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ABSTRACT
Although adversarial sampling is a trendy topic in computer vi-
sion, very few works consider the integral constraint: The result
of the attack is a digital image whose pixel values are integers.
This is not an issue at first sight since applying a rounding after
forging an adversarial sample trivially does the job. Yet, this paper
shows theoretically and experimentally that this operation has a
big impact. The adversarial perturbations are fragile signals whose
quantization destroys its ability to delude an image classifier.

This paper presents a new quantization mechanism which pre-
serves the adversariality of the perturbation. Its application out-
comes to a new look at the lessons learnt in adversarial sampling.
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1 INTRODUCTION
Adversarial samples [12] are small, usually imperceptible pertur-
bations of images (or other data) that can arbitrarily modify the
prediction of a classifier. The Computer Vision community has ex-
tended adversarial samples to other tasks than image classification
like optical flow computation [10], object tracking [15], caption-
ing [16], face recognition[2], and image retrieval [8, 13]. These per-
turbations are not random but carefully crafted by an attacker. In a
white-box setting, the attacker has full knowledge of the classifier
internals and uses the gradient of the model to find the appropriate
perturbation for a given image. They are becoming increasingly
important because they reveal the sensitivity of neural networks to
their inputs. That sensitivity is a vulnerability when the system is
deployed in security application.

Adversarial samples are typically evaluated by the probability
of success, i.e. the probability that the attack deludes the classifier,
and by the distortion between the original and the attacked images.
State-of-the-art white-box attacks lead to a probability of success
near one combined with a small distortion. This shows that the
perturbation is almost imperceptible and reflects the difficulty with
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which adversarial samples can be detected. The speed of an attack
is another criterion recently introduced. The fast single-step FGSM
attack [4] produces high-distortion examples where adversarial
patterns can easily be recognized. At the other extreme, the Carlini
&Wagner (CW) attack [1], considered state of the art, is notoriously
expensive. Decoupling direction and norm (DDN) [11] has recently
shown impressive progress in the trade-off between distortion and
speed. Speed is important for adversarial retraining [9]. This pro-
cedure robustifies a network by training it with many adversarial
samples.

A perusal of the 25 papers dealing with this topic and recently
published in the 2019 editions of the well known conferences CVPR
and ECCV shows the following fact: 88% of these research works
propose attacks forging adversarial samples which are not images!
Their outputs are adversarial samples in the form of matrices with
continuous variables (implemented with float point single precision
in 4 Bytes). This paper challenges this working assumption and
investigates what happens if attacks are constrained to forge digital
imageswith discrete pixel values encoded with a depth of 8 bits. Sev-
eral works have addressed this issue using quantized steps within
their iterative attacks [11, 14]. Our goal is however not to propose a
new attack, but to see how to quantify adversarial samples at best.
This is not trivial : Rounding each pixel value is an obvious but
inefficient solution that almost always turns an adversarial sample
into a non adversarial image.

The paper contains four contributions:

• A theoretical explanation why quantization by rounding
fails.

• A near optimal quantization procedure that keeps the adver-
sarial nature and the small distortion of the perturbation

• A review which analyses whether well-known facts in the
adversarial sample literature still hold with near optimal
quantization.

• The integration of our quantization scheme into an iterative
attack.

The outline of the paper is the following. Section 2 first chal-
lenges the working assumption in literature that adversarial sam-
ples need not to be quantized. Section 3 shows that simply rounding
the adversarial samples does not yield adversarial images. Section 4
presents our near optimal quantization procedure. Section 5 reports
experimental results over ImageNet when quantization is applied
after some classical attacks against ‘natural’ and ‘robust’ networks.
Section 6 exposes how to integrate our quantization inside an itera-
tive attack.

2 MOTIVATION
Adversarial attacks in the literature usually output real numbers
stored in matrices. We call them adversarial samples in contrast
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to digital images that are tables of integers. There are many pre-
processing recipes adapting the input image before feeding it to the
neural network. This section argues that these steps cannot explain
the assumption of working with unquantized adversarial samples
too easily admitted in this literature.

Over the 25 publications dealing with adversarial attacks in
CVPR 2019 and ECCV 2019, almost all of them define a pixel as
a real value unquantized. They consider the problem of find a
real matrix close to the original image and whose prediction is
wrong. The words ‘quantization’ or ‘discrete’ are never mentioned.
The images included in these papers as illustration of adversarial
samples have been quantized for publication purpose. Therefore, it
is not sure that these published images indeed are adversarial.

Only three of these 25 papers are clearly working with quantized
images. Two of them indeed investigate attacks in the physical world
to delude optical flow reconstruction in autonomous cars [10] or
object tracking in video surveillance [15]. They obviously deal
with quantized images because they print patches on stickers or
they display patterns on a screen present in the scene. The only
reference coping with digital adversarial samples which are truly
images proposes the so-called DDN attack: In [11, Sect. 3], one
reads “Besides this step, we can also consider quantizing the image
in each iteration, to ensure the attack is a valid image". It is very
surprising that the authors compares DDN with state-of-the-art
but unconstrained attacks issuing adversarial samples not images.

In the same way, the report [7] on the “Adversarial Attacks and
Defences Competition" organised at NIPS 2017 clearly states that
“the adversary has direct access to the actual data fed into the model.
In other words, the adversary can choose specific float32 values as
input for the model". There is clearly here a misconception in the
threat analysis. In the white box scenario, the attacker knows all
the internals of the targeted network. She/He can reproduce it in
her/his garage and has “direct access" into this copy. Yet, the goal is
to produce an adversarial image that will delude the same classifier
outside the garage, where access inside is forbidden. For example,
if the attacker knows the source code of the classifier used to tag
images on a social network platform, he still needs to publish the
attacked image in a format readable by the platform, for example
in tiff or jpeg format for images.

Note that a common procedure in image classification is to ap-
ply a transformation to the pixel values of the query image before
feeding the neural network. Contrary to the vast majority of ad-
versarial examples represented in the continuous domain, these
processed inputs remain discrete. This is an affine scaling ranging
from V := {0, 1, . . . , 255} to [0, 1] (or [−1, 1] depending on the
neural network). Even if the output is encoded as float, this bijec-
tion results in 255 discretized possible values in [0, 1]. Yet, most of
papers explicitly state that the attack aims at finding the adversarial
sample anywhere in [0, 1]𝑛 with the smallest distortion.

Another practice is to perform an object (ImageNet dataset)
or a character (MNIST dataset) detection first and then to query
the network with the cropped image framing the object. If the
bounding box is too large, a stretching is performed (see the CIFAR
dataset). The result of this downscaling need not to be quantized
and again can be encoded as float. Nevertheless, this process is done
inside the image classifier, and the attacker has no direct access
to this auxiliary data outside the garage. Consequently, the aim of

the attacker is to modify the image before it is transmitted to the
classifier, and therefore before any of these pre-processing tasks.

The report [7] states that “In a real world setting, this might
occur when an attacker uploads a PNG file to a web service, and
intentionally designs the file to be read incorrectly." This motivates
the choice of the floating point representation for unquantized pixel
values. On one hand, this community has well accepted that these
values should only lie in [0, 1]. So, if the attacker is so powerful
that she/he can inject any floating point value, then why should we
restrict the range to [0, 1]? On the other hand, we argue here that
this is a security threat not targeting the classifier but the image
loader software that decodes the received file into a matrix of pixel
values. There are known conception rules in computer security to
avoid hacks like buffer overflows.

There are almost as many defense papers as attack papers in
this literature. Authors validate that their defense does not degrade
the classifier accuracy on the original images of the test dataset,
which are of course quantized. In the same time, they measure the
defense ability on the attacked versions of these images, which are
not quantized. It is funny to notice that detecting whether the input
is quantized would be the simplest defense able to block most of
the attacks.

The next section shows that quantization is not an inoffensive
processing step: it can strongly impact the success rate of an attack.

3 PROBLEM FORMULATION
This section introduces basic notations of image classification with
neural network, briefly presents some well known white-box at-
tacks, and exposes the impact of quantization when rounding weak
perturbations.

3.1 Background
3.1.1 Notations. Let X := {0, 1, . . . , 255}𝑛 denote the set of im-

ages. This means that, for sake of clarity, an image is a flattened
vector x ∈ X whose length 𝑛 is the total number of pixels (grayscale
like MNIST dataset) times 3 color channels (ImageNet or CIFAR
dataset). The classifier usually pre-processes the input image by
a function a : X → S where S := [0, 1]𝑛 (or S := [−1, 1]𝑛 for
some implementations of ResNet). We call s := a(x) ∈ S a sample.
A classifier is a function f : S → P𝐶 where P𝐶 is the simplex of
dimension 𝐶: p = f (s) is a vector of 𝐶 positive components sum-
ming up to 1, 𝑝 (𝑘) being the predicted probability that sample s
belongs to class 𝑘 ∈ [𝐶] (with [𝑛] := {1, 2, . . . , 𝑛}). The classifier
top-1 prediction 𝜋 : S → [𝐶] maps the sample s to the class label
having the maximum probability:

𝜋 (s) := arg max
𝑘∈[𝐶 ]

𝑝 (𝑘) . (1)

The prediction is correct if 𝜋 (s) = t(s), the true label of sample s.

3.1.2 Problem formulation. In the untargeted scenario, the aim
of the attacker is to delude the classifier in whatever manner, i.e.
its predicted class is not the true label.

In the literature, an adversarial sample s𝑎 is a quasi-copy of a
given original sample s𝑜 where 𝜋 (s𝑎) ≠ t(s𝑜 ) although ∥s𝑎 − s𝑜 ∥𝐿
is small (the 𝐿-norm of S, with 𝐿 ∈ {0, 1, 2, +∞}).



In this paper, an adversarial image x𝑞 is a quasi-copy of an
original image x𝑜 where 𝜋 (a(x𝑞)) ≠ t(a(x𝑜 )). The constraint is
that x𝑞 is a digital image, i.e. it belongs to X. The distortion in
this paper is measured by the Euclidean norm in the image pixel
domain X (and not in S as in many papers).

The framework considers an original image x𝑜 , the output of an
attack x𝑎 which is not a priori a digital image, and the quantization
of x𝑎 into x𝑞 ∈ X. We denote by u the unquantized perturbation, q
the quantization noise and by e the final adversarial perturbation:

u := x𝑎 − x𝑜 , (2)
q := x𝑞 − x𝑎, (3)
e := x𝑞 − x𝑜 = u + q. (4)

3.1.3 The classification loss. In a white-box scenario, the at-
tacker gauges how close he/she is from his/her goal with a measure
called the classification loss. This is typically the negative cross-
entropy L𝐴 (s𝑎) = log 𝑝𝑎 (t(s𝑜 )) (with p𝑎 := f (s𝑎)) or whatever
increasing function of 𝑝𝑎 (t(s𝑜 )). The role of the attack is to de-
crease this loss so that 𝑝𝑎 (t(s𝑜 )) is so small that the sample is no
longer classified as the ground truth. In other words, s𝑎 is repelled
from the original class region.

Another option is to attract s𝑎 to another class region, for in-
stance the most likely other prediction:

L𝐴 (s𝑎) = log𝑝𝑎 (t(s𝑜 )) − log max
𝑘≠t(s𝑜 )

𝑝𝑎 (𝑘) . (5)

This has the advantage of indicating by L𝐴 (s𝑎) < 0 that the attack
succeeds. Indeed, if L𝐴 (s𝑎) = 𝑚 < 0 then 𝑝𝑎 (t(s𝑜 )) is 𝑒𝑚 smaller
than the estimated probability of the predicted class.

3.2 Well known attacks
This section summarizes well-known attacks in the literature, which
we consider in the experimental body in Sect. 5. The linear pre-
processing a(·) mapping each pixel to S is integrated in the neural
network, and hence in the loss L𝐴 . This allows to describe the
attacks in the domain [0, 255]𝑛 .

Fast Gradient Sign Method. FGSM is the oldest and simplest at-
tack [4]. It has one unique parameter 𝜖 > 0. Its expression is simply:

x𝑎 = cl
(
x𝑜 − 𝜖sign

(∇xL𝐴 (x) |x𝑜
) )
, (6)

where cl clips the pixel values to [0, 255]. Note that x𝑎 ∈ X if and
only if 𝜖 ∈ N. The final distortion is ∥x𝑎 − x𝑜 ∥2 = 𝑛𝜖2 (neglecting
the clipping).

Iterative FGSM.. This is the iterated version of FGSM introduced
in [6]. We consider the version that repeats the update:

x(𝑖+1)
𝑎 = cl

(
x(𝑖)𝑎 − 𝛼sign

(
∇xL𝐴 (x) |x(𝑖 )𝑎

))
, (7)

until a maximum number 𝑁 of iterations is met or until x(𝑖)𝑎 is
adversarial. It has two parameters 𝛼 and 𝑁 . The distortion is at
most 𝑛(𝛼𝑁 )2 (achieved if the gradient is a constant vector).

Projected Gradient Descent. We refer to PGD2 as the Euclidean
version of the projected gradient descent [9]. Its update is given by

x(𝑖+1)
𝑎 = cl

(
proj𝜖

(
x(𝑖)𝑎 − 𝛼

∇xL𝐴 (x) |x(𝑖 )𝑎

∥ ∇xL𝐴 (x) |x(𝑖 )𝑎
∥

))
(8)

where proj𝜖 is the projection on the ball of center x𝑜 and radius 𝜖 .
It means that the update is scaled back onto the sphere of radius 𝜖
if it goes outside that ball. This attack has three parameters: 𝛼 , 𝜖
and the maximum number 𝑁 of iterations. Usually, we set 𝜖 as a
fraction of 𝛼𝑁 .

Carlini and Wagner. We refer to CW as the attack invented by
Carlini and Wagner, authors of [1]. It uses the ADAM solver to find
the minimum of the Lagrangian formulation:

𝐽 (x, `) = ∥x − x𝑜 ∥2 + ` |L𝐴 (x) −𝑚 |+ , (9)

where𝑚 ≤ 0 is a margin and |𝑎 |+ = 𝑎 if 𝑎 > 0, and 0 otherwise.
Then, an outer loop tests different values of ` in a line search. The
adversarial sample with the lowest distortion is the final output.
The parameters are usually the number of iterations for the inner
loop (ADAM) and for the outer loop.

Decoupling Direction and Norm. This attack denoted DDN is
defined in [11] by its update:

x(𝑖+1)
𝑡 = x(𝑖)𝑎 − 𝛼

∇xL𝐴 (x) |x(𝑖 )𝑎

∥ ∇xL𝐴 (x) |x(𝑖 )𝑎
∥ , (10)

x(𝑖+1)
𝑎 = cl

(
x𝑜 + 𝜌 (𝑖+1) x(𝑖+1)

𝑡 − x𝑜

∥x(𝑖+1)
𝑡 − x𝑜 ∥

)
. (11)

where 𝜌 (𝑖+1) = (1 + 𝛾)𝜌 (𝑖) if x(𝑖)𝑎 is not adversarial and 𝜌 (𝑖) = (1 −
𝛾)𝜌 (𝑖) otherwise (with 𝜌 (1) = 𝛼). Since 𝛾 > 0, DDN increases (resp.
decreases) the budget distortion 𝜌 (𝑖+1) if x(𝑖)𝑎 is still not adversarial
(resp. is already adversarial). In its quantized version, the function
cl(·) not only clips to [0, 255] but also rounds each component to
the nearest integer. This is done at the end of each iteration. The
adversarial sample with the lowest distortion is the final output.
This attack has 3 parameters: 𝛼 , 𝛾 , and 𝑁 .

3.3 Why rounding fails
We suppose that an attack produces x𝑎 = x𝑜 + u which a priori
does not belong to the set of discrete values X. A solution is then
to quantize back onto X by applying the rounding to the nearest
integer R(·):

x𝑞 = R(x𝑜 + u) = x𝑜 + R(u), (12)

where we make the abuse of notation: R(x) means rounding each
component of the vector x. We also assume that x𝑜 + R(u) ∈ X
without clipping. The last equality comes from the fact that x𝑜 ∈ X.

The following study aims at predicting the norm of the update
after quantization, assuming that rounding is independent from the
computation of the perturbation. Denote by e := R(u). Pixel 𝑗 is
quantized to

𝑥𝑞 ( 𝑗) = 𝑥𝑜 ( 𝑗) + 𝑒 ( 𝑗), (13)

when 𝑢 ( 𝑗) ∈ (𝑒 𝑗 − 1/2, 𝑒 𝑗 + 1/2] for some 𝑒 ( 𝑗) ∈ Z. Border effects
where 𝑥 ( 𝑗) + 𝑒 ( 𝑗) ∉ X are neglected here.

We now take a statistical point of view where the update is
modelled by a random vector U uniformly distributed over the
hypersphere of radius 𝜌 . That parameter 𝜌 is the norm of the per-
turbation before quantization. This yields random quantized values,



denoted by 𝐸 ( 𝑗) ∈ Z for pixel 𝑗 . The distortion after the quantiza-
tion is given by:

𝐷2 = ∥E∥2 =
𝑛∑
𝑗=1

𝐸 ( 𝑗)2 . (14)

A common approach in source coding theory is the additive
noise model for quantization error in the high resolution regime [3].
It states that 𝐸 ( 𝑗) = 𝑈 ( 𝑗) +𝑄 ( 𝑗) where 𝑄 ( 𝑗) ∈ (−1/2, 1/2] is the
quantization error. In the high resolution regimewhere 𝜌 ≫ 1,𝑄 be-
comes uniformly distributed (s.t.E(𝑄 ( 𝑗)) = 0 andE(𝑄 ( 𝑗)2) = 1/12)
and independent of𝑈 ( 𝑗) (s.t. E(𝑈 ( 𝑗)𝑄 ( 𝑗)) = E(𝑈 ( 𝑗))E(𝑄 ( 𝑗)) = 0).
Under these assumptions, Eq. (14) simplifies in expectation to:

E(𝐷2) = E ©«
𝑛∑
𝑗=1

𝑈 ( 𝑗)2 +𝑄 ( 𝑗)2 + 2𝑈 ( 𝑗)𝑄 ( 𝑗)ª®¬
= 𝜌2 + 𝑛

12 . (15)

This shows that rounding increases the distortion on expectation.
Yet, this simple analysis is wrong outside the high resolution

regime, and we need to be more careful. The expectation of a sum
is always the sum of the expectations, whatever the dependence
between the summands: E(𝐷2) = ∑𝑛

𝑗=1 E(𝐸 ( 𝑗)2) = 𝑛E(𝐸 ( 𝑗)2) with

E(𝐸 ( 𝑗)2) =
255∑
ℓ=0

ℓ2P( |𝐸 𝑗 | = ℓ) . (16)

We need the distribution of 𝐸 ( 𝑗) to compute the expected dis-
tortion after rounding. This random variable 𝐸 ( 𝑗) takes a value
depending on the scalar product 𝑈 ( 𝑗) := U⊤c𝑗 , where c𝑗 is the
𝑗-th canonical vector. This scalar product lies in [−𝜌, 𝜌], so that
P(𝐸 ( 𝑗) ≥ ℓ) = 0 if 𝜌 < ℓ − 1/2. Otherwise, |𝐸 ( 𝑗) | ≥ ℓ when
|𝑈 ( 𝑗) | ≥ ℓ − 1/2, which happens when U lies inside the dual
hypercone of axis c𝑗 and semi-angle \ (ℓ) = arccos(𝑐 (ℓ)) with
𝑐 (ℓ) := (2ℓ − 1)/2𝜌 as shown in Fig. 1.

Since U is uniformly distributed over an hypersphere, the proba-
bility of the event {|𝑈 ( 𝑗) | ≥ ℓ−1/2} is equal to the ratio of the solid
angles of this dual hypercone and the full space R𝑛 . This quantity
can be expressed via the incomplete regularized beta function 𝐼 . In

0 1 2 3−1−2−3

𝜌

\ (1)
\ (2)

Figure 1: The dual hypercones related to ℓ = 1 and 2. Since
𝜌 < 3 − 1/2, the other hypercones do not exist.
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Figure 2: Expected power E(𝐷2)/𝑛 after rounding as a func-
tion of the perturbation power 𝜌2/𝑛 before rounding.

the end, ∀ℓ ∈ {0, . . . , 𝐿 − 1},

P( |𝐸 ( 𝑗) | ≥ ℓ) =



1, if ℓ = 0
1 − 𝐼𝑐 (ℓ)2 (1/2, (𝑛 − 1)/2), if 0 ≤ 𝑐 (ℓ) ≤ 1
0, otherwise

Note that it approximately equals 2Φ(√𝑛𝑐 (ℓ)/2) for large 𝑛, where
Φ is the cumulative distribution function.

Computing E(𝐷2) is now possible with the simple trick for dis-
crete r.v.: P( |𝐸 ( 𝑗) | = ℓ) = P( |𝐸 ( 𝑗) | ≥ ℓ) − P( |𝐸 ( 𝑗) | ≥ ℓ + 1). This
expected distortion after rounding depends on 𝑛 and 𝜌 , the norm
of the perturbation before rounding. Figure 2 shows that rounding
reduces the distortion outside the high resolution regime. Indeed,
the distortion after quantization is smaller than before quantization
when 𝜌2/𝑛 < 0.08 for 𝑛 = 3 ∗ 2992 (i.e. the dimension of images
from ImageNet). When the adversarial perturbation has a smaller
norm 𝜌 , rounding is likely to kill it and R(x𝑎) = x𝑜 , or at least
to drastically decrease its amplitude. Since known attacks achieve
rather low distortion, we are not in the high resolution regime and
the rounding likely pulls down the attack.

This is a statistical study working on expectation. This phenome-
non happens systematically on some attacks when the perturbation
on each pixel value has a small amplitude. For instance with FGSM
(6), we have 𝑢 ( 𝑗) = ±𝜖, ∀𝑗 ∈ [𝑛] which gives 𝜌 = 𝜖

√
𝑛. Then, each

pixel perturbation is rounded to 𝑒 ( 𝑗) = ±R(𝜖) so that

𝐷2 = 𝑛R2
(
𝜌√
𝑛

)
. (17)

As shown in Fig. 2, rounding systematically cancels FGSM for
𝜖 < 1/2, whereas it amplifies it a lot for 1/2 < 𝜖 < 1.

4 OUR APPROACH
Our approach considers quantization as a post-processing indepen-
dent of the attack. The quantization does not interfere with the
attack, which is a state-of-art implementation taken off-the-shelf
as a black-box.

From an original image x𝑜 ∈ X, this attack has produced a
sample x𝑎 which does not a priori belong to X. This sample may
or may not be adversarial depending whether the attack succeeded



or not. We aim at finding the best quantization process producing
x𝑞 = Q (x𝑎) ∈ X adversarial with high probability.

We make the following assumptions. Since we are in a white-box
setting, the quantization mechanism has access to:

• the original image x𝑜 ,
• the sample x𝑎 = x𝑜 + u produced by the attack,
• the prediction function of the classifier,
• the gradient of this function.

Our approach constrains the quantization to consider only two
options per pixel 1: ∀𝑗 ∈ [𝑛], 𝑥𝑞 ( 𝑗) ∈ {⌈𝑥𝑎 ( 𝑗)⌉, ⌊𝑥𝑎 ( 𝑗)⌋}. This
can be rewritten as 𝑥𝑞 ( 𝑗) ∈ x𝑜 ( 𝑗) + {⌈𝑢 ( 𝑗)⌉, ⌊𝑢 ( 𝑗)⌋}. Note that if
𝑢 ( 𝑗) ∈ Z, ⌈𝑢 ( 𝑗)⌉ = ⌊𝑢 ( 𝑗)⌋ = 𝑢 ( 𝑗). Assuming this special case rarely
occurs, this leaves almost 2𝑛 possibilities in total.

As in Sect. 3, the quantization is modelled by the addition of a
noise q as follows

x𝑞 = x𝑎 + q = x𝑜 + u + q. (18)

For each pixel, we see that 𝑞( 𝑗) takes the value ⌈𝑢 ( 𝑗)⌉ − 𝑢 ( 𝑗) ≥ 0
or ⌊𝑢 ( 𝑗)⌋ − 𝑢 ( 𝑗) ≤ 0.

4.1 Distortion based quantization
We define the function D of q as the final distortion after quantiza-
tion w.r.t. x𝑜 :

D(q) := ∥x𝑞 − x𝑜 ∥2 = ∥u + q∥2 . (19)

We define Q0 the quantization that minimises the distortion. For
the 𝑗-th pixel, it makes 𝑞( 𝑗) + 𝑢 ( 𝑗) = ⌈𝑢 ( 𝑗)⌉ if ⌈𝑢 ( 𝑗)⌉2 < ⌊𝑢 ( 𝑗)⌋2,
i.e. if 𝑢 ( 𝑗) < 0.

Q0 (𝑥𝑎 ( 𝑗)) := 𝑥𝑜 ( 𝑗) +
{
⌈𝑢 ( 𝑗)⌉ if𝑢 ( 𝑗) ≤ 0,
⌊𝑢 ( 𝑗)⌋ if𝑢 ( 𝑗) > 0.

(20)

Note that the distortion is lower after this quantization: ∥x𝑎 −
x𝑜 ∥2 ≥ ∥Q0 (x𝑎) − x𝑜 ∥2. However, we don’t have any guarantee
that Q0 (x𝑎) is adversarial. For instance, if |𝑢 ( 𝑗) | < 1, ∀𝑗 ∈ [𝑛],
then either ⌈𝑢 ( 𝑗)⌉ or ⌊𝑢 ( 𝑗)⌋ equals 0, and Q0 (x𝑎) = x𝑜 , which is
not adversarial.

4.2 Gradient based quantization
Another option is to quantize in order to strengthen the adversari-
ality of the image. We define a new classifier loss as follows:

L𝑄 (q) := 𝑝𝑞 (𝑡 (x𝑜 )) − 𝑝𝑞 (^𝑎), (21)
p𝑞 := f (a(x𝑎 + q)), (22)
^𝑎 := arg max

𝑘≠𝑡 (x𝑜 )
𝑝𝑎 (𝑘) . (23)

In words, the loss is the difference between the predicted proba-
bilities that x𝑞 belongs to the true class of x𝑜 minus the one of a
given class ^𝑎 ∈ [𝐶]. That class ^𝑎 is indeed the class region where
the attack tried to drive sample x𝑎 to, with or without success. Our
quantization works with this loss function whatever the loss L𝐴
used by the attack before.

We define quantization Q∞ which aims at getting2 L𝑄 (q) < 0,
indicating that x𝑞 is adversarial. Since q is a small quantization

1 ⌈𝑥 ⌉ is defined as the unique integer s.t. ⌈𝑥 ⌉ − 1 < 𝑥 ≤ ⌈𝑥 ⌉. ⌊𝑥 ⌋ is defined as the
unique integer s.t. ⌊𝑥 ⌋ ≤ 𝑥 < ⌊𝑥 ⌋ + 1.
2A margin𝑚 ≤ 0 can be also be enforced with L𝑄 (q) <𝑚 < 0.

noise, we approximate this loss to the first order:

L𝑄 (q) ≈ L𝑄 (0) + q⊤g, (24)

where L𝑄 (0) is the classifier loss computed at q = 0 (i.e. when
x𝑞 = x𝑎 , it is lower than 0 if the previous attack succeeded), and
g := ∇L𝑄 (q)

��
0 is its gradient computed at q = 0.

Quantization Q∞ minimizes the classifier loss through its ap-
proximation which is a correlation over the pixels. Therefore, it
makes the signs of 𝑞( 𝑗) and 𝑔( 𝑗) opposite:

Q∞ (𝑥𝑎 ( 𝑗)) := 𝑥𝑜 ( 𝑗) +


⌈𝑢 ( 𝑗)⌉ if𝑔( 𝑗) < 0,
Q0 (𝑥𝑎 ( 𝑗)) if𝑔( 𝑗) = 0,
⌊𝑢 ( 𝑗)⌋ if𝑔( 𝑗) > 0.

(25)

Since the quantization is not impacting the approximation loss
when 𝑔( 𝑗) = 0, we choose the option that minimizes the distortion.

4.3 Our approach: Lagrangian quantization
In our approach, the quantization Q_ minimizes a linear combina-
tion of the distortion and the classifier loss: For _ ≥ 0:

Q_ (x𝑎) := x𝑜 + u + arg min
q

D(q) + _L𝑄 (q), (26)

under the constraint that 𝑞( 𝑗) ∈ {⌈𝑢 ( 𝑗)⌉, ⌊𝑢 ( 𝑗)⌋} − 𝑢 ( 𝑗), ∀𝑗 ∈ [𝑛].
Thanks to the first order approximation (24) of the classifier loss,
the functional to be minimized in (26) becomes a sum over all
pixels. The optimization problem can be solved by considering the
quantization of each pixel independently, ∀𝑗 ∈ [𝑛]:

𝑞( 𝑗) = arg min
𝑞∈{ ⌈𝑢 ( 𝑗) ⌉, ⌊𝑢 ( 𝑗) ⌋ }−𝑢 ( 𝑗)

(𝑢 ( 𝑗) + 𝑞)2 + _𝑔( 𝑗)𝑞. (27)

Consequently the complexity of the quantization breaks down from
𝑂 (2𝑛) to 𝑂 (𝑛) by solving 𝑛 trivial optimization problems: When
𝑢 ( 𝑗) ∉ Z then ⌊𝑢 ( 𝑗)⌋ = ⌈𝑢 ( 𝑗)⌉ − 1, and the solution is found as:

Q_ (𝑥𝑎 ( 𝑗)) = 𝑥𝑜 ( 𝑗) +
{
⌈𝑢 ( 𝑗)⌉ if 1 − 2⌈𝑢 ( 𝑗)⌉ ≥ _𝑔( 𝑗)
⌊𝑢 ( 𝑗)⌋ otherwise.

(28)

Note that we find back the previous rule (20) when _ = 0 because
(1 − 2⌈𝑢 ( 𝑗)⌉) > 0 if and only if 𝑢 ( 𝑗) ≤ 0. In the same way, Q_
converges to mechanism Q∞ (25) because only the sign of 𝑔( 𝑗)
matters when _ → +∞.

Figure 3 illustrates the three quantization schemes in the domain
(𝑔( 𝑗), ⌈𝑢 ( 𝑗)⌉). Note that there are pixels which are always quan-
tized in the same way whatever the value of _ ≥ 0. This is the case
when one quantization value minimizes both the distortion and the
classifier loss:

• for all indices where 𝑔( 𝑗) < 0 and ⌈𝑢 ( 𝑗)⌉ < 1/2, 𝑞( 𝑗) is
always quantized to ⌈𝑢 ( 𝑗)⌉ − 𝑢 ( 𝑗),

• for all indices where 𝑔( 𝑗) > 0 and ⌈𝑢 ( 𝑗)⌉ > 1/2, 𝑞( 𝑗) is
always quantized to ⌊𝑢 ( 𝑗)⌋ − 𝑢 ( 𝑗).

We denote by J ⊂ [𝑛] the (complementary) subset of indices
whose quantization depends on _. It is defined as:

J := { 𝑗 ∈ [𝑛] : 𝑔( 𝑗) ≠ 0, sign(𝑔( 𝑗)) ≠ sign(⌈𝑢 ( 𝑗)⌉ − 1/2)} . (29)

We assume that this subset is not empty. Sect. 5.2 empirically shows
that J gathers around three fourths of the pixels.



4.4 Choice of Lagrange multiplier _
We now look for the best value of _ > 0. When _ increases, the
quantization trades the distortion against the classifier loss. The
distortion is the lowest for _ = 0 and increases, whereas the classi-
fier loss (at least its approximation (24)) is a decreasing function of
_. Therefore, if Q∞ fails forging an adversarial image, so does Q_
whatever the value of _. Otherwise, it is worth looking for the best
value _★ giving the smallest distortion while succeeding to delude
the classifier.

For all indices in J , we define the following ratio:

𝑟 ( 𝑗) := 1 − 2⌈𝑢 ( 𝑗)⌉
𝑔( 𝑗) > 0, (30)

so that the quantization rule (28) becomes Q_ (𝑥𝑎 ( 𝑗)) = 𝑥𝑜 ( 𝑗) +
⌈𝑢 ( 𝑗)⌉ if 𝑟 ( 𝑗) > _ and Q_ (𝑥𝑎 ( 𝑗)) = 𝑥𝑜 ( 𝑗) + ⌊𝑢 ( 𝑗)⌋ otherwise. An
index 𝑗 in J sees 𝑞( 𝑗) moving from one value to another when _
has increased up to the value 𝑟 ( 𝑗). Note that it is useless to explore
_ ∈ (max𝑗 𝑟 ( 𝑗), +∞) in the sense that values of _ in this interval
gives birth to the same results as Q∞.

Therefore, we carry on a search of the minimal value of _★ ∈
[0,max𝑗 𝑟 ( 𝑗)] giving an adversarial image, i.e. L𝑄 (q) ≤ 0. To do
this, we rank the ratios (𝑟 ( 𝑗)) 𝑗 ∈J by increasing order. Pixels ranked
first offer a better trade-off: they yield a valuable loss decrease for
a modest distortion increase. We perform a binary search on this
sorted set, so that _★ = 𝑟 ( 𝑗★) the smallest ratio giving an adversarial
image. This has a complexity in 𝑂 (log𝑛) since |J | ≤ 𝑛.

4.5 Calls to the network
Solving problem (26) for a given _ a priori needs 𝑂 (2𝑛) calls to
the network. By replacing the loss by its linear approximation (24),

𝑔( 𝑗)

⌈𝑢 ( 𝑗)⌉

_ = 0

_ > 0
_ = +∞

1
2

Figure 3: Quantizing with Q_ in the domain (𝑔( 𝑗), ⌈𝑢 ( 𝑗)⌉).
The colored regions show when 𝑞( 𝑗) is quantized to ⌈𝑢 ( 𝑗)⌉ −
𝑢 ( 𝑗), i.e. Q_ (𝑥𝑎 ( 𝑗)) = 𝑥𝑜 ( 𝑗) + ⌈𝑢 ( 𝑗)⌉, depending on _. In
the complementary half-plane, 𝑞( 𝑗) = ⌊𝑢 ( 𝑗)⌋ − 𝑢 ( 𝑗) and
Q_ (𝑥𝑎 ( 𝑗)) = 𝑥𝑜 ( 𝑗) + ⌊𝑢 ( 𝑗)⌋. In the hashed areas, quantization
is always the same, independently of _.

the complexity is reduced to 𝑂 (1) calls to get the gradient g :=
∇L𝑄 (q)

��
0. The gradient is computed by backpropagation and thanks

to auto-differentiation, its complexity is roughly twice the complex-
ity of one forward pass in the network.

The above-mentioned binary search over _ can also resort to the
approximated classifier loss. This avoids any call to the network.
Nevertheless, this first order approximation is sometimes not ac-
curate (see Fig. 4). An idea is to compensate this by a margin: The
binary search ends with a value of _ for which the approximated
loss (24) is below that margin. Setting the value of that margin s.t.
the real loss is below zero with high probability is however difficult.

Another option is that the binary search uses the true classifica-
tion loss (21) by calling the network to check whether L𝑄 (q) ≤ 0.
The complexity of the search now dominates the cost of the quanti-
zation: It scales as𝑂 (log𝑛) calls to the forward pass of the network
(since |J | ≤ 𝑛). In our simulation over ImageNet, the search ends
within at most 18 calls. To summarize, the first order approxima-
tion (24) is used to quantize pixels (28) and to rank the pixels ac-
cording to ratio (30), but the search of _ uses the true classification
loss (21).

5 EXPERIMENTALWORK
This section presents experimental investigations about the impact
of the quantization, and then a benchmark of several attacks. We
first present the experimental protocol.

5.1 Experimental Protocol
5.1.1 Dataset and Networks. Our experiments are based on the

dataset of images used for the NeurIPS competition [7]. This is
indeed a subsection of 1,000 images from ImageNet. We test several
versions of the ResNet neural network [5]: the basic ResNet-18,
the deeper ResNet-50, and ResNet-50R, its version robustified by
adversarial retraining with PGD2 [9].

Table 1 shows that ResNet-50 is more powerful than ResNet-
18 enjoying a better accuracy with a higher confidence. On the
contrary, adversarial retraining has notably spoiled the accuracy of
this network.

5.1.2 Evaluation procedure. Comparing attacks is difficult be-
cause they have different purposes. FGSM (6) and PGD2 (8) are
constrained on the distortion: the main parameter is the allocated
distortion budget. In the literature, these attacks are gauged by
measuring the probability of success for a given distortion budget.
In contrast, CW (9) and DDN (10) are forging an adversarial sample

Table 1: Accuracy and confidence of the image classifiers
measured on the NeurIPS competition [7] dataset. Confi-
dence is gauged as the mean of the estimated probability of
the ground truth class as provided in the dataset, knowing
that the prediction is correct.

Accuracy Confidence
ResNet-18 [5] 84.1% 0.79
ResNet-50 [5] 92.7% 0.88
ResNet-50R [9] 69.1% 0.60



almost surely (if the total number of iterations is large enough).
These attacks are usually gauged by the average distortion.

For a fair comparison, we adopt the methodology of [17] com-
paring operating characteristics. This characteristic is the function
relating a distortion measure 𝑑 to the probability of success 𝑃𝑠𝑢𝑐 .
Here, we measure the square root of the perturbation power (which
is also the standard deviation in the pixel domain):

d(x𝑞, x𝑜 ) := ∥x𝑞 − x𝑜 ∥/
√
𝑛. (31)

For example, FGSM gives d(x𝑞, x𝑜 ) = 𝜖 since all pixels are modified
by ±𝜖 .

For CW and DDN (with or without quantization), the attack is
mounted over the𝑀 images {x𝑜,𝑚}𝑀𝑚=1 of the dataset. Images for
which the attack failed are discarded. We measure the distortion for
the adversarial images and construct the characteristic𝑑 → 𝑃𝑠𝑢𝑐 (𝑑)
with:

𝑃𝑠𝑢𝑐 (𝑑) := 𝑀−1 ��{𝑚 : d(x𝑞,𝑚, x𝑜,𝑚) < 𝑑}
�� . (32)

For FGSM, IFGSM, and PGD2 (with or without quantization),
several parameter values are tested. For each image, we record the
lowest distortion obtained for a success. This is what the attacker
would do in a white-box scenario. For instance, with FGSM, we run
a line search over 𝜖 in (6) for each image in order to get the smallest
possible value that succeeds in deluding the classifier. Then, the
operating characteristic is constructed as mentioned above.

5.2 Illustration of our approach
This section gives some illustrations of our quantization mechanism
Q_★ . Table 2 first offers some statistics counting how many pixels
are quantized s.t. it induces a loss decrease. This concerns two
populations of indices:

• indices in [𝑛]\J . Their quantization does not depend on
_★ because it decreases both the distortion and the approxi-
mated loss (24). Their couple (𝑔( 𝑗), ⌈𝑢 ( 𝑗)⌉) lies in the hashed
regions depicted in Fig. 3.This roughly corresponds to one
fourth of the pixels (see Table 2).

• indices in J whose ratio (30) 𝑟 ( 𝑗) is lower than _★. Q_★

quantizes these pixels because they offer a more interesting
loss decrease at a rather small distortion increase.

The global percentage reflects the robustness of the classifier. A
more robust classifier implies more pixels quantized to reduce the
loss at the expense of more distortion. We clearly see that ResNet-18
is less robust than ResNet-50 less than ResNet-50R. This global per-
centage also reflects the power of the attack: PGD2is more powerful
than FGSM.

Table 2: Percentage of quantization contributing to a loss de-
crease. The first number is the percentage of quantization
decreasing both loss and distortion (see hashed regions in
Fig. 3), the second number depends on the value of _★.

Attacks FGSM PGD2
ResNet-18 29.5 + 3.8 = 33.3% 26.1 + 4.5 = 30.6%
ResNet-50 34.0 + 4.8 = 38.8% 26.5 + 3.7 = 30.2%
ResNet-50R 27.8 + 13.9 = 41.7% 21.3 + 16.7 = 38.0%
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Figure 4: Trade-off between the classifier loss and the distor-
tion as _ = 𝑟 ( 𝑗) for increasing sorted index 𝑗 . (Top)ResNet-50,
(Bottom) ResNet-50R.

Figure 4 illustrates how we set the value of _★ by showing how
the classifier loss and the distortion evolves as _ increases for a given
image. The x-axis represent the pixel indices of J once sorted by
their ratios {𝑟 ( 𝑗)} in ascending order. Our approach finds the index
𝑗★ for which the loss cancels and which defines _★ = 𝑟 ( 𝑗★). From
the experiments we conducted, we have noticed that (24) is often a
poor approximation of the true loss (21) of ResNet-18 and ResNet-
50. This justifies the use of (21) in the line search for finding the
value of _★. The approximation (24) is then only used for ranking
the pixels by the trade-off between distortion and classifier loss
they individually provide. Yet, the approximation is much better for
ResNet-50R. We suspect that this is due to the small norm gradient
of the loss of this robust network.

5.3 Experimental investigations
In this section, the attacks are conducted with the "best efforts", in
the sense that their complexity is not limited. The total number 𝑁
of iterations is high, the step 𝛼 is small, many 𝜖 values are tested
(see Sect. 3.2). The goal is to forge for each image its adversarial
counterpart offering the best quality with the purpose of revealing
the intrinsic power each attack.

5.3.1 The nature of the quantization. Wefirst study the impact of
the rounding R (Sect. 3.3), the quantizationQ_ with _ = 0 (Sect. 4.1),
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Figure 5: Operating characteristic of FGSM against classifier
ResNet-18 for 𝜖 ∈ [0, 1].

_ = +∞ (Sect. 4.2), and the optimal strategy where the best value
_★ is found for each image (Sect. 4.4). The classifier is ResNet-18
and the attack is FGSM (6).

Figure 5 shows the operating characteristics when 𝜖 ∈ [0, 1]. For
𝜖 < 1, the pixel perturbation has an amplitude smaller than 1 and its
quantization has the following two options: either {0, 1} or {−1, 0}
depending on the sign of the perturbation. Therefore, for minimiz-
ing the distortion, Q0 (x𝑎) = x𝑜 systematically. For 𝜖 = 1 exactly,
the quantization has only one option (either {1} or {−1} depending
on the sign of the perturbation). Then, d(Q0 (x𝑎), x𝑜 ) = 1 and it
happens that almost all the images are adversarial. Therefore, the
operating characteristic for Q0 is almost an all-or-nothing function.
𝑃𝑠𝑢𝑐 (𝑑) > 0 for 𝑑 ≲ 1 due to the border effect clipping the pixel
values to the range [0, 255].

The rounding to the nearest integer R has the same operating
characteristic in Fig. 5 . For 𝜖 < 0.5 the perturbation is rounded to
0 for all pixels. For 𝜖 > 0.5 the perturbation is rounded to ±1 and
the result is the same as for 𝜖 = 1 with Q0.

The operating characteristic forQ∞ is more interesting. Suppose
that for the 𝑗-th pixel, 0 < 𝑢 ( 𝑗) = 𝜖 < 1. According to (6), this is due
to the fact that the gradient of the loss at x𝑜 has a negative compo-
nent at index 𝑗 . According to (28), Q∞ quantizes this perturbation
back to 0 if 𝑔( 𝑗) > −1/_. Yet, that 𝑔( 𝑗) is the 𝑗-th component of the
gradient computed at x𝑎 . Hence for _ large enough, when these
two gradients do not agree on the sign of the same component, that
perturbation pixel is quantized to 0. We would expect this event
to be seldom. However, since the operating characteristic is peaky
around 𝑑 = 0.7 ≈ 1/√2 and that all the other perturbation pixels
are quantized to ±1, it means that 50% of the pixels are quantized
back to the original value.

From theses different results we can see that our approach Q_★

provides a huge improvement. Indeed, its operating characteristic
is as good as the one of the unquantized FGSM. Quantization is
especially more effective at middle range distortion: For 𝑑 = 0.4,
the success rate is higher by 10 points. Its operating characteristic
also converges to a higher level.
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Figure 6: Operating characteristic for FGSM, IFGSM, PGD2,
and CW against ResNet-18. (dashed) without quantization,
(dotted) with rounding, (plain) with our approach.

5.3.2 With or without quantization. Figure 6 compares the oper-
ating characteristics for the attacks FGSM, IFGSM, PGD2, and CW
with and without quantization (by rounding or by our approach)
against ResNet-18.

Without quantization, we find back the hierarchy well-known
in the literature: CW is better than PGD2 better than IFGSM better
than FGSM. Note that the difference between CW and PGD2 is not
tangible in this Fig. 6 (dashed plots) because we use a super-fine step
for PGD2. Rounding completely spoils these attacks because the
distortion before quantizing is too low (dotted plots). This illustrates
the theoretical study of Sect. 3.3. Our approach almost preserves the
operating characteristics without rounding (plain curves). Indeed,
our quantization mechanism improves FGSM but slightly degrades
the other attacks. The hierarchy is preserved but the differences
are now tiny.

5.3.3 Natural vs. robust network. Figure 7 shows operating char-
acteristics against a deeper network (ResNet-50) and its robust ver-
sion (ResNet-50R) fine-tuned by adversarial retraining with PGD2.

Attacking a deeper network does not change much the perfor-
mances except for the rudimentary FGSM: 𝜖 must be bigger than 1
to reach 90% in success rate. Note that our approach fixes this as
𝑃𝑠𝑢𝑐 (𝑑) > 90% for 𝑑 = 0.5. As for the other attacks, our approach
preserves the operating characteristics.

Attacking the robust network is another story. For a given level
of 𝑃𝑠𝑢𝑐 , the necessary distortion is much bigger. Note that the range
of the x-axis in Fig. 7 is not the same as the one of Fig. 6. CW and
PGD2 are attacks more powerful than FGSM and IFGSM.

For FGSM, our approach produces an operating characteristic
with ‘leaps’. One leap corresponds to a range (𝑘, 𝑘 + 1] with 𝑘 ∈ N
for the parameter 𝜖 . This is due to the fact that our approach is
constrained: For any value inside that range, it quantizes |𝑢 ( 𝑗) | to
{𝑘, 𝑘+1}. Indeed, for 𝜖 ∈ N, the quantization introduces no changes:
Q_ (x𝑎) = x𝑎 . This is where the operating characteristic touches
back the one without quantization. As for the other attacks, our
approach improves or at least preserves the operating characteristic
without quantization.



0 2 4 6 8 10 12 14

0

20

40

60

80

100

FGSM

IFGSM

𝑃
𝑠𝑢

𝑐
( 𝑑

)

Natural - _ = _★

Natural - unquantized

Robust - _ = _★

Robust - unquantized

0 2 4 6 8 10 12 14

0

20

40

60

80

100

PGD2

CW

𝑑

𝑃
𝑠𝑢

𝑐
( 𝑑

)

Natural - _ = _★

Natural - unquantized

Robust - _ = _★

Robust - unquantized

Figure 7: Operating characteristics against a natural net-
work (ResNet-50) or a robust network (ResNet-50R) with
and without quantization for the attacks (Top) FGSM and
IFGSM, (Bottom) PGD2 and CW.

Figure 8 displays some of the worst case examples with visible
distortion against ResNet-50R and their equivalent on ResNet-50.
For each image, the original is shown in the first column. For both
network, the image on the left corresponds to the rounding that
occurred when saving an adversarial sample x𝑎 forged by PGD2
in the ‘png’ format. This rounded image is no longer adversarial
except for the zebra on ResNet-50R. The image on the right shows
the result when quantizing PGD2 with our approach.

When quantized with our method, the four images remain adver-
sarial. On ResNet-50 our method increases the distortion in order
to remain adversarial. On ResNet-50R our method actually slightly
decreases the distortion and returns an adversarial image.

Although distortions are different in between the two images,
they remain visually similar. On ResNet-50 the perturbation is im-
perceptible while it is very much is on ResNet-50R. This illustrates
how the adversarial training defends the network against an attack.

5.4 Benchmark
This section now compares the attacks with our quantization to
DDN (10), one of the rare attack ‘natively’ producing quantized
digital images in the recent literature For a fair comparison w.r.t.
complexity, the attacks are mounted against the robust network
ResNet-50R but with a limited complexity (contrary to the previous

study): they all compute 100 gradients. In other words, the total
number of iterations is 𝑁 = 100.

The setup is the following:

• FGSM (6). 𝑁 = 100 × 1: We test a hundred values ranging in
0.15 ∗ {1, 2, . . . , 100} for parameter 𝜖 .

• IFGSM (7). 𝑁 = 5 × 20: Parameter 𝜖 is set to 𝑑max/𝑁 with
𝑁 = 20 and 𝑑max is given by a 5-step binary search over
[0, 15].

• PGD2 (8). 𝑁 = 2 × 5 × 10. For ResNet-50, 𝛼 ∈ {1, 5}. For
ResNet-50R, 𝛼 ∈ {50, 100}. A 5-step binary search finds
the correct 𝜖 to produce an adversarial example after 10
iterations.

• CW (9). 𝑁 = 5× 20: 5 iterations for the outer loop, 20 for the
ADAM inner loop, and a margin𝑚 = 0. The learning rate is
0.005 (resp. 0.01) and ` is initialized to 1000 (resp. 5000) for
ResNet-50 (resp. ResNet-50R).

• DDN (10). 𝑁 = 2 × 50: For ResNet-50, 𝛼 ∈ {100, 500}. For
ResNet-50R, 𝛼 ∈ {1000, 5000}. Each value of 𝛼 is tested with
𝑁 = 50 iterations and 𝛾 = 0.05.

Fig. 9 shows that CW and PGD2 are now on par when under
limited complexity (CW is slightly better at low distortion but PGD2
is better when 𝑑 ≥ 4 against ResNet-50R). DDN is not performing
well as it is worse than CW, PGD2, and even IFGSM for ResNet-50.
The next section investigates on this difficulty.

6 INTEGRATION INSIDE AN ITERATIVE
ATTACK

So far, our quantization mechanism is decoupled from the attack
forging x𝑎 . This is in strong contrast with the quantized version
of DDN in [11] where a rounding concludes each iteration. This
section proposes a proof of concept on how to integrate our quan-
tization mechanism inside an iterative attack like DDN.

The main message is that this integration must follow the spirit
of the attack. In DDN, the iteration (10) is driven by a distortion
budget parametrized by 𝜌 (𝑖) . This budget is adaptively scheduled
over the iterations in the following way: it is increased if the sample
x(𝑖−1)
𝑎 is not yet adversarial, it is decreased if that sample is already
adversarial. However, the rounding concluding the iteration may
spoil this fine-tuning of the distortion as seen in Sect. 3.3.

Our approach is able to better handle this distortion scheduling. It
amounts to change the setting of the Lagrangian parameter in (26).
We will define it by 𝛿★, not to confuse with _★. As illustrated
in Fig. 4, the distortion from x𝑜 is an increasing function of _.
Therefore, we set 𝛿★ as the value of _ which gives the scheduled
distortion.

Once the pixels of J (29) are ranked according to their ratios
{𝑟 ( 𝑗)} defined in (30), the line search finds the first (resp. last) index
𝑘★ s.t. 𝛿★ = 𝑟 (𝑘★) produces a distortion bigger (resp. smaller) than
the targeted budget when the previous sample x(𝑖−1)

𝑎 is not yet
(resp. is already) adversarial. This defines the quantization Q𝛿★

which minimizes the approximated classifier loss while fulfilling
the scheduled distortion.

This has to be done for each iteration. However, since the stop-
ping condition is defined via the distortion, the line search no longer
calls the classification network. Usually, the complexity of an attack
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Figure 8: Examples of adversarial images against natural ResNet-50 and its robust version ResNet-50R. They are created with
PGD2 followed by a rounding (2nd and 4th columns) or our approach (3rd and 5th columns).

is measured by the number of calls to the classifier. Our integration
inside DDN does not spoil its low complexity as it only consumes
one gradient computation. This gradient information is used to
compute ratios {𝑟 ( 𝑗)} defined in (30).

Fig. 10 shows operating characteristics of three versions of DDN:

• The original version of the quantized DDN which concludes
each iteration by a rounding R,

• The original version of the unquantized DDN followed at
the end by our quantization Q_★ ,

• Our integrated version of DDN which concludes each itera-
tion by quantization Q𝛿★ .

This comparison shows that the last two variants are better than the
original scheme. This outlines that the quantification mechanism is
of utmost importance. The last integrated version is the best. This
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Figure 9: Benchmark of the attacks against natural (ResNet-
50 - thin lines) and robust (ResNet-50R - thick lines) net-
works with limited complexity and quantization.
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Figure 10: Operating characteristics of three DDN imple-
mentations against natural (ResNet50 - thin lines) and ro-
bust (ResNet-50R - thick lines) networks with limited com-
plexity.

tends to prove that quantizing at each iteration is better than quan-
tizing only at the end provided that the quantization mechanism is
appropriate. This is not surprising: by integrating the quantization
inside the iterative process, we allows the upcoming iterations to
compensate for the drift due to the quantization.

7 CONCLUSION
This paper proposes a new quantification mechanism of adversarial
samples. It has two main features: i) It is a post-processing indepen-
dent of the attack, ii) Its complexity adds an extra cost of 𝑂 (log𝑛)
calls to the network which is small compared to the complexity
of the attack. Another point is that this mechanism can also be
integrated inside an iterative attack like DDN.

Overall, thanks to our quantification, the integral constraint
no longer spoil the operating characteristic of the attacks against
natural and robust classifiers. The main difference is that the attacks
CW, PGD2, and DDN are more or less equally efficient under this
constraint.

Figure 8 shows that the perturbation is clearly visible on some
adversarial images against robust classifier. Our future work aims
at taking into account a distortion metric better reflecting human
perceptibility than the Euclidean distance.
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