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Abstract

Boundary observer design for a system of ODEs in cascade with hyperbolic PDEs is studied. An infinite dimensional observer
is used to solve the state estimation problem. The interconnection of the observer and the system is written in estimation
error coordinates and analyzed as an abstract dynamical system. The design of the observer is performed to achieve global
exponential stability of the estimation error with respect to a suitable norm and with a tunable convergence rate. Sufficient
conditions in the form matrix inequalities are given for the design of the observer. The effectiveness of the approach is shown
in a numerical example.
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1 Introduction

1.1 Background

Systems of balance laws are often studied when consider-
ing control applications. Indeed, such a class of infinite-
dimensional systems can be adopted to model many
physical phenomena as hydraulic networks [15], multi-
phase flow [13], transmission networks [17], road traf-
fic networks [18] or gas flow in pipelines [14]; see [4] for
an introduction on this class of hyperbolic Partial Dif-
ferential Equations (PDEs) and physical motivations.
For such distributed parameter systems, sensors are of-
ten placed pointwise at the boundary of the domain,
and similarly for (potentially non-collocated) actuators.
This gives rise to challenging boundary control design
problems, investigated using various techniques, e.g., in
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[9,23,25]; just to mention a few. In what pertains to
boundary state estimation problems, due to the practi-
cal need of state observers, the analysis of observabil-
ity properties and observer design problems for infinite-
dimensional systems have seen an increasing interest in
the community. Boundary observability has been for-
mally analyzed in [29] using abstract semigroup theory.
The design of boundary observers has been investigated
via Lyapunov methods in [1,7]. The use of backstep-
ping techniques has been explored in [28] for the design
of boundary observers for parabolic PDEs and in [2,19]
for PDE–ODE cascade systems. Recently, the design of
high-gain observers for hyperbolic systems of balance
laws, yet with distributed in-domain measurements, has
been addressed in [21].

1.2 Contribution

In this paper, we consider the problem of exponentially
estimating the state of a system of hyperbolic PDEs with
linear time-invariant dynamic boundary conditions via
boundary measurements. Systems modeled as the inter-
connection of PDEs and ODEs can be found in numer-
ous applications; see, e.g., [4, Chapter 1], [11,26]. To ad-
dress this problem, we consider an infinite-dimensional
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observer that is a copy of the systemwith a linear bound-
ary injection term to be designed. Our contributions in
the solution to this problem are as follows. Partly in-
spired by [7], where boundary observer design for con-
servation laws with static and asymptotically stable dy-
namic boundary conditions is addressed, we present re-
sults for the design of the observer based on matrix in-
equalities. The approach we pursue relies on Lyapunov
theory for infinite-dimensional systems and leads to a
set of sufficient conditions to ensure exponential con-
vergence of the estimation error with guaranteed con-
vergence speed. Connections between the feasibility of
those conditions and structural properties of the system
under estimation are illustrated. As a second step, our
conditions guaranteeing exponential convergence of the
estimation error are exploited to derive an observer de-
sign algorithm based on the solution to some linear ma-
trix inequalities (LMI ), which can be efficiently solved
via available software [5].

The unique feature of our paper with respect to [7] is the
use of a nondiagonal Lyapunov functional for the design
of the observer. This enables us to relax the assumption
on the boundary conditions in [7], which in our work do
not need to be asymptotically stable. As a side effect,
the use of such a nondiagonal functional renders the con-
struction of a numerically affordable algorithm for the
design of the observer more challenging than in [7]. This
is a relevant contribution of our work.

A preliminary version of this work has been presented
in the conference paper [16]. While in [16] the design of
the observer is based on the solution to some bilinear
matrix inequalities, the present paper proposes a design
algorithm based on the solution to some LMIs coupled
to a two-dimensional line search. In addition, this paper
contains full proofs of the main results.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the system under consideration, illus-
trates the problem we solve, and provides some prelim-
inary results. Section 3 provides sufficient conditions in
the form of matrix inequalities for stability analysis of
the estimation error dynamics. Section 4 is dedicated to
the design of the proposed observer. Section 5 showcases
the application of our methodology in a numerical exam-
ple. Some auxiliary results are included in Appendix A.

Notation

We denote byN the set of nonnegative integers,R the set
of real numbers, R≥0 the set of nonnegative real num-
bers, and C the set of complex numbers. Given z ∈ C,
Re(z) stands for the real part of z. The symbols Sn (Sn+)
and Dn

+ denote, respectively, the set of real n× n sym-
metric (symmetric positive definite) matrices and the
set of diagonal positive definite matrices. For a matrix
A ∈ Rn×m, AT denotes the transpose of A, spec(A) its

spectrum, and, when n = m, He(A) = A + AT. Given
two matrices A and B, A⊕B denotes the block diagonal
matrix with matricesA andB on its diagonal. For a sym-
metric matrixA, positive definiteness (negative definite-
ness) and positive semidefiniteness (negative semidefi-
niteness) are denoted, respectively, by A ≻ 0 (A ≺ 0)
andA � 0 (A � 0). GivenA,B ∈ Sn, we say thatA � B
(A � B) if A − B � 0 (A − B � 0). Given A ∈ Sn,
λmax(A) and λmin(A) stand, respectively, for the largest
and the smallest eigenvalue ofA. In partitioned symmet-
ric matrices, the symbol • stands for symmetric blocks.
The symbol I denotes the identity matrix or the identity
operator, depending on the context. For a vector x ∈ Rn,
|x| denotes its Euclidean norm. Given x, y ∈ Rn, we
denote by 〈x, y〉Rn the standard Euclidean inner prod-
uct. Let X and Y be linear normed spaces, the symbol
L (X,Y ) denotes the space of all bounded linear opera-
tors from X to Y . Let U ⊂ R, V ⊂ R

n, and f : U → V ,
we denote by ‖f‖L2 = (

∫
U
|f(x)|2dx) 1

2 the L2 norm of f .

In particular, we say that f ∈ L2(U ;V ) if ‖f‖L2 is finite.
Given f, g ∈ L2(U ;V ), 〈f, g〉L2 :=

∫
U
〈f(x), g(x)〉Rndx.

Let U ⊂ R be open and V be a linear normed space, we
denote

H1(U ;V ) :=
{
f ∈L2(U ;V ) :f is absolutely continuous on U,

d

dz
f ∈ L2(U ;V )

}

where d
dz

stands for the weak derivative of f . The sym-

bols Ck(U ;V ) and C∞
c (U ;V ) denote, respectively, the

set of class k functions f : U → V and set of smooth
compactly supported functions f : U → V .Let I ⊂ R,
φ : I → H1(U ;V ), t ∈ I, and z⋆ ∈ U . We denote by
(φ(t))(z⋆) ∈ V the value of φ(t) at z = z⋆. Given a lin-
ear operator A , we denote by A ⋆ its adjoint. Let X and
Y be linear normed spaces, U be an open subset of X ,
f : U → Y , and x ∈ U , we denote by Df(x) the Fréchet
derivative of f at x.

2 Problem Statement and Outline of the Solu-
tion

2.1 System Description

Let Ω := (0, 1), we consider a system of nx linear 1-
D hyperbolic PDEs with dynamic boundary conditions
formally written as:





∂tx(t, z) + Λ∂zx(t, z) + Fx(t, z) = 0

x(t, 0) = Cχ(t)

χ̇(t) = Aχ(t)

y(t) =Mx(t, 1)

∀(t, z)∈R>0×Ω
(1)

where ∂tx and ∂zx denote, respectively, the derivative
of x with respect to “time” and the “spatial” variable
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z, (z 7→ x(t, z), χ(t)) ∈ Z := L2(0, 1;Rnx) × Rnχ is the
system state, and y ∈ Rny is a measured output. We
assume that the matrices Λ ∈ D

nx

+ , F ∈ Rnx×nx , C ∈
Rnx×nχ , A ∈ Rnχ×nχ , and M ∈ Rny×nx are given. Our
goal is to design an observer providing an exponentially
converging estimate (x̂(t, z), χ̂(t)) of the system state
(x(t, z), χ(t)) from any initial condition in Z.

Remark 1 System (1) is an LTI ODE plant in cascade
with a hyperbolic PDE in the sensing path; [22]. In this
setting, one could be interested in getting an estimate of
the finite-dimensional state χ only. However, due to the
presence of infinite-dimensional dynamics in the sens-
ing path, an infinite dimensional observer providing an
estimate of the full state (x, χ) is needed.

2.2 Outline of the proposed Observer

Inspired by [7], we consider the following observer with
state in Z





∂tx̂(t, z) + Λ∂zx̂(t, z) + F x̂(t, z) = 0

x̂(t, 0) = Cχ̂(t)
˙̂χ(t) = Aχ̂(t) + L(y(t)−Mx̂(t, 1))

∀(t, z)∈R>0×Ω

(2)
where L ∈ Rnχ×ny is the observer gain to be designed;
see Fig. 1 for a schematic representation of the intercon-
nection of system (1) and observer (2).

Remark 2 It is worth mentioning that one can poten-
tially add an injection term at the boundary of the x̂-
dynamics. However, the design of this additional term is
hard to handle from a numerical standpoint. This issue
is left for future research.

Remark 3 Observer design for ODE–PDE cascades of
has been addressed in [2,19,22] via the use of backstep-
ping techniques. A wholly similar approach, yet for con-
trol design is proposed in [12]. The application of such an
approach requires the use of plant parameters-dependent
state transformations, which makes it prone to a lack of
robustness in the presence of parametric uncertainties.
As opposed, our approach does not rely on any transfor-
mation, hence we believe that it is very well suited to ac-
count for parametric uncertainties in an output feedback
control scheme based on the proposed observer. Another
interesting aspect of our methodology is that it allows to
tune the decay rate directly in the design and to quantify
the overshoot on the estimation error.

At this stage, define the following two estimation errors
ε := x− x̂ and η := χ− χ̂. The dynamics of these errors

are as follows:





∂tε(t, z) + Λ∂zε(t, z) + Fε(t, z) = 0

ε(t, 0) = Cη(t)

η̇(t) = Aη − LMε(t, 1)

∀(t, z)∈R>0×Ω
(3)

z
0 1

χ̇ = Aχ
∂tx+ Λ∂zx+ Fx = 0

x(·, 0) = Cχ

y

∂tx̂+ Λ∂zx̂+ F x̂ = 0

x̂(·, 0) = Cχ̂

˙̂χ = Aχ̂+ L(y −Mx̂(·, 1))

(x̂, χ̂)

Fig. 1. Schematic representation of the considered state es-
timation setting.

Remark 4 In this paper, we assume that (1) is not sub-
ject to any external inputs. Nevertheless, notice that,
since (1) is linear, our methodology can be trivially ex-
tended to deal with known exogenous inputs as, e.g., con-
trol inputs.

2.3 Abstract Formulation of the Problem

Similarly as in [4], in this paper, we focus on mild solu-
tions to (3). To this end, as in [10,3,20], we reformulate
the error dynamics as an abstract differential equation
on the Hilbert space Z endowed with the following inner
product:

〈(f1, f2), (g1, g2)〉Z := 〈f1, g1〉L2 + 〈f2, g2〉Rnχ (4)

In particular, let X := H1(0, 1;Rnx)×Rnχ ⊂ Z. Define
D := {(ε, η) ∈ X : ε(0) = Cη} and consider the following
unbounded operator:

A : domA → Z

(ε, η) 7→
(
−Λ d

dz
− F 0

0 A

)(
ε

η

)
+

(
0

−LMε(1)

)

(5)
where domA := D. Then, the error dynamics can be
formally written as the following abstract differential
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equation on the Hilbert space Z
(
ε̇

η̇

)
= A

(
ε

η

)
(6)

In particular, following the lines of [3], we consider the
following notion of (mild) solution for (6):

Definition 2.1 Let I ⊂ R≥0 be an interval containing
zero. A function ψ ∈ C0(I,L2(0, 1;Rnx) × Rnχ) is a
solution to (6) if for all t ∈ I

∫ t

0

ψ(s)ds ∈ domA , ψ(t) = ψ(0) + A

∫ t

0

ψ(s)ds

Moreover, we say that ψ is maximal if its domain cannot
be extended and it is complete if sup I = ∞. ◦

2.4 Well-posedness of the Error Dynamics

In this subsection, we illustrate existence and unique-
ness of the solutions to (6). In principle existence and
uniqueness issues should be addressed for the intercon-
nection of plant (1) and observer (2). On the other hand,
for the sake of brevity, in this paper we limit such an
analysis only to the error dynamics (6). Nonetheless, it
is worth mentioning that the extension of the analysis
we propose next for (6) to the interconnection of (1) and
(2) is straightforward.

The result given next shows existence and uniqueness
of solutions to (6). The proof of this result is largely
inspired by the techniques used in 1 [4, Theorem A.1,
page 244].

Proposition 1 (Well-posedness) Let (ε0, η0) ∈ Z.
Then, there exists a unique maximal solution ψ =
(ψε, ψη) to (6) such that ψ(0) = (ε0, η0). Moreover ψ is
complete.

PROOF. From [3, Proposition 3.1.11, Proposi-
tion 3.1.12, page 115] existence and uniqueness
of mild solutions to (6) hold if and only if A in
(5) generates a C0-semigroup t 7→ T (t) on the
Hilbert space Z. In particular, in this case, for any

1 Although the result given in [4, Theorem A.1, page 244]
applies only to system of hyperbolic PDEs, the authors pro-
vide a similar result for systems of hyperbolic PDEs with
linear differential boundary conditions, i.e., [4, Theorem A.6,
page 254]. However, the proof of such a result is therein omit-
ted. In this paper we propose a complete proof for the case
of interest.

ψ0 = (ε0, η0) ∈ L2(0, 1;Rnx)×Rnχ , the unique maximal
solution ψ to (6) with ψ(0) = (ε0, η0) reads as

ψ(t) = T (t)ψ0 ∀t ≥ 0

Therefore, to complete the proof, we show that (5) gen-
erates a C0-semigroup on the Hilbert space Z. To this
end, we make use of [10, Corollary 2.2.3] and rely upon
Lemma A.1, Lemma A.2, and Lemma A.4 in the Ap-
pendix. In particular, from Lemma A.1 and Lemma A.2,
it follows that A is densely defined and closed. From
Lemma A.4, there exists ω ∈ R such that

〈A θ, θ〉Z ≤ ω〈θ, θ〉Z ∀θ ∈ domA

〈A ⋆θ, θ〉Z ≤ ω〈θ, θ〉Z ∀θ ∈ domA
⋆

Thus, by invoking [10, Corollary 2.2.3] the result is es-
tablished. �

Now we are in a position to formally state the problem
we solve in this paper.

Problem 1 Given A ∈ Rnχ×nχ , C ∈ Rnx×nχ , M ∈
Rny×nx , Λ ∈ D

nx

+ , and λ > 0. Design L ∈ Rnχ×ny such
that for each solution ψ to (6) one has, for all t ∈ domψ

‖ψ(t)‖Z ≤ κe−λt‖ψ(0)‖Z (7)

for some κ ∈ R>0. ◦

3 Stability Analysis of the Error Dynamics

In this section we propose sufficient conditions for the
solution to Problem 1. To this end, consider the following
preliminary result, whose role will be clarified later in
the proof of Theorem 1.

Proposition 2 Let P1 ∈ D
nx

+ , P2 ∈ Rnχ×nx , P3 ∈ S
nχ

+ ,
and µ ∈ R. Define

Π: [0, 1] → S
nx+nχ

+

z 7→
[
e−µzP1 P

T

2

• P3

]
(8)

Then, for all (ε, η) ∈ domA one has

2

∫ 1

0

〈
Π(z)

[
ε(z)

η

]
,A

[
ε(z)

η

]〉

R
nx+nχ

dz =

∫ 1

0

〈



ε(z)

ε(1)

η


 ,Φ(z)




ε(z)

ε(1)

η




〉

R
2nx+nχ

dz

(9)

where Φ is defined in (10) (at the top of the next page).
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Φ(z) =




e−µz(−µΛP1 −He(FTP1)) −PT

2 LM PT

2 A− FTPT

2

• −ΛP1e
−µz −ΛPT

2 −MTLTP3

• • He(P3A+ P2ΛC) + CTΛP1C


 (10)

PROOF. Pick any (ε, η) ∈ Z. Then, one has

2

∫ 1

0

〈
Π(z)

[
ε(z)

η

]
,A

[
ε(z)

η

]〉

R
nx+nχ

= Θ1 +Θ2 +Θ3

where:

Θ1 :=− 2

∫ 1

0

〈 d
dz
ε(z),ΛP1ε(z)〉Rnx e−µzdz

− 2

∫ 1

0

〈ε(z), P1Fε(z)〉Rnxe−µzdz

Θ2 :=2

∫ 1

0

〈PT

2 Aη, ε(z)〉Rnxdz

− 2

∫ 1

0

〈PT

2 LMε(1), ε(z)〉Rnxdz

− 2

∫ 1

0

〈ΛPT

2 η,
d

dz
ε(z)〉Rnxdz

− 2

∫ 1

0

〈FTPT

2 η, ε(z)〉Rnxdz

Θ3 :=2〈η, P3Aη〉Rnχ − 2〈η, P3LMε(1)〉Rnχ

To conclude the proof, next we develop Θ1,Θ2, and Θ3.

By integrating by parts the first term in Θ1 and using
the fact that (ε, η) ∈ domA , one gets

Θ1 = −ε(1)TΛP1ε(1)e
−µ + ηTCTΛP1Cη

−µ
∫ 1

0

ε(z)TΛP1ε(z)e
−µzdz

−2

∫ 1

0

ε(z)TP1Fε(z)e
−µzdz

Concerning Θ2, using the elementary identity

∫ 1

0

d

dz
ε(z)dz = ε(1)− ε(0)

and using the fact that (ε, η) ∈ domA , it turns out that

Θ2 =2

∫ 1

0

ηTATP2ε(z)dz

− 2

∫ 1

0

ε(1)TMTLTP2ε(z)dz

− 2ηTP2Λε(1) + 2ηTP2ΛCη

− 2

∫ 1

0

ηTP2Fε(z)dz

Finally, notice that Θ3 = ηT He(P3A)η−2ηTP3LMε(1).
Combining the expressions of Θ1,Θ2, and Θ3, straight-
forward manipulations enable to rewrite Θ1 + Θ2 + Θ3

as in (9). Thus the result is established. �

The result given next provides sufficient conditions in the
form of matrix inequalities for the solution to Problem 1.

Theorem 1 Let λ > 0 be given. If there exist P1 ∈ D
nx

+ ,

P2 ∈ Rnχ×nx , P3 ∈ S
nχ

+ , L ∈ Rnχ×ny , and µ ∈ R>0 such
that:

[
P1e

−µ PT

2

• P3

]
≻ 0 (11a)

Φ(1) + 2λ




P1e
−µ 0 PT

2

• 0 0

• • P3


 � 0 (11b)

Then, L solves Problem 1. In particular, any maximal

solution to (6) satisfies (7) with κ =
√

α2

α1
where

α1 := λmin

([
P1e

−µ PT

2

• P3

])
, α2 := λmax

([
P1 P

T

2

• P3

])

(12)

PROOF. Let z 7→ Π(z) be defined as in (8). Consider
the following Lyapunov functional candidate on Z:

V (ε, η) :=

∫ 1

0

〈[
ε(z)

η

]
,Π(z)

[
ε(z)

η

]〉

R
nx+nχ

dz (13)

In particular, observe that for all (ε, η) ∈ Z one has

α1‖(ε, η)‖2Z ≤ V (ε, η) ≤ α2‖(ε, η)‖2Z (14)

where α1 and α2 are strictly positive thanks to (11a). As
a first step, we show that exponential convergence of the
estimation error holds true for any initial condition in
domA . Pick a solution I ∋ t 7→ ψ(t) := (ψε(t), ψη(t))
to (6) and assume that ψ(0) ∈ domA . Then, as al-
ready discussed in the proof of Proposition 1, A gen-
erates a C0-semigroup on the Hilbert space Z, from [3,
Proposition 3.1.9, item (h), page 112], one has that ψ is
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a classical solution to (6). More precisely, one has that
ψ ∈ C1(int I,Z), ψ(t) ∈ domA for all t ∈ I, and

ψ̇(t) = A ψ(t) ∀t ∈ int I (15)

For all t ∈ int I, ψ being differentiable, one has

V̇ (t) :=
d

dt
V (ψ(t)) = DV (ψ(t))ψ̇(t)

where the above identity follows from the chain rule
for the Fréchet derivative. Using Lemma A.5 in the ap-
pendix, one gets

V̇ (t) = 2

∫ 1

0

〈
Π(z)

[
(ψε(t))(z)

ψη(t)

]
,A

[
(ψε(t))(z)

ψη(t)

]〉

R
nx+nχ

dz

By invoking Proposition 2, it follows that for all t ∈ int I

V̇ (t) =

∫ 1

0

〈



(ψε(t))(z)

(ψε(t))(1)

ψη(t)


 ,Φ(z)




(ψε(t))(z)

(ψε(t))(1)

ψη(t)




〉

R
2nx+nχ

dz

(16)
For all z ∈ [0, 1], define

Ξ(z) := Φ(z) + 2λ




P1e
−µz 0 PT

2

• 0 0

• • P3


 (17)

and observe that the matrix on the lefthand side of (11b)
corresponds to Ξ(1). Using (16), for all t ∈ int I, one has:

V̇ (t) + 2λV (ψ(t)) =

∫ 1

0

〈



(ψε(t))(z)

(ψε(t))(1)

ψη(t)


 ,Ξ(z)




(ψε(t))(z)

(ψε(t))(1)

ψη(t)




〉

R
2nx+nχ

dz

(18)
At this stage, notice that from (11b), it follows that for
z ∈ [0, 1], Ξ(z) � Ξ(1) � 0. This implies, thanks to (18),

that for all t ∈ int I, V̇ (t) + 2λV (ψ(t)) ≤ 0. The latter,
due to (14), by standard manipulations, yields for all
t ∈ I

‖ψ(t)‖Z ≤
√
α2

α1
e−λt‖ψ(0)‖Z (19)

which reads as (7) with κ =
√

α2

α1
.

Now we conclude the proof by showing that the above
result holds true also for “mild” solutions to (6). Let ψ ∈
C0(I,Z) be a solution to (6). Then, since, as stated in

LemmaA.1, domA is dense inZ, there exists a sequence
{ψ0

k} ⊂ domA such that

‖ψ0
k − ψ(0)‖Z k→∞−→ 0 (20)

Let R≥0 ∋ t 7→ T (t) be the C0-semigroup generated by
A on Z. For each k ∈ N, define

t 7→ ψk(t) := T (t)ψ0
k t ∈ I

Then, from [10, Theorem 2.1.10, items (a), (b), page 21]
for all k ∈ N

ψk ∈ C1(int I,Z)

ψk(t) ∈ domA ∀t ∈ I
ψ̇k(t) = A ψk(t) ∀t ∈ int I

This shows that for each k ∈ N, ψk is a classical solution
to (6). As such, for all k ∈ N, (19) holds for ψk. In
particular, for all k ∈ N, t ∈ I, one has

‖ψk(t)‖Z ≤
√
α2

α1
e−λt‖ψk(0)‖Z (21)

Moreover, it can be easily shown that (20) implies that
for all 2 t ∈ I

‖ψk(t)− ψ(t)‖Z k→∞−→ 0 (22)

Therefore, from (21), taking the limit for k → ∞ and by
using (20)-(22) one gets (19). This shows that (19) holds
for all solutions to (6). Hence, the result is established.�

The above result establishes sufficient conditions for the
solution to Problem 1. A natural question is whether the
satisfaction of (11b) relies on some detectability assump-
tions on the system data. A positive answer is given by
the following result:

Proposition 3 Let λ > 0 be given. If there exist
P1 ∈ D

nx

+ , P2 ∈ Rnχ×nx , P3 ∈ S
nχ

+ , L ∈ Rnχ×ny ,
and µ ∈ R>0 such that (11b) holds. Then, the pair
(A,MC) is λ-detectable, i.e., there exists L such that
spec(A− LMC) ⊂ {z ∈ C : Re(z) ≤ λ}.

2 This property follows directly from the fact that any so-
lution ψ to (6) (nonnecessarily differentiable) satisfies

ψ(t) = T (t)ψ(0) ∀t ∈ domψ

where T is the C0 semigroup generated by A on Z; see [3,
Proposition 3.1.11, page 115].
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PROOF. Assume that (11b) holds. Define

S :=




I 0 0

0 −I C

0 0 I




Hence, using (11b), it follows that:

0 � ST

(
Φ(1) + 2λ

[
P1e

−µ 0 PT

2

• 0 0
• • P3

])
S =

[
−e−µ(µΛP1+He(FTP1)) PT

2LM PT

2A−FTPT

2−PT

2LMC

• −ΛP1e
−µ ΛP1e

−µC+ΛPT

2+MTLTP3

• • (1−e−µ)CTΛP1C+He(P3(A−LMC))

]

+ 2λ

[
P1e

−µ 0 PT

2

• 0 0
• • P3

]

By inspecting the righthand side of the above inequality,
it turns out that:

(1− e−µ)CTΛP1C +He(P3(A− LMC)) + 2λP3 � 0

Now, observe that since ΛP1 ≻ 0 and µ > 0, the above
inequality implies that:

He(P3(A− LMC)) + 2λP3 � 0

This shows that the eigenvalues of A − LMC are con-
tained in the set

{z ∈ C : Re(z) ≤ λ}

that is, (A,MC) is λ-detectable, thereby concluding the
proof. �

Remark 5 Let us notice that, as long as the matrix F
is diagonal and positive definite, and the matrix A is
Hurwitz, inequality (11a) is trivially satisfied with L = 0,
P2 = 0, and a sufficiently large µ > 0. This scenario is
considered, e.g., in [7].

Remark 6 As opposed to [7], the feasibility of (11b)
does not requireA to be Hurwitz. This aspect is connected
to the selection of the non-block diagonal structure of the
Lyapunov functional (13). More specifically, by taking a
diagonal functional, i.e., by enforcing P2 = 0, the (3, 3)
block of (11b) reads as He(P3A)+CTΛP1C +λP3. This
clearly points out that, when P2 = 0, the feasibility of
(11b) implies that A is Hurwitz.

4 Observer Design

Condition (11b) is a bilinear matrix inequality (BMI ).
As such, numerical solution to (11b) can be challeng-
ing when the size of the unknown matrices gets large;
see [30]. This aspect is connected to the selection of the

non-block diagonal structure of the Lyapunov functional
(13). To overcome this drawback, next we propose suffi-
cient conditions for the solution to Problem 1 involving
a set of LMIs coupled with a line search on two scalar pa-
rameters. The main advantage of this approach is that
LMIs can be efficiently solved via interior point methods
in polynomial time; see [5] for more details on the use of
LMIs in systems and control.

Proposition 4 Let λ ∈ R>0 be given. If there exist P1 ∈
D

nx

+ , P2 ∈ Rnχ×nx , P3 ∈ S
nχ

+ , J ∈ Rnχ×ny , ϑ ∈ R>0,
and µ ∈ R>0 such that:

Σ :=




Υ Γ QTJT

⋆ −ϑP3 0

⋆ ⋆ − 1
ϑ
P3


 � 0 (23a)

where

Υ:=




−e−µ(µΛP1 +He(FTP1)) 0 PT

2 A− FTPT

2

• −ΛP1e
−µ −ΛPT

2 −MTJT

• • He(P3A+ P2ΛC) + CTΛP1C




+2λ




e−µP1 0 PT

2

• 0 0

• • P3


,Γ :=




−PT

2

0

0


 , Q :=

[
0 M 0

]

(23b)
Then, P1, P2, P3, L = P−1

3 J and µ satisfy (11b).

PROOF. The proof hinges upon the statement of The-
orem 1, by showing that the hypotheses of the above
result imply that Ξ(1) ≺ 0, where Ξ is defined in (17).

As a first step we show that (23a) implies

Ψ := Υ +
1

ϑ
ΓP−1

3 ΓT + ϑQTLTP3LQ � 0 (24)

To this end, observe that, by defining R := I⊕ I⊕P−1
3 ,

it follows that Σ = RΣ̂R, where:

Σ̂ :=




Υ Γ QTLT

⋆ −ϑP3 0

⋆ ⋆ − 1
ϑ
P−1
3




This shows that (23a) is equivalent to Σ̂ � 0, which in
turn, by Schur complement, implies that (24) holds. To
conclude the proof, notice that Ξ(1) = Υ + He(ΓLQ)
and recall that (cf. [24, Claim 1]) for any T ∈ S

nχ

+

He(ΓLQ) � ΓTΓT +QTLTT−1LQ
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Picking T = 1
ϑ
P−1
3 , the above relationship yields Ξ(1) �

Ψ, which thanks to (24) gives Ξ(1) � 0. This concludes
the proof. �

5 Numerical Example

Consider a system of the form (1) defined by the follow-
ing data

Λ =

[√
2 0

0 2

]
, F =

[
−0.5 0.1

0.5 0.1

]
, A =




0 1 0

0 0 1

0 0 0




C =

[
1 0 0

0 0 1

]
, M =

[
1 1
]

It is worth mentioning that, since A is not Hurwitz,

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

ϑ

µ

Fig. 2. Feasible set projected onto the plan (ϑ, µ). Crosses
stands for feasible points.

the results in [7] cannot be used to design a boundary
observer in this case; see Remark 6. Now we show how
Proposition 4 enables to overcome this limitation. For
design purposes, we select λ = 1

2 ×0.03 and solve (11b)–
(23a) by performing a line search on the parameters µ
and ϑ on a grid of 900 points uniformly taken over the
box [0.1, 3]× [0.1, 3]. In Fig. 2 we report the set of fea-
sible points for the selected grid. With the objective of
improving the transient response of the observer, a pos-
sible approach consists of selecting among all feasible
solutions, the one characterized by the smallest value of

the overshoot κ =
√

α2

α1
in (7) where α1 and α2 are de-

fined in (12). Indeed, as pointed out by Fig. 3, the value
of κ depends on the value of µ and ϑ. In particular, the
smallest value of κ can be achieved by selecting µ = 1.3
and ϑ = 1. For those values, the solution to the (11b)-

0

2.5

1

3

2

10
5

2

3

2

4

1.5
1

1 0 θµ

κ

Fig. 3. Value of the overshoot κ as a function of (θ, µ).

(23a) reads as:


 P1 P

T

2

P2 P3


 =




0.0040 0 −0.0026 −0.0227 0.18

0 0.0192 −0.0029 −0.0296 0.1654

−0.0026 −0.0029 0.0376 −0.1892 −3.332

−0.0227 −0.0296 −0.1892 6.815 −55.61

0.18 0.1654 −3.332 −55.61 2755




LT =
[
0.2287 0.0156 0.0005

]

In Fig. 4, we report the evolution of the Lyapunov func-
tional (13) along the solution to (6) from the following
initial condition 3 :

x1(0, z) = 0.1(cos(2πz)− 1) ∀z ∈ [0, 1]

x2(0, z) = −0.1(cos(4πz)− 1) ∀z ∈ [0, 1]

χ(0) = (0.1,−0.1, 0.2)

x̂(0, z) = (0, 0) ∀z ∈ [0, 1]

χ̂(0) = (0, 0, 0)

(25)

As expected, V exponentially converges to zero, hence
ensuring that the estimation error (ε, η) converges to
zero exponentially. Moreover, the picture points out that
in this simulation the exponential upper bound on V is
very tight. Exponential state reconstruction is confirmed
by Fig. 5 and Fig. 6 where the evolution of ε and η, re-
spectively, are reported. For the sake of comparison, in
Fig. 7 we portrait the evolution of ‖(ε, η)‖Z for the ini-
tial condition in (25) obtained by considering different
selections of the variables θ and µ. The picture clearly
emphasizes that minimizing the overshoot κ leads to an
improved response. In particular, among the three con-
sidered pairs, the best pair of parameters seems to be

3 Numerical integration of hyperbolic PDEs is
performed via the use of the Lax-Friedrichs
(Shampine’s two-step variant) scheme implemented
in MatlabR© by Shampine [27]. Code available at
https://github.com/f-ferrante/AUT19ObserverHypODE
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Fig. 4. Evolution of the Lyapunov functional (13) along the
solution to (6) from the initial condition in (25) (solid line)

the upper bound e−2λtV (ε(0), η(0)) (dotted line).
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Fig. 5. Evolution of the error ε for the initial condition in
(25).

(ϑ, µ) = (1, 1.3), which is consistent with Fig. 3. In this
case, the estimation error converges close to zero in about
90 seconds. We believe that this large convergence time
is mostly due to the estimation error overshoot caused
by the unstable boundary dynamics. This overshoot is
likely to be generated by the time lag induced by the
convective behavior of the ε-dynamics. A possible ap-
proach to mitigate this unwanted behavior consists of
adding an additional injection term in the domain of the
observer. However, this extension is beyond the scope of
our paper.

0 50 100 150
-10

0

10

0 50 100 150
-2

0

2

0 50 100 150
-0.1

0

0.1

0.2

t

t

t

η
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η
2
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Fig. 6. Evolution of the error η for the initial condition in
(25).
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30
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Fig. 7. Evolution of ‖(ε, η)‖Z for the initial condition in (25)
obtained for different designs: (ϑ,µ) = (1, 1.3) (dashed line),
(ϑ,µ) = (0.5, 2.2) (solid line), and (ϑ,µ) = (1, 2.2) (dotted
line).

6 Conclusion

In this paper, we considered the problem of designing
an observer to estimate the state of a coupled ODEs–
hyperbolic PDEs system. The error dynamics are ana-
lyzed via abstract differential equations tools. The ob-
server is designed to induce global exponential stability
of the error dynamics with respect to a specific norm and
with a prescribed convergence rate. By pursuing a Lya-
punov approach, the observer design problem is recast
into the feasibility problem of some bilinear matrix in-
equalities. Then, such conditions are exploited to devise
an observer design algorithm based on the solution to
some LMIs coupled to a line search on two scalars. Nu-
merical simulations are used to illustrate the effective-
ness of the proposed design strategy in an example. Fu-
ture research directions include the use of an in-domain
injection to improve the transient behavior of the ob-
server.
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A Technical Results

A.1 Technical Results for Section 2.3

In this subsection, we provide some auxiliary results that
are used to build the proof of Proposition 1.

Lemma A.1 The set

D := {(ε, η) ∈ X : ε(0) = Cη} (A.1)

is dense in Z.

PROOF. Let f = (fε, fη) ∈ Z. Then, since C∞
c (0, 1;Rnx)

is dense in L2(0, 1;Rnx), there exists a sequence
{εk} ⊂ C∞

c (0, 1;Rnx) such that

‖εk − fε‖L2 → 0

Define the following sequence in H1(0, 1;Rnx)

ηk(z) :=

{
(1− kz)Cfη if z ∈

(
0, 1

k

)

0 if z ∈
[
1
k
, 1
)

and let ωk := ηk + εk. Obviously, since for all k ∈ N,
εk(0) = εk(1) = 0 and ηk, εk ∈ H1(0, 1;Rnx), it follows
that {(ωk, fη)} ⊂ D. Moreover one has for each k ∈ N

‖(ωk, fη)− f‖Z = ‖ωk − fε‖L2(0,1;Rnx)

hence, since by construction

‖ωk − fε‖L2 → 0

one has
‖(ωk, fη)− f‖Z → 0

Thereby concluding the proof. �

Lemma A.2 Let A be defined as in (5). Then, A is
closed in Z.

PROOF. The proof builds on the general ideas con-
tained in the proof of [4, Theorem A.1, page 244]. Pick
{(εk, ηk)} ⊂ domA and assume that

(εk, ηk)
Z−→

k→∞
(ε, η) (A.2)

A

(
εk

ηk

)
Z−→

k→∞

(
yε

yη

)
(A.3)

we show that
(ε, η) ∈ domA
(
yε

yη

)
= A

(
ε

η

)

First observe that for all k ∈ N

A

(
εk

ηk

)
=

(
−Λ d

dz
εk(z)− Fεk(z)

Aηk

)
+

(
0

−LMεk(1)

)

hence, from (A.2)-(A.3) it follows that

Λ
d

dz
εk

L2(0,1;Rnx)−→
k→∞

Fε− yε (A.4)

In particular, the above identity shows that d
dz
εk con-

verges inL2(0, 1;Rnx). Thus, since {εk} ⊂ H1(0, 1;Rnx),
and d

dz
εk and εk converge in L2(0, 1;Rnx), it follows that

d

dz
εk

L2(0,1;Rnx )−→
k→∞

d

dz
ε

thereby implying that

εk
H1(0,1;Rnx)−→

k→∞
ε (A.5)

Now observe that since, for each k ∈ N, (εk, ηk) ∈
domA , one has that

εk(0) = Cηk (A.6)

which gives
lim
k→∞

εk(0) = Cη

Moreover, from [6, Theorem 8.8, page 212] one has that
there exists ς ∈ R such that for all k

‖εk − ε‖∞ ≤ ς‖εk − ε‖H1(0,1;Rnx)

This implies
lim
k→∞

‖εk − ε‖∞ = 0 (A.7)

and the latter, due to ε, εk ∈ H1(0, 1;Rnx), gives

lim
k→∞

εk(0) = ε(0)

which, using (A.6), yields ε(0) = Cη. This shows that
(ε, η) ∈ domA . To conclude the proof, we show that

(
yε

yη

)
= A

(
ε

η

)

Consider the following partition

A

(
εk

ηk

)
=:

(
yεk

yηk

)
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Obviously, since for all k

yηk
= Aηk − LMεk(1)

ηk → η, and from (A.7) εk(1) → ε(1), it follows that

yη = Aη − LMε(1)

Moreover, from (A.4)

0 = lim
k→∞

‖yεk − yε‖L2(0,1;Rnx ) (A.8)

At this stage, for all k define

δk := F (ε− εk) + Λ
d

dz
(ε− εk)

and observe that from (A.5)

δk
L2(0,1;Rnx)−→

k→∞
= 0 (A.9)

Consider the following rewriting of (A.8):

0 = lim
k→∞

∥∥∥∥δk − Λ
d

dz
ε− Fε+ yε

∥∥∥∥
L2(0,1;Rnx)

by using standard arguments, the relation above yields

0 = lim
k→∞

∣∣∣∣∣‖δk‖L2(0,1;Rnx) −
∥∥∥∥Λ

d

dz
ε+ Fε− yε

∥∥∥∥
L2(0,1;Rnx)

∣∣∣∣∣

using (A.9) it turns out that

0 =

∥∥∥∥Λ
d

dz
ε+ Fε− yε

∥∥∥∥
L2(0,1;Rnx)

Namely

−Λ
d

dz
ε− Fε =

L2(0,1;Rnx)
yε

and this concludes the proof. �

In the result given next, we determine the adjoint of the
operator A . Such an adjoint is used in Lemma A.4

Lemma A.3 Let

D⋆ :=
{
(ε⋆, η⋆) ∈ X : ε⋆(1) = −Λ−1MTLTη⋆

}
(A.10)

For the operator A defined in (5), one has

A
⋆ : domA

⋆ → Z

(ε⋆, η⋆) 7→
(

Λ d
dz
ε⋆ − FTε⋆

ATη⋆ + CTΛε⋆(0)

)
(A.11)

with domA ⋆ = D⋆.

PROOF. As a first step, define

Â : D → Z

(ε, η) 7→
(

−Λ d
dz
ε

−LMε(1)

)

T : Z → Z

(ε, η) 7→
(
−Fε
Aη

)

where the set D is defined in (A.1) and observe that

A = Â +T . Therefore, since T is bounded and dom T =
Z, from [10, Lemma A.3.65, page 603] it follows that

A ⋆ = Â ⋆ + T ⋆ with dom((A + T ))⋆ = dom Â ⋆. To
determine T ⋆, pick θ := (ε, η), θ⋆ := (ε⋆, η⋆) ∈ Z and
notice that

〈T θ, θ⋆〉Z =

∫ 1

0

〈−Fε(z), ε⋆(z)〉Rnxdz + 〈Aη, η⋆〉Rnχ

that is

〈T θ, θ⋆〉Z =

∫ 1

0

〈ε(z),−FTε⋆(z)〉Rnxdz + 〈η,ATη⋆〉Rnχ

which allows one to conclude that

T ⋆ : Z → Z

(ε⋆, η⋆) 7→
(
−FTε⋆

ATη⋆

)

To conclude, pick θ = (ε, η) ∈ dom Â and observe that

〈Â θ, θ⋆〉Z=−
∫ 1

0

〈Λ d

dz
ε(z), ε⋆(z)〉Rnxdz−〈LMε(1), η⋆〉Rnχ

Since (ε, η) ∈ dom Â , by integrating by parts one gets

〈Â θ, θ⋆〉Z =〈η, CTΛε⋆(0)〉Rnχ − 〈Λε(1), ε⋆(1)〉Rnx−

〈ε(1),MTLTη⋆〉Rnx +

∫ 1

0

〈ε(z),Λ d

dz
ε⋆(z)〉Rnxdz

The latter allows one conclude that Â ⋆ corresponds to
(A.11), thereby concluding the proof. �

The result given next establishes quasi-dissipativity for
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the operator A and its adjoint 4 ; see [4, Theorem A.1,
page 244].

Lemma A.4 There exists ω ∈ R such that

〈A θ, θ〉Z ≤ ω〈θ, θ〉Z ∀θ ∈ domA

〈A ⋆θ, θ〉Z ≤ ω〈θ, θ〉Z ∀θ ∈ domA
⋆ (A.12)

PROOF. Let

Π :=




− 1
2 He(F ) 0 0

• − 1
2Λ

MTLT

2

• • He(A)
2 + CTΛC


 (A.13)

Then, it can be easily shown that for all θ = (ε, η) ∈
domA

〈A θ, θ〉Z =

∫ 1

0




ε(z)

ε(1)

η




T

Π




ε(z)

ε(1)

η


 dz

From Lemma A.6, there exists H ∈ Snχ such that

Π �




− 1
2 He(F ) 0 0

• 0 0

• • H




Therefore, one has that

〈A θ, θ〉Z ≤
∫ 1

0

− 〈ε(z), F ε(z)〉Rnxdz + 〈η,Hη〉Rnχ

which implies

〈A θ, θ〉Z ≤ max{λmax

(
−1

2
He(F )

)
, λmax(H)}

︸ ︷︷ ︸
ω1

〈θ, θ〉Z

(A.14)
Analogously, it can be shown that that for all θ = (ε, η) ∈
domA ⋆

〈A ⋆θ, θ〉Z =
∫ 1

0




ε(z)

ε(0)

η




T

Π⋆




ε(z)

ε(0)

η


 dz

with

Π⋆ :=




− 1
2 He(F ) 0 0

• − 1
2Λ ΛC

• • He(A)
2 + LMΛ−1MTLT




4 In the proof of [4, Theorem A.1, page 244], a specific inner
product is used to establish quasi-dissipativity properties. In
the proof of Lemma A.4, we consider a more standard inner
product. This renders the corresponding proof easier to work
out.

Thus, by invoking again Lemma A.6, one can conclude
that there exists S⋆ ∈ Snχ such that for all θ ∈ domA ⋆

〈A ⋆θ, θ〉Z ≤ max{λmax

(
−1

2
He(F )

)
, λmax(S⋆)}

︸ ︷︷ ︸
ω2

〈θ, θ〉Z

(A.15)
Finally, by taking ω = max{ω1, ω2}, using (A.14) and
(A.15), one gets (A.12). This concludes the proof. �

A.2 Definitions and auxiliary results

Definition A.1 ([10]) Let Z be a Hilbert space. The
function T : R≥0 → L (Z,Z) is a C0-semigroup on Z if
it satisfies the following properties:

(a) For all t, s ∈ R≥0, T (t+ s) = T (t)T (s)
(b) T (0) = I
(c) For all z0 ∈ Z, limt→0+ ‖T (t)z0 − z0‖ = 0

◦

Definition A.2 [10] Let Z be a Hilbert space and
A : domA → Z. We say that A generates a C0-
semigroup T on T if for all z ∈ domA

A z = lim
t→0+

1

t
(T (t)− I) z

◦

Definition A.3 ([8]) Let X and Y be linear normed
spaces, U be an open subset ofX, f : U → Y , and x ∈ U .
We say that f is Fréchet differentiable at x if there exists
L ∈ L (X,Y ) such that

lim
h→0

‖f(x+ h)− f(x) − Lh‖Y
‖h‖X

= 0

In particular L is the Fréchet derivative of f at x and is
denoted by Df(x). When X = R, we denote

ḟ(x) = lim
h→0

f(x+ h)− f(x)

h

◦

The following lemma is instrumental to compute the
Fréchet derivative of Lyapunov functionals.

Lemma A.5 Let Π ∈ C0([0, 1]; Snx+nχ) and Z be en-
dowed with the inner product defined in (4). Consider the
following functional

V : Z → R

(ε, η) 7→ V (ε, η) :=

∫ 1

0

〈
Π(z)

[
ε(z)

η

]
,

[
ε(z)

η

]〉

R
nx+nχ

dz
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Then, V is Fréchet differentiable on Z. In particular, for
each X := (ε, η), h := (hε, hη) ∈ Z

DV (X)h = 2

∫ 1

0

〈
Π(z)

[
ε(z)

η

]
,

[
hε(z)

hη

]〉

R
nx+nχ

dz

PROOF. Let X,h ∈ Z. For the sake of convenience,
define

K(X,h) := 2

∫ 1

0

〈
Π(z)

[
ε(z)

η

]
,

[
hε(z)

hη

]〉

R
nx+nχ

For any X,h ∈ Z, one has

V (X + h)− V (X) =K(X,h)+
∫ 1

0

〈
Π(z)

[
hε(z)

hη

]
,

[
hε(z)

hη

]〉

R
nx+nχ

dz

≤ | max
z∈[0,1]

λmax(Π(z))|〈h, h〉Z

+K(X,h)

Thus, it follows that

lim
‖h‖Z→0

|V (X + h)− V (X)−K(X,h)|
‖h‖Z

= 0

This concludes the proof. �

Lemma A.6 Let A ∈ Sn+, C ∈ Sm, and B ∈ Rn×m.
Then, there exists Γ ∈ Sm such that

[
−A B

• C

]
�
[
0 0

• Γ

]
(A.16)

PROOF. Pick Γ = C + BTA−1B. Then (A.16) holds
if and only if

[
−A B

• −BTA−1B

]
� 0 (A.17)

In particular, the Schur complement of the lefthand side
of (A.17) is 0. Thus, since A ∈ S

n
+, it follows that (A.17)

holds. This concludes the proof. �
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