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ABSTRACT
Although adversarial sampling is a trendy topic in computer vi-
sion, very few works consider the integral constraint: The result
of the attack is a digital image whose pixel values are integers.
This is not an issue at �rst sight since applying a rounding after
forging an adversarial sample trivially does the job. Yet, this paper
shows theoretically and experimentally that this operation has a
big impact. The adversarial perturbations are fragile signals whose
quantization destroys its ability to delude an image classi�er.

This paper presents a new quantization mechanism which pre-
serves the adversariality of the perturbation. Its application out-
comes to a new look at the lessons learnt in adversarial sampling.

CCS CONCEPTS
ˆ Security and privacy � Domain-speci�c security and privacy
architectures; Intrusion/anomaly detection and malware mit-
igation ; Malware and its mitigation ;
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1 INTRODUCTION
Adversarial samples [12] are small, usually imperceptible pertur-
bations of images (or other data) that can arbitrarily modify the
prediction of a classi�er. The Computer Vision community has ex-
tended adversarial samples to other tasks than image classi�cation
like optical �ow computation [10], object tracking [15], caption-
ing [16], face recognition[2], and image retrieval [8, 13]. These per-
turbations are not random but carefully crafted by an attacker. In a
white-boxsetting, the attacker has full knowledge of the classi�er
internals and uses the gradient of the model to �nd the appropriate
perturbation for a given image. They are becoming increasingly
important because they reveal thesensitivityof neural networks to
their inputs. That sensitivity is a vulnerability when the system is
deployed in security application.

Adversarial samples are typically evaluated by theprobability
of success, i.e.the probability that the attack deludes the classi�er,
and by thedistortionbetween the original and the attacked images.
State-of-the-art white-box attacks lead to a probability of success
near one combined with a small distortion. This shows that the
perturbation is almost imperceptible and re�ects the di�culty with
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which adversarial samples can be detected. Thespeedof an attack
is another criterion recently introduced. The fast single-step FGSM
attack [4] produces high-distortion examples where adversarial
patterns can easily be recognized. At the other extreme, theCarlini
& Wagner(CW) attack [1], considered state of the art, is notoriously
expensive.Decoupling direction and norm(DDN) [11] has recently
shown impressive progress in the trade-o� between distortion and
speed. Speed is important for adversarial retraining [9]. This pro-
cedure robusti�es a network by training it with many adversarial
samples.

A perusal of the 25 papers dealing with this topic and recently
published in the 2019 editions of the well known conferences CVPR
and ECCV shows the following fact: 88% of these research works
propose attacks forging adversarial samples which are not images!
Their outputs areadversarial samplesin the form of matrices with
continuous variables (implemented with �oat point single precision
in 4 Bytes). This paper challenges this working assumption and
investigates what happens if attacks are constrained to forgedigital
imageswith discrete pixel values encoded with a depth of 8 bits. Sev-
eral works have addressed this issue using quantized steps within
their iterative attacks [11, 14]. Our goal is howevernot to propose a
new attack, but to see how to quantify adversarial samples at best.
This is not trivial : Rounding each pixel value is an obvious but
ine�cient solution that almost always turns an adversarial sample
into a nonadversarial image.

The paper contains four contributions:

� A theoretical explanation why quantization by rounding
fails.

� A near optimal quantization procedure that keeps the adver-
sarial nature and the small distortion of the perturbation

� A review which analyses whether well-known facts in the
adversarial sample literature still hold with near optimal
quantization.

� The integration of our quantization scheme into an iterative
attack.

The outline of the paper is the following. Section 2 �rst chal-
lenges the working assumption in literature that adversarial sam-
ples need not to be quantized. Section 3 shows that simply rounding
the adversarial samples does not yield adversarial images. Section 4
presents our near optimal quantization procedure. Section 5 reports
experimental results over ImageNet when quantization is applied
after some classical attacks against `natural' and `robust' networks.
Section 6 exposes how to integrate our quantization inside an itera-
tive attack.

2 MOTIVATION
Adversarial attacks in the literature usually output real numbers
stored in matrices. We call themadversarial samplesin contrast
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to digital imagesthat are tables of integers. There are many pre-
processing recipes adapting the input image before feeding it to the
neural network. This section argues that these steps cannot explain
the assumption of working with unquantized adversarial samples
too easily admitted in this literature.

Over the 25 publications dealing with adversarial attacks in
CVPR 2019 and ECCV 2019, almost all of them de�ne a pixel as
a real value unquantized. They consider the problem of �nd a
real matrix close to the original image and whose prediction is
wrong. The words `quantization' or `discrete' are never mentioned.
The images included in these papers as illustration of adversarial
samples have been quantized for publication purpose. Therefore, it
is not sure that these published images indeed are adversarial.

Only three of these 25 papers are clearly working with quantized
images. Two of them indeed investigate attacks in thephysical world
to delude optical �ow reconstruction in autonomous cars [10] or
object tracking in video surveillance [15]. They obviously deal
with quantized images because they print patches on stickers or
they display patterns on a screen present in the scene. The only
reference coping withdigital adversarial samples which are truly
images proposes the so-called DDN attack: In [11, Sect. 3], one
reads �Besides this step, we can also consider quantizing the image
in each iteration, to ensure the attack is a valid image".It is very
surprising that the authors compares DDN with state-of-the-art
but unconstrained attacks issuing adversarial samples not images.

In the same way, the report [7] on the �Adversarial Attacks and
Defences Competition" organised at NIPS 2017 clearly states that
� the adversary has direct access to the actual data fed into the model.
In other words, the adversary can choose speci�c �oat32 values as
input for the model".There is clearly here a misconception in the
threat analysis. In thewhite boxscenario, the attacker knows all
the internals of the targeted network. She/He can reproduce it in
her/his garage and has �direct access" into this copy. Yet, the goal is
to produce an adversarial image that will delude the same classi�er
outside the garage, where access inside is forbidden. For example,
if the attacker knows the source code of the classi�er used to tag
images on a social network platform, he still needs to publish the
attacked image in a format readable by the platform, for example
in ti� or jpeg format for images.

Note that a common procedure in image classi�cation is to ap-
ply a transformation to the pixel values of the query image before
feeding the neural network. Contrary to the vast majority of ad-
versarial examples represented in the continuous domain, these
processed inputs remain discrete. This is an a�ne scaling ranging
from V := f 0•1• ” ” ” •255g to »0•1¼(or »� 1•1¼depending on the
neural network). Even if the output is encoded as �oat, this bijec-
tion results in255discretized possible values in»0•1¼. Yet, most of
papers explicitly state that the attack aims at �nding the adversarial
sample anywhere in»0•1¼= with the smallest distortion.

Another practice is to perform an object (ImageNet dataset)
or a character (MNIST dataset) detection �rst and then to query
the network with the cropped image framing the object. If the
bounding box is too large, a stretching is performed (see the CIFAR
dataset). The result of this downscaling need not to be quantized
and again can be encoded as �oat. Nevertheless, this process is done
inside the image classi�er, and the attacker has no direct access
to this auxiliary data outside the garage. Consequently, the aim of

the attacker is to modify the image before it is transmitted to the
classi�er, and therefore before any of these pre-processing tasks.

The report [7] states that �In a real world setting, this might
occur when an attacker uploads a PNG �le to a web service, and
intentionally designs the �le to be read incorrectly." This motivates
the choice of the �oating point representation for unquantized pixel
values. On one hand, this community has well accepted that these
values should only lie in»0•1¼. So, if the attacker is so powerful
that she/he can inject any �oating point value, then why should we
restrict the range to»0•1¼? On the other hand, we argue here that
this is a security threat not targeting the classi�er but the image
loader software that decodes the received �le into a matrix of pixel
values. There are known conception rules in computer security to
avoid hacks like bu�er over�ows.

There are almost as many defense papers as attack papers in
this literature. Authors validate that their defense does not degrade
the classi�er accuracy on the original images of the test dataset,
which are of course quantized. In the same time, they measure the
defense ability on the attacked versions of these images, which are
not quantized. It is funny to notice that detecting whether the input
is quantized would be the simplest defense able to block most of
the attacks.

The next section shows that quantization is not an ino�ensive
processing step: it can strongly impact the success rate of an attack.

3 PROBLEM FORMULATION
This section introduces basic notations of image classi�cation with
neural network, brie�y presents some well known white-box at-
tacks, and exposes the impact of quantization when rounding weak
perturbations.

3.1 Background
3.1.1 Notations.Let X := f 0•1• ” ” ” •255g= denote the set ofim-

ages. This means that, for sake of clarity, an image is a �attened
vectorx 2 X whose length= is the total number of pixels (grayscale
like MNIST dataset) times 3 color channels (ImageNet or CIFAR
dataset). The classi�er usually pre-processes the input image by
a function a : X ! S whereS := »0•1¼= (or S := »� 1•1¼= for
some implementations of ResNet). We calls := a¹xº 2 S a sample.
A classi�er is a functionf : S ! P � whereP� is the simplex of
dimension� : p = f ¹sº is a vector of� positive components sum-
ming up to 1,?¹: º being the predicted probability that samples
belongs to class: 2 »� ¼(with »=¼:= f 1•2• ” ” ” •=g). The classi�er
top-1 predictionc : S ! » � ¼maps the samples to the class label
having the maximum probability:

c ¹sº := arg max
: 2»� ¼

?¹: º” (1)

The prediction is correct ifc ¹sº = t ¹sº, thetrue labelof samples.

3.1.2 Problem formulation.In the untargetedscenario, the aim
of the attacker is to delude the classi�er in whatever manner,i.e.
its predicted class is not the true label.

In the literature, an adversarial samples0 is a quasi-copy of a
given original samples> wherec ¹s0º < t ¹s>º althoughks0 � s>k!
is small (the! -norm of S, with ! 2 f0•1•2•¸1g ).



In this paper, an adversarial imagex@ is a quasi-copy of an
original imagex> wherec ¹a¹x@ºº < t ¹a¹x>ºº. The constraint is
that x@is a digital image,i.e. it belongs toX. The distortion in
this paper is measured by the Euclidean norm in the image pixel
domainX (and not inS as in many papers).

The framework considers an original imagex>, the output of an
attackx0 which is not a priori a digital image, and the quantization
of x0 into x@2 X. We denote byu the unquantized perturbation,q
the quantization noise and bye the �nal adversarial perturbation:

u := x0 � x>• (2)

q := x@� x0• (3)

e := x@� x> = u ¸ q” (4)

3.1.3 The classification loss.In a white-box scenario, the at-
tacker gauges how close he/she is from his/her goal with a measure
called the classi�cation loss. This is typically the negative cross-
entropy L� ¹s0º = log?0 ¹t ¹s>ºº (with p0 := f ¹s0º) or whatever
increasing function of?0 ¹t ¹s>ºº. The role of the attack is to de-
crease this loss so that?0 ¹t ¹s>ºº is so small that the sample is no
longer classi�ed as the ground truth. In other words,s0 is repelled
from the original class region.

Another option is to attracts0 to another class region, for in-
stance the most likely other prediction:

L� ¹s0º = log?0 ¹t ¹s>ºº � log max
: <t ¹s> º

?0 ¹: º” (5)

This has the advantage of indicating byL� ¹s0º Ÿ 0 that the attack
succeeds. Indeed, ifL� ¹s0º = < Ÿ 0 then?0 ¹t ¹s>ºº is 4< smaller
than the estimated probability of the predicted class.

3.2 Well known attacks
This section summarizes well-known attacks in the literature, which
we consider in the experimental body in Sect. 5. The linear pre-
processinga¹�º mapping each pixel toS is integrated in the neural
network, and hence in the lossL� . This allows to describe the
attacks in the domain»0•255¼=.

Fast Gradient Sign Method.FGSM is the oldest and simplest at-
tack [4]. It has one unique parametern ¡ 0. Its expression is simply:

x0 = cl
�
x> � nsign

�
r xL� ¹xºjx>

� �
• (6)

wherecl clips the pixel values to»0•255¼. Note thatx0 2 X if and
only if n 2 N. The �nal distortion is kx0 � x>k2 = =n2 (neglecting
the clipping).

Iterative FGSM..This is the iterated version of FGSM introduced
in [6]. We consider the version that repeats the update:

x ¹8̧ 1º
0 = cl

�
x ¹8º

0 � Usign
�
r xL� ¹xºj

x ¹8º
0

� �
• (7)

until a maximum number# of iterations is met or untilx ¹8º
0 is

adversarial. It has two parametersU and # . The distortion is at
most=¹U#º2 (achieved if the gradient is a constant vector).

Projected Gradient Descent.We refer to PGD2 as the Euclidean
version of the projected gradient descent [9]. Its update is given by

x ¹8̧ 1º
0 = cl

 

projn

 

x ¹8º
0 � U

r xL� ¹xºj
x ¹8º

0

k r xL� ¹xºj
x ¹8º

0
k

!!

(8)

whereprojn is the projection on the ball of centerx> and radiusn.
It means that the update is scaled back onto the sphere of radiusn
if it goes outside that ball. This attack has three parameters:U, n
and the maximum number# of iterations. Usually, we setn as a
fraction ofU#.

Carlini and Wagner.We refer to CW as the attack invented by
Carlini and Wagner, authors of [1]. It uses the ADAM solver to �nd
the minimum of the Lagrangian formulation:

� ¹x• `º = kx � x>k2 ¸ ` jL� ¹xº � < j¸ • (9)

where< � 0 is a margin andj0j¸ = 0 if 0 ¡ 0, and0 otherwise.
Then, an outer loop tests di�erent values of` in a line search. The
adversarial sample with the lowest distortion is the �nal output.
The parameters are usually the number of iterations for the inner
loop (ADAM) and for the outer loop.

Decoupling Direction and Norm.This attack denoted DDN is
de�ned in [11] by its update:

x ¹8̧ 1º
C = x ¹8º

0 � U
r xL� ¹xºj

x ¹8º
0

k r xL� ¹xºj
x ¹8º

0
k
• (10)

x ¹8̧ 1º
0 = cl

 

x> ¸ d¹8̧ 1º x ¹8̧ 1º
C � x>

kx ¹8̧ 1º
C � x>k

!

” (11)

whered¹8̧ 1º = ¹1¸ Wºd¹8º if x ¹8º
0 is not adversarial andd¹8º = ¹1 �

Wºd¹8º otherwise (withd¹1º = U). SinceW¡ 0, DDN increases (resp.
decreases) the budget distortiond¹8̧ 1º if x ¹8º

0 is still not adversarial
(resp. is already adversarial). In its quantized version, the function
cl¹�º not only clips to»0•255¼but also rounds each component to
the nearest integer. This is done at the end of each iteration. The
adversarial sample with the lowest distortion is the �nal output.
This attack has 3 parameters:U,W, and# .

3.3 Why rounding fails
We suppose that an attack producesx0 = x> ¸ u which a priori
does not belong to the set of discrete valuesX. A solution is then
to quantize back ontoX by applying the rounding to the nearest
integerR¹�º:

x@= R¹x> ¸ uº = x> ¸ R¹uº• (12)

where we make the abuse of notation:R¹xº means rounding each
component of the vectorx. We also assume thatx> ¸ R¹uº 2 X
without clipping. The last equality comes from the fact thatx> 2 X.

The following study aims at predicting the norm of the update
after quantization, assuming that rounding is independent from the
computation of the perturbation. Denote bye := R¹uº. Pixel 9is
quantized to

G@¹9º = G>¹9º ¸ 4¹9º• (13)

whenD¹9º 2 ¹49 � 1•2• 49 ¸ 1•2¼for some4¹9º 2 Z. Border e�ects
whereG¹9º ¸ 4¹9º 8 X are neglected here.

We now take a statistical point of view where the update is
modelled by a random vectorU uniformly distributed over the
hypersphere of radiusd. That parameterd is the norm of the per-
turbation beforequantization. This yields random quantized values,



denoted by� ¹9º 2 Z for pixel 9. The distortionafter the quantiza-
tion is given by:

� 2 = kEk2 =
=Õ

9=1

� ¹9º2” (14)

A common approach in source coding theory is the additive
noise model for quantization error in the high resolution regime [3].
It states that� ¹9º = * ¹9º ¸ & ¹9º where&¹9º 2 ¹� 1•2•1•2¼is the
quantization error. In the high resolution regime whered � 1,& be-
comes uniformly distributed (s.t.E¹& ¹9ºº = 0andE¹&¹9º2º = 1•12)
and independent of* ¹9º (s.t.E¹* ¹9º& ¹9ºº = E¹* ¹9ººE¹&¹9ºº = 0).
Under these assumptions, Eq. (14) simpli�es in expectation to:

E¹� 2º = E
©
­
«

=Õ

9=1

* ¹9º2 ¸ & ¹9º2 ¸ 2* ¹9º& ¹9ºª®
¬

= d2 ¸
=
12

” (15)

This shows that rounding increases the distortion on expectation.
Yet, this simple analysis is wrong outside the high resolution

regime, and we need to be more careful. The expectation of a sum
is always the sum of the expectations, whatever the dependence
between the summands:E¹� 2º =

Í =
9=1 E¹� ¹9º2º = =E¹� ¹9º2º with

E¹� ¹9º2º =
255Õ

� =0

� 2P¹j� 9j = � º” (16)

We need the distribution of� ¹9º to compute the expected dis-
tortion after rounding. This random variable� ¹9º takes a value
depending on the scalar product* ¹9º := U> c9, wherec9 is the
9-th canonical vector. This scalar product lies in»� d• d¼, so that
P¹� ¹9º � � º = 0 if d Ÿ � � 1•2. Otherwise,j� ¹9ºj � � when
j* ¹9ºj � � � 1•2, which happens whenU lies inside the dual
hypercone of axisc9 and semi-angle\ ¹� º = arccos¹2¹� ºº with
2¹� º := ¹2� � 1º•2d as shown in Fig. 1.

SinceU is uniformly distributed over an hypersphere, the proba-
bility of the eventfj* ¹9ºj � � � 1•2gis equal to the ratio of the solid
angles of this dual hypercone and the full spaceR=. This quantity
can be expressed via the incomplete regularized beta function� . In

0 1 2 3� 1� 2� 3

d

\ ¹1º
\ ¹2º

Figure 1: The dual hypercones related to � = 1 and 2. Since
d Ÿ 3 � 1•2, the other hypercones do not exist.
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Figure 2: Expected power E¹� 2º•= after rounding as a func-
tion of the perturbation power d2•= before rounding.

the end,8� 2 f0• ” ” ” • !� 1g,

P¹j� ¹9ºj � � º =

8>>><

>>>
:

1• if � = 0

1 � �2¹� º2 ¹1•2•¹= � 1º•2º• if 0 � 2¹� º � 1

0• otherwise

Note that it approximately equals2� ¹
p

=2¹� º•2º for large=, where
� is the cumulative distribution function.

ComputingE¹� 2º is now possible with the simple trick for dis-
crete r.v.:P¹j� ¹9ºj = � º = P¹j� ¹9ºj � � º � P¹j� ¹9ºj � � ¸ 1º. This
expected distortion after rounding depends on= andd, the norm
of the perturbation before rounding. Figure 2 shows that rounding
reduces the distortion outside the high resolution regime. Indeed,
the distortion after quantization is smaller than before quantization
when d2•= Ÿ 0”08for = = 3 � 2992 (i.e. the dimension of images
from ImageNet). When the adversarial perturbation has a smaller
norm d, rounding is likely to kill it and R¹x0º = x>, or at least
to drastically decrease its amplitude. Since known attacks achieve
rather low distortion, we are not in the high resolution regime and
the rounding likely pulls down the attack.

This is a statistical study working on expectation. This phenome-
non happens systematically on some attacks when the perturbation
on each pixel value has a small amplitude. For instance with FGSM
(6), we haveD¹9º = � n•892 »=¼which givesd = n

p
=. Then, each

pixel perturbation is rounded to4¹9º = � R¹nº so that

� 2 = =R2
�

d
p

=

�
” (17)

As shown in Fig. 2, rounding systematically cancels FGSM for
n Ÿ 1•2, whereas it ampli�es it a lot for1•2 Ÿ n Ÿ 1.

4 OUR APPROACH
Our approach considers quantization as a post-processing indepen-
dent of the attack. The quantization does not interfere with the
attack, which is a state-of-art implementation taken o�-the-shelf
as a black-box.

From an original imagex> 2 X, this attack has produced a
samplex0 which does not a priori belong toX. This sample may
or may not be adversarial depending whether the attack succeeded



or not. We aim at �nding the best quantization process producing
x@= Q¹x0º 2 X adversarial with high probability.

We make the following assumptions. Since we are in a white-box
setting, the quantization mechanism has access to:

� the original imagex>,
� the samplex0 = x> ¸ u produced by the attack,
� the prediction function of the classi�er,
� the gradient of this function.

Our approach constrains the quantization to consider only two
options per pixel1: 89 2 »=¼• G@¹9º 2 fdG0 ¹9ºe•bG0 ¹9ºcg. This
can be rewritten asG@¹9º 2 x>¹9º ¸ fdD¹9ºe•bD¹9ºcg. Note that if
D¹9º 2 Z, dD¹9ºe= bD¹9ºc = D¹9º. Assuming this special case rarely
occurs, this leaves almost2= possibilities in total.

As in Sect. 3, the quantization is modelled by the addition of a
noiseq as follows

x@= x0 ¸ q = x> ¸ u ¸ q” (18)

For each pixel, we see that@¹9º takes the valuedD¹9ºe � D¹9º � 0
or bD¹9ºc � D¹9º � 0.

4.1 Distortion based quantization
We de�ne the functionD of q as the �nal distortion after quantiza-
tion w.r.t. x>:

D¹qº := kx@� x>k2 = ku ¸ qk2” (19)

We de�ne Q0 the quantization that minimises the distortion. For
the 9-th pixel, it makes@¹9º ¸ D¹9º = dD¹9ºeif dD¹9ºe2 Ÿ bD¹9ºc2,
i.e. if D¹9º Ÿ 0.

Q0¹G0 ¹9ºº := G>¹9º ¸

(
dD¹9ºe if D¹9º � 0•

bD¹9ºc if D¹9º ¡ 0”
(20)

Note that the distortion is lower after this quantization:kx0 �
x>k2 � k Q0¹x0º � x>k2. However, we don't have any guarantee
that Q0¹x0º is adversarial. For instance, ifjD¹9ºj Ÿ 1• 89 2 »=¼,
then eitherdD¹9ºeor bD¹9ºc equals 0, andQ0¹x0º = x>, which is
not adversarial.

4.2 Gradient based quantization
Another option is to quantize in order to strengthen the adversari-
ality of the image. We de�ne a new classi�er loss as follows:

L& ¹qº := ?@¹C¹x>ºº � ?@¹^0º• (21)

p@ := f ¹a¹x0 ¸ qºº• (22)

^0 := arg max
: <C¹x> º

?0 ¹: º” (23)

In words, the loss is the di�erence between the predicted proba-
bilities that x@belongs to the true class ofx> minus the one of a
given clasŝ 0 2 »� ¼. That clasŝ 0 is indeed the class region where
the attack tried to drive samplex0 to, with or without success. Our
quantization works with this loss function whatever the lossL�
used by the attack before.

We de�ne quantizationQ1 which aims at getting2 L& ¹qº Ÿ 0,
indicating that x@is adversarial. Sinceq is a small quantization

1dGe is de�ned as the unique integer s.t.dGe � 1 Ÿ G � d Ge. bGc is de�ned as the
unique integer s.t.bGc � GŸ bGc ¸ 1.
2A margin< � 0 can be also be enforced withL& ¹qº Ÿ < Ÿ 0.

noise, we approximate this loss to the �rst order:

L& ¹qº � L& ¹0º ¸ q> g• (24)

whereL& ¹0º is the classi�er loss computed atq = 0 (i.e. when
x@= x0, it is lower than 0 if the previous attack succeeded), and
g := r L& ¹qº

�
�
0 is its gradient computed atq = 0.

QuantizationQ1 minimizes the classi�er loss through its ap-
proximation which is a correlation over the pixels. Therefore, it
makes the signs of@¹9º and6¹9º opposite:

Q1 ¹G0 ¹9ºº := G>¹9º ¸

8>>><

>>>
:

dD¹9ºe if 6¹9º Ÿ 0•

Q0¹G0 ¹9ºº if 6¹9º = 0•

bD¹9ºc if 6¹9º ¡ 0”

(25)

Since the quantization is not impacting the approximation loss
when6¹9º = 0, we choose the option that minimizes the distortion.

4.3 Our approach: Lagrangian quantization
In our approach, the quantizationQ_ minimizes a linear combina-
tion of the distortion and the classi�er loss: For_ � 0:

Q_ ¹x0º := x> ¸ u ¸ arg min
q

D¹qº ¸ _L& ¹qº• (26)

under the constraint that@¹9º 2 fdD¹9ºe•bD¹9ºcg � D¹9º• 892 »=¼.
Thanks to the �rst order approximation(24)of the classi�er loss,
the functional to be minimized in(26)becomes a sum over all
pixels. The optimization problem can be solved by considering the
quantization of each pixel independently,892 »=¼:

@¹9º = arg min
@2f dD¹9º e•bD¹9º c g�D¹9º

¹D¹9º ¸ @º2 ¸ _6¹9º@” (27)

Consequently the complexity of the quantization breaks down from
$ ¹2=º to $ ¹=º by solving= trivial optimization problems: When
D¹9º 8 Z then bD¹9ºc = dD¹9ºe � 1, and the solution is found as:

Q_ ¹G0 ¹9ºº = G>¹9º ¸

(
dD¹9ºe if 1 � 2dD¹9ºe � _6¹9º

bD¹9ºc otherwise”
(28)

Note that we �nd back the previous rule(20)when_ = 0 because
¹1 � 2dD¹9ºeº ¡ 0 if and only if D¹9º � 0. In the same way,Q_
converges to mechanismQ1 (25)because only the sign of6¹9º
matters when_ ! ¸1 .

Figure 3 illustrates the three quantization schemes in the domain
¹6¹9º•dD¹9ºeº. Note that there are pixels which are always quan-
tized in the same way whatever the value of_ � 0. This is the case
when one quantization value minimizes both the distortion and the
classi�er loss:

� for all indices where6¹9º Ÿ 0 and dD¹9ºe Ÿ 1•2, @¹9º is
always quantized todD¹9ºe � D¹9º,

� for all indices where6¹9º ¡ 0 and dD¹9ºe ¡ 1•2, @¹9º is
always quantized tobD¹9ºc � D¹9º.

We denote byJ � » =¼the (complementary) subset of indices
whose quantization depends on_. It is de�ned as:

J := f 92 »=¼: 6¹9º < 0• sign¹6¹9ºº < sign¹dD¹9ºe � 1•2ºg” (29)

We assume that this subset is not empty. Sect. 5.2 empirically shows
that J gathers around three fourths of the pixels.



4.4 Choice of Lagrange multiplier _
We now look for the best value of_ ¡ 0. When_ increases, the
quantization trades the distortion against the classi�er loss. The
distortion is the lowest for_ = 0 and increases, whereas the classi-
�er loss (at least its approximation(24)) is a decreasing function of
_. Therefore, ifQ1 fails forging an adversarial image, so doesQ_
whatever the value of_. Otherwise, it is worth looking for the best
value_¢ giving the smallest distortion while succeeding to delude
the classi�er.

For all indices inJ , we de�ne the following ratio:

A¹9º :=
1 � 2dD¹9ºe

6¹9º
¡ 0• (30)

so that the quantization rule (28) becomesQ_ ¹G0 ¹9ºº = G>¹9º ¸
dD¹9ºeif A¹9º ¡ _ andQ_ ¹G0 ¹9ºº = G>¹9º ¸ bD¹9ºc otherwise. An
index 9in J sees@¹9º moving from one value to another when_
has increased up to the valueA¹9º. Note that it is useless to explore
_ 2 ¹max9A¹9º•¸1º in the sense that values of_ in this interval
gives birth to the same results asQ1 .

Therefore, we carry on a search of the minimal value of_¢ 2
»0•max9A¹9º¼giving an adversarial image,i.e. L& ¹qº � 0. To do
this, we rank the ratios¹A¹9ºº92J by increasing order. Pixels ranked
�rst o�er a better trade-o�: they yield a valuable loss decrease for
a modest distortion increase. We perform a binary search on this
sorted set, so that_¢ = A¹9¢ º the smallest ratio giving an adversarial
image. This has a complexity in$ ¹log=º sincejJ j � =.

4.5 Calls to the network
Solving problem(26)for a given_ a priori needs$ ¹2=º calls to
the network. By replacing the loss by its linear approximation(24),

6¹9º

dD¹9ºe

_ = 0

_ ¡ 0

_ = ¸1

1
2

Figure 3: Quantizing with Q_ in the domain ¹6¹9º•dD¹9ºeº.
The colored regions show when @¹9º is quantized to dD¹9ºe �
D¹9º, i.e. Q_ ¹G0 ¹9ºº = G>¹9º ¸ dD¹9ºe, depending on _. In
the complementary half-plane, @¹9º = bD¹9ºc � D¹9º and
Q_ ¹G0 ¹9ºº = G>¹9º ¸ bD¹9ºc. In the hashed areas, quantization
is always the same, independently of _.

the complexity is reduced to$ ¹1º calls to get the gradientg :=
r L& ¹qº

�
�
0. The gradient is computed by backpropagation and thanks

to auto-di�erentiation, its complexity is roughly twice the complex-
ity of one forward pass in the network.

The above-mentioned binary search over_ can also resort to the
approximated classi�er loss. This avoids any call to the network.
Nevertheless, this �rst order approximation is sometimes not ac-
curate (see Fig. 4). An idea is to compensate this by a margin: The
binary search ends with a value of_ for which the approximated
loss(24)is below that margin. Setting the value of that margin s.t.
the real loss is below zero with high probability is however di�cult.

Another option is that the binary search uses the true classi�ca-
tion loss(21)by calling the network to check whetherL& ¹qº � 0.
The complexity of the search now dominates the cost of the quanti-
zation: It scales as$ ¹log=º calls to the forward pass of the network
(sincejJ j � =). In our simulation over ImageNet, the search ends
within at most 18 calls. To summarize, the �rst order approxima-
tion (24)is used to quantize pixels(28)and to rank the pixels ac-
cording to ratio(30), but the search of_ uses the true classi�cation
loss (21).

5 EXPERIMENTAL WORK
This section presents experimental investigations about the impact
of the quantization, and then a benchmark of several attacks. We
�rst present the experimental protocol.

5.1 Experimental Protocol
5.1.1 Dataset and Networks.Our experiments are based on the

dataset of images used for the NeurIPS competition [7]. This is
indeed a subsection of 1,000 images from ImageNet. We test several
versions of the ResNet neural network [5]: the basic ResNet-18,
the deeper ResNet-50, and ResNet-50R, its version robusti�ed by
adversarial retraining with PGD2 [9].

Table 1 shows that ResNet-50 is more powerful than ResNet-
18 enjoying a better accuracy with a higher con�dence. On the
contrary, adversarial retraining has notably spoiled the accuracy of
this network.

5.1.2 Evaluation procedure.Comparing attacks is di�cult be-
cause they have di�erent purposes. FGSM(6) and PGD2 (8) are
constrained on the distortion: the main parameter is the allocated
distortion budget. In the literature, these attacks are gauged by
measuring the probability of success for a given distortion budget.
In contrast, CW(9)and DDN(10)are forging an adversarial sample

Table 1: Accuracy and con�dence of the image classi�ers
measured on the NeurIPS competition [7] dataset. Con�-
dence is gauged as the mean of the estimated probability of
the ground truth class as provided in the dataset, knowing
that the prediction is correct.

Accuracy Con�dence

ResNet-18 [5] 84”1% 0”79
ResNet-50 [5] 92”7% 0”88

ResNet-50R [9] 69”1% 0”60



almost surely (if the total number of iterations is large enough).
These attacks are usually gauged by the average distortion.

For a fair comparison, we adopt the methodology of [17] com-
paring operating characteristics. This characteristic is the function
relating a distortion measure�3 to the probability of success%BD2.
Here, we measure the square root of the perturbation power (which
is also the standard deviation in the pixel domain):

d¹x@•x>º := kx@� x>k•
p

=” (31)

For example, FGSM givesd¹x@•x>º = n since all pixels are modi�ed
by � n.

For CW and DDN (with or without quantization), the attack is
mounted over the" imagesf x>•< g"

< =1 of the dataset. Images for
which the attack failed are discarded. We measure the distortion for
the adversarial images and construct the characteristic�3 ! %BD2¹ �3º
with:

%BD2¹ �3º := " � 1 �
�f< : d¹x@•<•x>•< º Ÿ �3g

�
� ” (32)

For FGSM, IFGSM, and PGD2 (with or without quantization),
several parameter values are tested. For each image, we record the
lowest distortion obtained for a success. This is what the attacker
would do in a white-box scenario. For instance, with FGSM, we run
a line search overn in (6)for each image in order to get the smallest
possible value that succeeds in deluding the classi�er. Then, the
operating characteristic is constructed as mentioned above.

5.2 Illustration of our approach
This section gives some illustrations of our quantization mechanism
Q_¢ . Table 2 �rst o�ers some statistics counting how many pixels
are quantized s.t. it induces a loss decrease. This concerns two
populations of indices:

� indices in »=¼nJ. Their quantization does not depend on
_¢ because it decreases both the distortion and the approxi-
mated loss(24). Their couple¹6¹9º•dD¹9ºeºlies in the hashed
regions depicted in Fig. 3.This roughly corresponds to one
fourth of the pixels (see Table 2).

� indices in J whose ratio(30)A¹9º is lower than_¢ . Q_¢

quantizes these pixels because they o�er a more interesting
loss decrease at a rather small distortion increase.

The global percentage re�ects the robustness of the classi�er. A
more robust classi�er implies more pixels quantized to reduce the
loss at the expense of more distortion. We clearly see that ResNet-18
is less robust than ResNet-50 less than ResNet-50R. This global per-
centage also re�ects the power of the attack: PGD2is more powerful
than FGSM.

Table 2: Percentage of quantization contributing to a loss de-
crease. The �rst number is the percentage of quantization
decreasing both loss and distortion (see hashed regions in
Fig. 3), the second number depends on the value of _¢ .

Attacks FGSM PGD2

ResNet-18 29”5 ¸ 3”8 = 33”3% 26”1 ¸ 4”5 = 30”6%
ResNet-50 34”0 ¸ 4”8 = 38”8% 26”5 ¸ 3”7 = 30”2%

ResNet-50R 27”8 ¸ 13”9 = 41”7% 21”3 ¸ 16”7 = 38”0%
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Figure 4: Trade-o� between the classi�er loss and the distor-
tion as _ = A¹9º for increasing sorted index 9. (Top) ResNet-50,
(Bottom) ResNet-50R.

Figure 4 illustrates how we set the value of_¢ by showing how
the classi�er loss and the distortion evolves as_ increases for a given
image. The x-axis represent the pixel indices ofJ once sorted by
their ratios fA¹9ºgin ascending order. Our approach �nds the index
9¢ for which the loss cancels and which de�nes_¢ = A¹9¢ º. From
the experiments we conducted, we have noticed that(24)is often a
poor approximation of the true loss (21) of ResNet-18 and ResNet-
50. This justi�es the use of(21)in the line search for �nding the
value of_¢ . The approximation(24)is then only used for ranking
the pixels by the trade-o� between distortion and classi�er loss
they individually provide. Yet, the approximation is much better for
ResNet-50R. We suspect that this is due to the small norm gradient
of the loss of this robust network.

5.3 Experimental investigations
In this section, the attacks are conducted with the "best e�orts", in
the sense that their complexity is not limited. The total number#
of iterations is high, the stepU is small, manyn values are tested
(see Sect. 3.2). The goal is to forge for each image its adversarial
counterpart o�ering the best quality with the purpose of revealing
the intrinsic power each attack.

5.3.1 The nature of the quantization.We �rst study the impact of
the roundingR(Sect. 3.3), the quantizationQ_ with _ = 0(Sect. 4.1),
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Figure 5: Operating characteristic of FGSM against classi�er
ResNet-18 for n 2 »0•1¼.

_ = ¸1 (Sect. 4.2), and the optimal strategy where the best value
_¢ is found for each image (Sect. 4.4). The classi�er is ResNet-18
and the attack is FGSM (6).

Figure 5 shows the operating characteristics whenn 2 »0•1¼. For
n Ÿ 1, the pixel perturbation has an amplitude smaller than 1 and its
quantization has the following two options: eitherf 0•1gor f� 1•0g
depending on the sign of the perturbation. Therefore, for minimiz-
ing the distortion,Q0¹x0º = x> systematically. Forn = 1 exactly,
the quantization has only one option (eitherf 1gor f� 1gdepending
on the sign of the perturbation). Then,d¹Q0¹x0º•x>º = 1 and it
happens that almost all the images are adversarial. Therefore, the
operating characteristic forQ0 is almost an all-or-nothing function.
%BD2¹ �3º ¡ 0 for �3 . 1 due to the border e�ect clipping the pixel
values to the range»0•255¼.

The rounding to the nearest integerRhas the same operating
characteristic in Fig. 5 . Forn Ÿ 0”5 the perturbation is rounded to
0 for all pixels. Forn ¡ 0”5 the perturbation is rounded to� 1 and
the result is the same as forn = 1 with Q0.

The operating characteristic forQ1 is more interesting. Suppose
that for the 9-th pixel,0 Ÿ D¹9º = n Ÿ 1. According to(6), this is due
to the fact that the gradient of the loss atx> has a negative compo-
nent at index9. According to(28), Q1 quantizes this perturbation
back to0 if 6¹9º ¡ � 1•_. Yet, that6¹9º is the 9-th component of the
gradient computed atx0. Hence for_ large enough, when these
two gradients do not agree on the sign of the same component, that
perturbation pixel is quantized to0. We would expect this event
to be seldom. However, since the operating characteristic is peaky
around �3 = 0”7 � 1•

p
2 and that all the other perturbation pixels

are quantized to� 1, it means that50%of the pixels are quantized
back to the original value.

From theses di�erent results we can see that our approachQ_¢

provides a huge improvement. Indeed, its operating characteristic
is as good as the one of the unquantized FGSM. Quantization is
especially more e�ective at middle range distortion: For�3 = 0”4,
the success rate is higher by 10 points. Its operating characteristic
also converges to a higher level.
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Figure 6: Operating characteristic for FGSM, IFGSM, PGD2,
and CW against ResNet-18. (dashed) without quantization,
(dotted) with rounding, (plain) with our approach.

5.3.2 With or without quantization.Figure 6 compares the oper-
ating characteristics for the attacks FGSM, IFGSM, PGD2, and CW
with and without quantization (by rounding or by our approach)
against ResNet-18.

Without quantization, we �nd back the hierarchy well-known
in the literature: CW is better than PGD2 better than IFGSM better
than FGSM. Note that the di�erence between CW and PGD2 is not
tangible in this Fig. 6 (dashed plots) because we use a super-�ne step
for PGD2. Rounding completely spoils these attacks because the
distortion before quantizing is too low (dotted plots). This illustrates
the theoretical study of Sect. 3.3. Our approach almost preserves the
operating characteristics without rounding (plain curves). Indeed,
our quantization mechanism improves FGSM but slightly degrades
the other attacks. The hierarchy is preserved but the di�erences
are now tiny.

5.3.3 Natural vs. robust network.Figure 7 shows operating char-
acteristics against a deeper network (ResNet-50) and its robust ver-
sion (ResNet-50R) �ne-tuned by adversarial retraining with PGD2.

Attacking a deeper network does not change much the perfor-
mances except for the rudimentary FGSM:n must be bigger than 1
to reach 90% in success rate. Note that our approach �xes this as
%BD2¹ �3º ¡ 90%for �3 = 0”5. As for the other attacks, our approach
preserves the operating characteristics.

Attacking the robust network is another story. For a given level
of %BD2, the necessary distortion is much bigger. Note that the range
of the x-axis in Fig. 7 is not the same as the one of Fig. 6. CW and
PGD2 are attacks more powerful than FGSM and IFGSM.

For FGSM, our approach produces an operating characteristic
with `leaps'. One leap corresponds to a range¹:• : ¸ 1¼with : 2 N
for the parametern. This is due to the fact that our approach is
constrained: For any value inside that range, it quantizesjD¹9ºj to
f :• : ¸ 1g. Indeed, forn 2 N, the quantization introduces no changes:
Q_ ¹x0º = x0. This is where the operating characteristic touches
back the one without quantization. As for the other attacks, our
approach improves or at least preserves the operating characteristic
without quantization.
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Figure 7: Operating characteristics against a natural net-
work (ResNet-50) or a robust network (ResNet-50R) with
and without quantization for the attacks (Top) FGSM and
IFGSM, (Bottom) PGD2 and CW.

Figure 8 displays some of the worst case examples with visible
distortion against ResNet-50R and their equivalent on ResNet-50.
For each image, the original is shown in the �rst column. For both
network, the image on the left corresponds to the rounding that
occurred when saving an adversarial samplex0 forged by PGD2
in the `png' format. This rounded image is no longer adversarial
except for the zebra on ResNet-50R. The image on the right shows
the result when quantizing PGD2 with our approach.

When quantized with our method, the four images remain adver-
sarial. On ResNet-50 our method increases the distortion in order
to remain adversarial. On ResNet-50R our method actually slightly
decreases the distortion and returns an adversarial image.

Although distortions are di�erent in between the two images,
they remain visually similar. On ResNet-50 the perturbation is im-
perceptible while it is very much is on ResNet-50R. This illustrates
how the adversarial training defends the network against an attack.

5.4 Benchmark
This section now compares the attacks with our quantization to
DDN (10), one of the rare attack `natively' producing quantized
digital images in the recent literature For a fair comparison w.r.t.
complexity, the attacks are mounted against the robust network
ResNet-50R but with a limited complexity (contrary to the previous

study): they all compute 100 gradients. In other words, the total
number of iterations is# = 100.

The setup is the following:

� FGSM(6). # = 100� 1: We test a hundred values ranging in
0”15� f 1•2• ” ” ” •100g for parametern.

� IFGSM(7). # = 5 � 20: Parametern is set to �3max•# with
# = 20and �3max is given by a 5-step binary search over
»0•15¼.

� PGD2 (8). # = 2 � 5 � 10. For ResNet-50,U 2 f1•5g. For
ResNet-50R,U 2 f50•100g. A 5-step binary search �nds
the correctn to produce an adversarial example after 10
iterations.

� CW (9). # = 5� 20: 5 iterations for the outer loop, 20 for the
ADAM inner loop, and a margin< = 0. The learning rate is
0.005 (resp. 0.01) and` is initialized to1000(resp.5000) for
ResNet-50 (resp. ResNet-50R).

� DDN (10). # = 2 � 50: For ResNet-50,U 2 f100•500g. For
ResNet-50R,U 2 f 1000•5000g. Each value ofU is tested with
# = 50iterations andW= 0”05.

Fig. 9 shows that CW and PGD2 are now on par when under
limited complexity (CW is slightly better at low distortion but PGD2
is better when�3 � 4 against ResNet-50R). DDN is not performing
well as it is worse than CW, PGD2, and even IFGSM for ResNet-50.
The next section investigates on this di�culty.

6 INTEGRATION INSIDE AN ITERATIVE
ATTACK

So far, our quantization mechanism is decoupled from the attack
forging x0. This is in strong contrast with the quantized version
of DDN in [11] where a rounding concludes each iteration. This
section proposes a proof of concept on how to integrate our quan-
tization mechanism inside an iterative attack like DDN.

The main message is that this integration must follow the spirit
of the attack. In DDN, the iteration(10)is driven by a distortion
budget parametrized byd¹8º . This budget is adaptively scheduled
over the iterations in the following way: it is increased if the sample
x ¹8� 1º

0 is not yet adversarial, it is decreased if that sample is already
adversarial. However, the rounding concluding the iteration may
spoil this �ne-tuning of the distortion as seen in Sect. 3.3.

Our approach is able to better handle this distortion scheduling. It
amounts to change the setting of the Lagrangian parameter in(26).
We will de�ne it by X¢ , not to confuse with_¢ . As illustrated
in Fig. 4, the distortion fromx> is an increasing function of_.
Therefore, we setX¢ as the value of_ which gives the scheduled
distortion.

Once the pixels ofJ (29)are ranked according to their ratios
fA¹9ºgde�ned in (30), the line search �nds the �rst (resp. last) index
: ¢ s.t.X¢ = A¹: ¢ º produces a distortion bigger (resp. smaller) than
the targeted budget when the previous samplex ¹8� 1º

0 is not yet
(resp. is already) adversarial. This de�nes the quantizationQX¢

which minimizes the approximated classi�er loss while ful�lling
the scheduled distortion.

This has to be done for each iteration. However, since the stop-
ping condition is de�ned via the distortion, the line search no longer
calls the classi�cation network. Usually, the complexity of an attack



ResNet-50 ResNet-50R
Original Rounding Our approach Rounding Our approach

`Street sign' `Street sign'�3=0.23 `Doormat'�3=0.32 `Street sign'�3=7.16 `Doormat'�3=6.91

`Baseball' `Baseball'�3=0.31 `Golf ball'�3=0.51 `Baseball'�3=9.84 `Golf ball'�3=9.68

`Zebra' `Zebra' �3=0.33 `Spiral'�3=0.42 `Spiral' �3=9.09 `Spiral'�3=8.79

`School bus' `School bus'�3=0.33 `Trolley'�3=0.45 `School bus'�3=12.06 `Trolley'�3=11.82

Figure 8: Examples of adversarial images against natural ResNet-50 and its robust version ResNet-50R. They are created with
PGD2 followed by a rounding (2nd and 4th columns) or our approach (3rd and 5th columns).

is measured by the number of calls to the classi�er. Our integration
inside DDN does not spoil its low complexity as it only consumes
one gradient computation. This gradient information is used to
compute ratiosfA¹9ºgde�ned in (30).

Fig. 10 shows operating characteristics of three versions of DDN:

� The original version of the quantized DDN which concludes
each iteration by a roundingR,

� The original version of the unquantized DDN followed at
the end by our quantizationQ_¢ ,

� Our integrated version of DDN which concludes each itera-
tion by quantizationQX¢ .

This comparison shows that the last two variants are better than the
original scheme. This outlines that the quanti�cation mechanism is
of utmost importance. The last integrated version is the best. This



Figure 9: Benchmark of the attacks against natural (ResNet-
50 - thin lines) and robust (ResNet-50R - thick lines) net-
works with limited complexity and quantization.

Figure 10: Operating characteristics of three DDN imple-
mentations against natural (ResNet50 - thin lines) and ro-
bust (ResNet-50R - thick lines) networks with limited com-
plexity.

tends to prove that quantizing at each iteration is better than quan-
tizing only at the end provided that the quantization mechanism is
appropriate. This is not surprising: by integrating the quantization
inside the iterative process, we allows the upcoming iterations to
compensate for the drift due to the quantization.

7 CONCLUSION
This paper proposes a new quanti�cation mechanism of adversarial
samples. It has two main features: i) It is a post-processing indepen-
dent of the attack, ii) Its complexity adds an extra cost of$ ¹log=º
calls to the network which is small compared to the complexity
of the attack. Another point is that this mechanism can also be
integrated inside an iterative attack like DDN.

Overall, thanks to our quanti�cation, the integral constraint
no longer spoil the operating characteristic of the attacks against
natural and robust classi�ers. The main di�erence is that the attacks
CW, PGD2, and DDN are more or less equally e�cient under this
constraint.

Figure 8 shows that the perturbation is clearly visible on some
adversarial images against robust classi�er. Our future work aims
at taking into account a distortion metric better re�ecting human
perceptibility than the Euclidean distance.
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