that it follows from the estimate that, for every j € {i,...,n},
s = Qi (xi5 (s5t,2,8)) is strictly decreasing.

This is the analogue to [HDMVK16, Remark 10].
We can now prove Proposition |3.6

Proof of Proposition[3.6. Let us denote by

n=ma{ [ 3
Lx(RX(O,l))"X"‘ Loo(R)anl
1) We start with the estimate of ||®1(K) — ®1(H)| popymxn- Set
=R
€o

Let j € {1,...,7 —1}. From the definition of ®; we see that

S

|(@4(K) — @1(1)),; (1,2, 6)| < PR ( / . 5)1d8> IK — H e oy -

i
Thanks to the estimate we can perform the change of variable s — 0(s) = Q;(xi;(s; t,2,€))
and obtain

o ( / ms) < / E(Wfli(s)ds:e(t)—e<s§2<t,m,s>> < 0(t) = Qu(t2,).

B (t,3,6)
This gives the estimate
‘(q)l(K) - CI)1<H))1']‘ (tvxﬂg)‘ < ClQi(t’x7€> HK - H||L°°(P)m><n :
It is important to point out that the right-hand side does not depend on the second index j.

Computing ®2(H) — ®2(K) = ®;(®;(H)) — ®1(®1(K)) and using the previous estimate, we
obtain

|(@3(x) - 03()),, (8,2, 6)|

t
S ?’LRCl </ Qi(Xij(S;t7m7§)) d8> HK - H”Loo(p)mxn .
s

B (t,8)

Using again the change of variable s — 6(s) and , we obtain

t t t do
o ( i Qi<xij<s;t,x,£>>ds> = [ e [ o) ds
s (t,2,8) sin (t,2,€) s (t,2,8) $
() 0t 2,€))? 207 _ Qult,z,8)?

2 2 -2 2
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602

603

604

This gives the estimate

C%QZ(tv z, 5)2

|(@3(5) — @2(),, (1., 6)] < 2

S P—

By induction, we easily obtain that, for every N € N*,

C{VQz(ta Zz, g)N

(@ (1) - ) (11) v

(ta,6)| < 1K~ H e gy - (89)

ij
Using the estimate instead of , we can obtain exactly the same estimate as for
j€{i,...,n}. Since Q; is bounded, it follows that

C

SR ————ay

T —
for some C' independent of N and K, H.

Let us now take care of ®o(K) — ®o(H). The idea to estimate this term is essentially the same
as before, with the extra use of the decreasing property stated in Remark Set

n
CQ = *RQp.
€0

From the definition of 5 we see that, for j € {i,...,m} and (t,z,¢) € P;;"7,

(@2(K) = @o(H)), (t,2.€)|
?‘;;Jré( ot (t7$7£) Xz( O“t(t w,f) t a:) O)
<nRQZ</ Vs | | K = H| oo (pymce
(t,z,€)
Thanks to the estimate we can perform again the change of variable
s 0(s) = Qi(xij(sit, 2,6)),

which is decreasing since j > i (see Remark , and obtain

s o (89 (8,2,8) xa (555 (£,2,€)5t,2),0)
€0 / 1ds
s?;t(t,z,g)

/s‘z,‘::l“( (1,6 (55 (4,2.8):62).0) g
<

——(s)ds
out(t I’g) dS

= —0 (s 1y (s (8,2, €), xi (s (2, €)5t,2) ,0)) + 60 (st 2, €)) < O(t) = Qi(t, 2, ).

This gives the estimate
‘(q)Q(K) - CI)2<H))” (t7xa£)‘ S CQQl(t7‘T7€> ||K - HHLoo(p)mxn .

Note that this estimate is also valid if j & {4,...,m} or (t,2,£) & PO“t since (®2(-))i; =0 1in
this case. Reasoning by induction as before, it is now not difficult to obtain the estimate

C’

[93/(5) ~ 9 D)y < Sy

IK — H e gy -

for some C' independent of N and K, H.
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3.3 On the time-periodicity of F

In this section we assume that, for some 7 > 0, A, M and @ are 7-periodic with respect to time
and show that the above construction of F' leads, with minor modifications, to a F which is also
T-periodic with respect to time.

First of all, concerning the extension of A to a function of R? (and of M and @ whenever needed),
it is clear that one can extend A to R x [0, 1] by just requiring the 7-periodicity with respect to time of
this extension. This extension is still denoted by A. Then one extends A to R? so that this extension,
still denoted by A, is 7-periodic with respect to time and so that the properties (2), (3), [) and
remain valid on R? (see e.g. Remark [1.4).

From the construction of F' (see (30)), and (50)) it is clear that F is 7-periodic with respect
to time if so are all the matrix-valued functions involved in the several transformations of this article.
Now, in order to obtain the T-periodicity of these transformations, the minor modifications/comments
are essentially the following ones.

1) Concerning the diagonal transformation to remove the diagonal terms in M (see Section [2.1)),
one simply observes that the function is 7-periodic with respect to time if so is m;;, thanks
to the properties

Xi(s+ 7t +71,8) = xi(s;,6), si“(t +7,8) = si“(t,f) + T (90)

2) Concerning the kernel H of the Fredholm transformation (see Section|3.1)) one easily checks that
it is indeed 7-periodic with respect to time. This follows from the uniqueness of the solution to
and similar properties to (90).

3) Concerning the kernel K of the Volterra transformation of the second kind (see Section ,
to construct it in such a way that it is 7-periodic with respect to time, it suffices to observe
that rﬁ%j, r;; and %}j become 7-periodic with respect to time once M and @ are, and to modify
the definition of the space B given in by adding the condition that the k;;, 1 < ¢ < m,
1 < j < n, are T-periodic with respect to time (alternatively, one can keep and deduce
from the uniqueness of the fixed point of ® that it has to be 7-periodic with respect to time).

Acknowledgements

All the authors would like to thank ETH Ziirich Institute for Theoretical Studies (ETH-ITS) and
Institute for Mathematical Research (ETH-FIM) for their hospitalities. This work was initiated while
they were visiting there. The second and third author would also thank Tongji University for the
kind invitation. Part of this work was also carried out there. This project was partially supported
by ANR Finite4SoS ANR-15-CE23-0007, the Natural Science Foundation of China (Nos. 11601284
and 11771336) and the Young Scholars Program of Shandong University (No. 2016 WLJH52).

A Background on broad solutions

We recall that all the systems of this paper have the following form:

%(t, x) + A(lt, z)%(t,x) = M(t,z)y(t,z) + G(t,x)y(t,0),

y—(t,1) = /O F(t,&)yt, &) de, y+(t,0) = Q(t)y—(t,0), (91)

y(t° z) =y (),
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where M and @ have at least the regularity (5), F € L>((0,+00) x (0,1))™*" and

G € C°([0,400) x [0,1])™*™ N L%°((0, 4+00) x (0,1))"*".

A.1 Definition of broad solution

Let us now introduce the notion of solution for such systems. To this end, we have to restrict
our discussion to the domain where the system evolves, i.e. on (t° +o00) x (0,1). For every
(t,z) € (t° +00) x (0,1), we have

(s,xi(s;t,x)) € (t0,+oo) x (0,1), Vse (5;“(150;15, x), s (¢, 1)),
where we introduced . ‘
50(t%: ¢, 2) = max {to, sit(t,x)} <t

Formally, writing the i-th equation of the system along the characteristic x;(s;t,z) for s €
(50 (2% ¢, x), s (¢, z)], and using the chain rules yields the ODE

d n n
PR (s,xi(s;t,2)) = Zmij (s, xi(st, @) y; (s, xi(s; 8, @) + Zgij (s, xi(s;t, @) y; (s,0),
j=1 j=1
Yi (gin(toa t, Jf), Xl(gin(tov L, .I‘), t, .13)) = bl(y)(ty JJ),
(92)
where the initial condition b;(y)(t, x) is given by the appropriate boundary or initial conditions of the

system :

nooel
Z/ fig (s (t,2), )y, (si(t, @), &) dé if si*(t,x) > t* and i € {1,...,m},
j=1"0
bi(y)(t, x) = Zqi,m,j(s;’“(ux))yj(s?‘(t,x),O) if sin(t,z) >t% and i € {m+1,...,n},
j=1
Y (xi(t%t, ) if si(¢,2) < 1O,
(93)

Integrating the ODE over s € [5%(tY; ¢, x),t], we obtain the following system of integral equations:

n t

vi(t,z) = bi(y)(t, x) + Z[ mij(s, xi(s:t, @)y, (s, xi(s:t, x)) ds

j=1 in(t9t,z)

=S / gi3 (5. x:(5:£,2)) 5 (5,0) ds.  (94)

j=1 in(t9;¢,x)

This leads to the following notion of “solution along the characteristics” or “broad solution”

Definition A.1. Let t° > 0 and 3° € L?(0,1)" be fixed. We say that a function y : (t°, +00) x
(0,1) — R™ is a broad solution to the system if

y e CO([t% 1% + T); L2(0, 1)) n CO([o, 1]; L2(t°,t° + T)™), VT >0, (95)

and if the integral equation is satisfied for every i € {1,...,n}, for a.e. t > t° and a.e. z € (0,1).
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A.2 Well-posedness
This section is devoted to the following well-posedness result regarding system :

Theorem A.2. For every t° > 0 and y° € L?(0,1)", there exists a unique broad solution to (91).
Moreover, there exists C > 0 such that, for every T >0, t° > 0 and y° € L*(0,1)", the corresponding
broad solution y satisfies

CcT
oo 0 471:22 (0,07 + [Wllcoo,ajsz20 w0 4mymy < CE 90| 120, 1ym (96)

Remark A.3. Tt follows from the uniformity of the constant Ce“” with respect to the initial time
t% in the estimate that, for systems of the form (91, the uniform stability property is a
consequence of the finite-time global attractor property (7)) (simply take § > 0 such that Ce®T§ < ¢).

Let us first point out that this well-posedness result for our initial system for the particular
F that we have constructed in Section [2] follows in fact from the well-posedness result for the final
target system of Proposition m (easier to establish), since we have shown that both systems are
equivalent by means of several invertible transformations. However, it is still important to have
such a well-posedness result for any F' within the class studied, which is a result that also has its
own interest. We will provide a complete proof since, to the best of our knowledge, there are no
references that show the well-posedness for the initial-boundary value problem with non-local
terms G(t,z)y(t,0), with weak regularity and with uniform estimate (96)).

Proof of Theorem[A-2 We first remark that it is enough to prove the theorem for ||Q||;. small
enough, say

1Qll L < e, (97)
where o > 0 does not depend on T,t%,4° nor on M, G, F. This follows from the following change of
variable:

y=2Dy D= Mo =Faldrn 0

0 Idg»

where 7 is the solution to the system (M, G, F,Q) with

—1
=(—* ) FD, g=—"—q.
(IIQIle —|—a) ¢ QI Ta?

Let us now show how to prove the theorem under the smallness condition with the Banach
fixed point theorem (o > 0 will be fixed adequately below). Let 7' > 0, t° > 0 and 3° € L?(0,1)" be
fixed for the remainder of the proof. It is clear that a function y : (t°, +00) x (0,1) — R™ satisfies
the integral equation if, and only if, it is a fixed point of the map F : B — B, where

=
I
3
=
T
Q
I
3
Q
S
=Sl

B =C([t°t° + T7; L*(0,1)™) n C°([0, 1]; L2 (t°,t° + T)™),

and (F(y));(t,z) is given by the expression on the right-hand side of (94). It can be checked that
F indeed maps B into itself (actually, by computations similar to the upcoming ones). Let us now
make B a Banach space by equipping it with the following weighted norm:

Iyl = llylls, +lyls,

where

1 n
Ly 0
— — - (t=t") (¢ 2 —Lex g
1Yl =, max e /0;_1 lyi(t, 2)I" e Fe da,
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and

t04+T n
Lo
- (1-z) : 2 e=L1(t—t0)
= max ez t,x)| e 1a dt
Ivll, = mas [, Ll ,

where L, Ly > 0 are constants independent of T,t° and 3° that will be fixed below. Our goal is to
show that, for L1, Lo > 0 large enough,

1
17" = F@)|| g < 3 lv' =5, Wy',9% € B. (98)

It is then not difficult to check that the fixed point of F satisfies the estimate . Indeed, using
, we easily see that the fixed point y of F will satisfy

1
3 Wl < 170l

and some straightforward computations show that

Hy||2C°([t0,t0+T];L2(O,1)n) < efzelr? Hy”?gl ) \\y||éO([o,1];L2(t0,to+T)n) <l ||Z/H?32 )
nnm@s2@+fﬁJ%hJWﬂ&@m~
Let us now establish . We introduce
y=vy" —v°

so that F(y') — F(y?) is equal to the right-hand side of with y° = 0. We have to estimate four
types of terms in each [|-[| 5, -norm (i = 1,2). For convenience, we denote by

OA

R, = maX{HALoo , Hax

}, Ry = max {[|M| e, |Gl oo s [[F[ o } -
LOO
We recall that it is crucial that « does not depend on Rs.

Estimate of the |-||; -norm. Let ¢ € [t°,t° + T be fixed. Let I = {z € (0,1), si"(t,z) >1"}.

1) Let i € {1,...,m}. For a.e. = € I, using Cauchy-Schwarz inequality, we have

2

n 1

. . in )
Z/O Fis (8™ (t, ), ©)y; (s (t, @), €) dE| < nR3e™ ||y||5, ek Tt =10),
j=1

Using a finer version of (15), namely,

1-— .
Rlx S t— S;n(t 1')a (99)
(obtained similarly to (19)) we obtain the estimate
) 2
n . ) L 1 40
/Z/m@%mmmwwﬂ%e“mgG@hl)*“”MQ
1= Jo 7 — L
provided that
L
R—i — Ly > 0. (100)

38



2) Let i € {m+1,...,n}. Using (15), we have
2

/ S i (57 25 (57 (1, 2), 0)| e 22 d
1=
< ma2ebr (=) Z/ ly; (17 (t, ), 0) 7 e Fa (" 6=t gy
j=1"1

Doing the change of variables o = si"(¢,z) and using the estimate (see (14), and (19))

_ [t o (0,x:(6;
i N o oa (0,xi(05t,3)) dO
dsin(t,x) —e TEt00 0 1 _m

= - < ——
oz Ai(si(t, z),0) - R ’

we obtain

2

m
12t s (52 (1,2).0)) &2 o < (ma?Rae ™22 e Oy .
I
J=1

3) For the next term, we have

2

1 n n t
/ Z Z/ mu(Ssz(S,t,x))y](s,xz(s,t’x))ds e—ng dx
0 S

i=1 |j=17 5" (t05t.x)
1 n 1 t n
<orb23 [ [ Y teolsita) dsd.
g “—Jo sin(
=1 i

t05t,2) s

Using the change of variable (o, &) = (s, xi(s; t,)), whose Jacobian determinant is (see (12))

1 0 | |

" = e OO 5 =2 s e (s (1), 1),

OXi (.
Ai(s xi(sit @) B (st @)
we obtain
2
1 n n ¢
/ Z Z/ mi](S7X1(5,t,x))yj(37xz(5’t’1;))dS 67L2I dx
0 =1 |j=1 /5" (t%t.2)

1 Rry 1 0 2
< 2R27 = Ly — Ll(t_t) A
< (mrze™ et ) B,

4) Finally, the estimate of the remaining term is easy:

2

t
/ ng (S7X’L(S;t, 1:)) yj (3’ 0) ds e*LQI dx

i (05t,x)

n

[

i=1 |j=1

1
< (mrgze ) B .
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In summary, we have established the following estimate (provided that (100 holds):

1
|F") - f(yz)H; <3 (mnR%Ll_

1 Ry 1 2
+n’Ry—e= e — | [lyll,
R, Ly €

Ly

1
+3 ((n - m)maQRle%e_L2 + nQRge_“) ||yH2B2 . (101)
€

s Estimate of the ||| 5 -norm. Let x € [0,1] be fixed. Let J = {t € (t°,t°+T), si(t,z) >°}.
1) Let i € {1,...,m}. We have

2

noopl
/J jzl/o Fii (st 2), )y (s (¢, ), €) de| e D=1 gt

1 n ) .
: ”Rgfo /JZ [y (1 (t,2), )F e P =D (R0 g | g,
j=1

680 Using once again (99)), (100), performing the change of variable o = si®(¢,), and using the
681 estimate (see (14)), (12) and (19))
) — It 92 (9 v, (05¢,2)) dO
dsin(t,z)  N(t,x)e "o o (2xa(86:2)) e _ R
682 = - > e =, (102)
ot Ai(si(t, ), 1) Ry

we obtain the estimate

2
Ry

- ! in in — —¢0 R — 1 — —
JIX [ sutsrten mtsiieanga e b i< (npge L) e B0y,
j=1

2) The next estimate is where we will need the smallness assumption on Q. Let i € {m +1,...,n}.
Using and the change of variables o = si"(¢,z) (recall the estimate (102)), we obtain

2
Ry

- in in - —t° Ry my - —x
D Il (e e el 7
j=1
3) For i € {1,...,m}, using the estimate
—Ry(t —s) <x—xi(s;t, ),

we have

2

t
0
/— mij (s, xi (558, 2))y; (s, xa(s; t, ) ds| e L=t

in(t%t,x)

n

j=1

1/t - L1 (et
< nR%’/ > Jyi (s xi(si )P e B em m et 0= g
S

€ Jam(oita) 1
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Integrating and using the change of variable (o, &) = (s, x:(s;t, x)), whose Jacobian determinant
is uniformly estimated for s € (si*(¢,z),t) by (see and (19))

o = [Xi(t,x)| e s 24 (0,x:(03t,x)) db > Ee_%7

(s, xi(s;t,2)) 85?(5;15,3:)

we obtain (using also that = < x;(s;t,2) < 1)

2

t°4T m | n t o
/ ) Z/ mij(s,Xi(s3t,2))y; (s, Xi(s3t, ) ds| e” 1071 a
t

0 i=1 |j=1 m(tOtI)

) N t°+T n ) _Ll(a_to) L(e—a)
< mnRj —e c Z|yj(0,£)\ e do|e —R d¢
j=1

1 Ry 1 _ — 2
: (mR L) eyl

provided that (100) holds. A similar reasoning shows that

2

t°4T n oo 0
/ Z Z/ mij (s, xi(s;t, @)y, (s, xi(s;t, ) ds| e~ L1 gy
t 50 (¢0;5¢,x)

0 i=m+1 | j=1

1 &y 1 _ _ 2
< | (mn—mnRi—e= ——— | e 2202 ||y

4) For the remaining term, using a similar reasoning to the one used in the previous step, we
obtain

t0+T n n + 0
/ Z Z/ gz] s, xi(s;t x))yj(s 0) ds e~ L1 (t=t%) gy
t N

) i—1 J:1 in totw)
n*R, R3 —e R P lyll7
141 Ll Y B

In summary, we have established the following estimate (provided that (100) holds):

|76 = FP 5, <3 (0= mpma e ) i,

1 1 1
h7-&-(71— )nR2—eP?7L
— Lo g2 L2+R71

1 2
L1> ol (103

R1 o B 1 21
+3<mn€R26 E I +mnR26—26

1

1 r
+ anlegeT

683 Consequently, we see from (101) and (103 that F indeed satisfies the contraction property
esa if v is small enough (depending only on n — m, m, Ry and ¢) and if we fix Ly > 0 and then L; > 0
ess large enough. This concludes the proof of Theorem

686 D

41



Remark A.4. It can be shown that the broad solution is also the classical solution if the data of the
system are smooth enough. It then follows by standard approximation arguments that the broad
solution is also the so-called weak solution. We recall that the notion of weak solution for is
obtained by multiplying by a smooth function and integrating by parts, that is, a function
y: (% +00) x (0,1) — R™ is a weak solution to if y € CO([tY, +00); L?(0,1)™) and if it satisfies:

1

/ y(t° +T,z) - o(t° + T, x)dx—/o y0(x) - (t°, 2) da

/t +T/ (t,) < af (t,z) — A(t, x)gi (t,z) - (?;(t,x) +M(t,x)Tr> sa(t,:v)> davdt

24T 1
+ / / y(t.€) - F(t.6)"A__(t. 1)p_(t, 1) dedt = 0, (104)
t0 0

for every T > 0 and every ¢ € C*([t°,t° + T] x [0,1])" such that, for every ¢ € [t°,¢° + T,

30+(t7 1) =0,
oo (t.0) = A (6,0 (@A .0 0 + (1 Q™) / Glt,)""o(t,2) dr ).

In (104), we denoted by AT" the transpose of a matrix A and v; - vo denotes the canonical scalar
product between two vectors vy, ve of R™,

A.3 Justification of the formal computations

In this section, we finally rigorously prove that the transformations that we used all along this paper
are preserving broad solutions. We show how it works only for the Fredholm transformation of Section
(because it is simpler to present) but the reasoning is general and can be used for the Volterra
transformation of Section [2.2] as well. More precisely, the goal of this section is to prove the following
result:

Proposition A.5. Let H__ = (hi;)i<i j<m, where h;; is the solution to the differential equation
(B7). Let t° > 0 be fived. Let 2° € L*(0,1)" and let = be the broad solution to

0z
ot

Z— (tv 1) =0, Z+(t7 O) = Ql(t)z— (t7 O)a

2(t%, x) = 20(x).

—(t,z) + A(t,x) gx( t,x) = G3(t,x)2(t,0),

Then, the function v defined by the Fredholm transformation is the broad solution to

g v 2
Lty L(t,2) = G2(t,2)y(1,0),
v

(t.1) /F%sg (4 €)dE, 4 (1,0) = Q1 (B (1,0),

x) + A(t, z)
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710

718

We recall that H is given by (53), F? is the solution of (50]), @ is provided by Proposition
G? is provided by Proposition [2.4 and, finally, G is given by (44]).

Remark A.6. Obviously, we could use the explicit expression (60)-(58) of the solution H to simplify
the forthcoming arguments but we choose not to do so and to only use the differential equation in
order to give a general procedure that can also be used to justify the formal computations of Section

2.2l as well.

A similar result to Proposition can be found in [CN19, Proposition 3.5]. Here we propose a
different and self-contained proof, based on the following characterization of broad solutions:

Lemma A.7. A function y : (t°,+00) x (0,1) — R™ is the broad solution to if, and only if, y
has the regularity and, for every i € {1,...,n}, for a.e. t >t° and a.e. x € (0,1), the function
s yi (s, xi(s;t, @) belongs to H' (5™ (t°;¢,2), 9" (t,z)) and it satisfies the ODE (92).

The proof of Lemma is not difficult, it simply relies on the properties and .
Proof of Proposition[A.5]
1) The required regularity
v e CO([t% t° + T]; L2(0,1)™) N CO([0,1]; L*(t°,t° + T)™), VT >0,

is clear since z also has this regularity and (¢, z) — fol H__(t,x,&)z_(t,&) d¢ is continuous (see

e.g. Remark 2.9).
2) The initial condition in the ODE formulation

is not difficult to check by using the boundary condition z_(t,1) = 0 with the definition of
F? and Fubini’s theorem (case si"(t,z) > t° and i € {1,...,m}), the condition H__(¢,0,£) =0
(case s*(t,x) > t" and i € {m +1,...,n}) and the definition of 7° (case si*(t,z) < t°).

3) It remains to check that, for every i € {1,...,n}, for a.e. ¢t > t® and z € (0,1), the function
s+ i (s,xi(s;t,x)) belongs to H'(5"(t%; ¢, z), s¢"*(¢, x)) with

(3

ol tn) = Y (sl ) 7 (5,0). (105

By definition of v, we have
m 1
i (8, xi(s3t,@)) = 2 (s, x:(s3 8, @) — Z/ h‘ij(37Xi(85t7x)7§)zj(87€) dg.
j=1"0

For i € {m+1,...,n}, the identity (105)) easily follows from the equation satisfied by z;, the
relation z(-,0) = y(-,0), and the fact that h;; = 0 for such indices (recall (53)).

Let us now assume that i € {1,...,m}. The equation satisfied by z; then gives

dizi (s,xi(s;t,x)) =0, Vie{l,...,m}.
s

On the other hand, since we know some information of h;; along the characteristic curve s —
Xij(s;t,z,0) = (s,x:(s;t,x), x;(s;t,0)), we would like to perform the change of variable

E = Xj(s;ta 0)
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719

721

722

Thanks to (13 and the implicit function theorem there exists 6; € C'(R?) such that, for every
(s,t,&) € R?, we have
06,

Using this change of variable, we have

m - rb;(s)
3 (sulsto) = (oulst) =30 [ g(s0)ds,

5 (8)

Jj=1
where
aj(s) = 0;(s;t,0), bj(s) = 0;(s;t,1),

ox;
0i5(5,0) = hij(xi;(s;t,2,0))25(s, x; (s, 9))87;(8;75, 0).

We would like to use the formula

0K

i) 05

b;(s)
. ( [ s de) = by b5(5)) — (s (s,ay(s) + [ (. 0) b,

5(8)

Clearly, a;,b; € C'(R). Differentiating the relation & = x;(s;t,6;(s;t,€)) with respect to s we
obtain \ 0
a;(s)za .734(57 ) )
ame (S; ta ej (S; t, 0))
On the other hand, using with ¢ = 0, (106) and the boundary condition z_(-,1) = 0, we
have

X (5,0) 2j(s8,0) == (s;t,05(s;t,0)), ni;(s,b;(s)) = 0.

nij(s,a;(s)) = B

Using the ODEs satisfied along the characteristics by h;; (see ) and z;, and using the
relation (see ((12))

82xj - 6)\3 6Xj .
9sOr (87 t7 0) - %(57 Xj(sa tv 0))%(57 tv 0)7

we can check that 7;; has weak derivative with respect to s which is equal to zero:

5%
Os

(s,0) =0.

It follows from all the previous computations and the relation z(-,0) = ~(-,0) that

m

L (soxalss ) = a5 (5)ms (5,05(9)) = D 035 s £, 5, 0).

j=1 j=1
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723

728

729

730

731

B Constructions of s}, s)i* and {5

In this appendix, we give a proof of the existence s;‘;, 5%‘»“ and s?ﬁc satisfying the properties stated

in Proposition [3.3] and Proposition [3.5] We will make use of the following simple lemma:

Lemma B.1. Let f € C'([a,b]) (a < b) satisfy the following property:
Vs € [a,b], f(s)=0 = f'(s)<0. (107)
Then, there exists a unique ¢ € [a,b] such that
f(s) >0, Vse(a,c), f(s)<0, Vse€/cb).

Moreover, ¢ has the properties listed in Table (an O means that such a situation can not occur).

~
—~
S
S~—
A
e}
=
=
o
|
S

Table 1: Properties of ¢

Proof of Proposition[3.3, We recall that i € {1,...,m} and we refer to Figures and 5| for a
clarification of the geometric situation (at a fixed t). We only focus on the existence part since the
uniqueness readily follows from the properties that have to be satisfied.

1) Assume that j € {1,...,i—1}. For every (t,7,&) € P such that < 1, we introduce the C!
function . .
fis e [max {s{(t,z), s (t,€) },t] = x;(s:8,€) — xi(s3 t, 2).

Note that the interval has a non empty interior since z < 1 and £ < = < 1 (see (15)-(16)).
This function clearly satisfies the property (107) thanks to the ODE @ and the assumption
since j < i. Consequently, Lemma applies and gives the existence of si‘}(t, x, &) with

max {s]"(t,2), s} (t,)} < s} (t, 2,€) <t,
and such that _
X;(s:t,6) < xi(s;t,x), Vse (si?(t,amf),t) .

Clearly, (t,2,£) — t — si(t,z,&) € L°(P) thanks to (19). Moreover, it follows from Table

that

st o, &) =t if si*(t, ) < s(t,€) and & =,

f(si?(t,x@)) =0 if sin(t,z) < sij“(t, §) and € < =z,
(108)

si(t,a,€) = s (t,x)  if s (t,2) = s (¢, €) and € <z,

si(t,x, &) = si*(t,w)  if s (t, ) > si(t,€) and € < 2.
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737

738

756

757

758

759

761

Let us now complete the definition of s;‘; on the remaining parts of P. The missing case in
is when si®(¢,2) > s}“(t,f) and £ = z. However, unless x = 1, these conditions are not
compatible since s} (t, ) < si'(t,z) for j < i <m (see (21)). Consequently, it only remains to
define s;; in the part where z = 1, which we do now by setting

si(t,1,€) = t. (109)

We can check that s}} defined by (108)-(109) belongs to C°(P) (for the second case in ([108)

this follows from the implicit function theorem). Therefore, such a s;? clearly satisfies all the
properties claimed in the statement of item [(1)] of Proposition

Assume that j = i. We will show that, in this case, we can simply take
s (t,@,€) = s{M (8, €).

Clearly, s € C°(P) with (t,x, &) +— s9(t, x,&)—t € L>°(P) thanks to and s9t (¢, 2, &) >t

as long as £ > 0 (see —). Let us now observe that, for £ < x, we have from :
X’L(S7t7£) < Xi(S;t,fL'), Vs €R7

and x;(s;t,&) > 0 for s € (¢, s97(¢, x,€)) since sPU(¢, &) < s?"(¢,z) by (recall that j =i €
{,....mb.

The proof for the case j € {i +1,...,m} is similar to the proof of part 1) by considering, for
each (¢, z,£) € P such that & x > 0, the function

frs e [tymin {s7"(t,2), s (1, €) }] = xalsit, @) — x;(s5t,€). (110)

The proof for the case j € {m+1,...,n} is also similar to the proof of part 1) by considering,
for each (t,x,&) € P such that 0 < & < 2 < 1, the function f defined again by ((110]).

O

Proof of Proposition[3.5 The difference with the proof of Proposition [3.3]is that we do not need to
neither track the regularity of the point where the function f vanishes nor its sign on the left and
right of this zero. It is a straightforward consequence of Lemma [B.I]applied to the following functions
(it is enough to consider non empty intervals):

1)

For j € {1,...,i— 1}, we use

frse st a,€),t] = xi(s:4,€) = vie (5, xals3 8, ) -
Using the ODE @b satisfied by x; and using the equation satisfied by v;¢, we have

F1(s) = Xj (5,x5(85£,£)) = Ae (5, 90ue (s, xa (s 8, 2))) -

Since j < ¢, this shows that such a f satisfies the property of Lemma [B.1
For j € {i,...,£ — 1}, we use

frse [t st (ta,&)] = x;(sit,6) — i (s, X3 (511, 7)) (111)
For j € {{+1,...,m}, we use the function —f, where f is given by (L11).

For j € {m+1,...,n}, we use the same function f given by (111) (in fact, the result then
directly follows from the intermediate value theorem).

O
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« C Construction of

763 This appendix is devoted to the proof of Lemma that is to the existence of the key change of
76 variable needed in the proof of Proposition We recall that i € {1,...,m}.

1) Inspired by the time-independent case (see Remark , we look for ©; in the following form:

Qi(tvxag) = wil(t"r) - wf(t,f),

765 where, at each fixed v € (0, 1], w? (-, -) is the solution to the following linear hyperbolic equation:
owY Ai(t, ) OwYy
e (t’ ) Mi(tax) =0,
760 ot v Ox teR, z€[0,1]. (112)
w!(t,0) =t,
767 The solution of (112) is explicit:
768 WY (t, ) = w! (9" (t, x),0) = s9"Y (¢, ), (113)
769 where 57" (t,x) > t (with s7""(t,) = t <= z = 0) is the unique number such that
770 Xz”/(s(z')ut7y<t7x);tax) =0, (114)
m where s — x¥(s;t,x) is the solution to the ODE
ox¥ 1
: it = 7)\1' ’ i ;ta ) v Ra
N s (s;t,x) > (s,xY(s;t,2)) s € (115)
XY (t;t, ) = .
773 We can check that the map (¢, z,v) — w?(t,z) belongs to C*(R x [0, 1] x (0, 1]).

774 2) We now prove that there exists 6 > 0 such that, for every t € R, x € [0,1] and v € (0, 1],

owY Ow? OV
775 -t > - > —t > 0.
5 (t,z) > &d, o (t,z) > vd, ey (t,z) >0 (116)

Using the equation ([112)) and the assumption , it is clear that the estimate for Ow? /0t follows
from the estimate of dw} /0z. Note from (T13) that dwY /0 = ds{""" /0x. Taking the derivative
of (114) with respect to z, we obtain

1 Qllt,u 8XU
7/\1' Qut,u ¢ v t_)ut,y t -t 7 t 1 Qut,u ¢ -t —0.
SN (8 2), X (5 (@), 2) S () + (s ()it )

Since A\; € L*(R x (0,1)), we have to bound %‘J}" (s2"¥(t,2);t,x) from below by a positive

constant that does not depend on ¢,z and v. From (115)) we can show that

ax¥ 1 s 9% vip.
i ;t — o ft = (0,x5 (05t,x)) dO
2 (et = e ,
so that 9
v out,v . X,
a);z (S?ut7y(t, Z‘); t,.]?) > 6%’(577 (t,z)—t) infry[o,1) -

776 This establishes the desired lower bound since 2 € L®(Rx (0,1)) and 0 < s{""(t, ) —t < Zv
777 (the proof is similar to the one of (19)). Note that it follows as well from this estimate that
778 Q,; € LOO(]R X (0, 1) X (0, 1))
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To prove the remaining estimate in (116), we denote by v = dw}/0v and observe that it

satisfies
v )\’L ta v )\’L t7 v
O g0y + MDDy Ab T Dty
ot v Oz v Oz teR, zel0,1].
’YV (t7 O) =0,
779 It immediately follows that v > 0.

3) Let us now check the estimates and (88). We have

0, 0 09,

ot (t,.T,V) + )‘l(th)a(mxvy) + Aj(tﬂg)aig(txay)
Ow} Ow} owy owY
out A(t6)
=- t 1—v .
w00 (1375
780 Since A;/\; < 1fori < j and i < m, we see that the estimate is obtained by simply taking
781 0<ep Seé(l—y), O0<v<l. (117)
On the other hand, let us introduce
r = max_ sup Ai(t’g).
155<i ter Aj(,€)
£€[0,1]
Clearly, 0 < r < 1. In fact, r < 1 since from we have, for j < i < m,
it
sup (t,¢) <1- L.
teR )‘j(t,f) ”)‘J'HLOO
€€(0,1]
782 The estimate now follows from (116)) by taking
753 0<50g55(3—1), r<v<l. (118)
T
784 Note that the conditions (117) and (118)) are compatible by taking v close enough to 1.

4) It remains to check that ; > 0 on P. Since both functions v +— w?(¢,z) and = — wY (t,z) are
nondecreasing by (116)) and ¢ < x, we have

w; (t,z) > Wy (t,z) > Wl (t,€).

785 D
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