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Abstract: We study a kinetic stochastic model with a non-linear time-inhomogeneous drag force and a

Brownian-type random force. More precisely, the Kolmogorov type diffusion (V,X) is considered: here

X is the position of the particle and V is its velocity and is solution of a stochastic differential equation

driven by a one-dimensional Brownian motion, with the drift of the form t−βF (v). The function F

satisfies some homogeneity condition and β is positive. The behaviour of the process (V,X) in large

time is proved by using stochastic analysis tools.
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1 Introduction

In several domains as fluids dynamics, statistical mechanics, biology, a number of models are
based on the Fokker-Planck and Langevin equations driven by Brownian motion or could be
non-linear or driven by other random noises. For example, in [CCM10] the persistent turn-
ing walker model was introduced, inspired by the modelling of fish motion. An associated
two-component Kolmogorov type diffusion solves a kinetic Fokker-Planck equation based on
an Ornstein-Uhlenbeck Gaussian process and the authors studied the large time behaviour of
this model by using appropriate tools from stochastic analysis. One of the natural questions is
the behaviour in large time of the solution to the corresponding stochastic differential equation
(SDE). Although the tools of partial differential equations allow us to ask of this kind of ques-
tions, since these models are probabilistic, tools based on stochastic processes could be more
natural to use.

In the last decade the asymptotic study of solutions of non-linear Langevin’s type was the
subject of an important number of papers, see [CNP19], [EG15], [FT21]. For instance, in [FT21]
the following system is studied

Vt = v0 +Bt −
ρ

2

∫ t

0

F (Vs) ds and Xt = x0 +

∫ t

0

Vs ds.

In other words one considers a particle moving such that its velocity is a diffusion with an
invariant measure behaving like (1 + |v|2)−ρ/2, as |v| → +∞. The authors prove that for large
time, after a suitable rescaling, the position process behaves as a Brownian motion or other
stable processes, following the values of ρ. Results have been extended to additive functional of
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V in [Bét21]. It should be noticed that these cited papers use the standard tools associated with
time-homogeneous equations: invariant measure, scale function and speed measure. Several of
these tools will not be available when the drag force is depending explicitly on time. In [GO13],
a non-linear SDE driven by a Brownian motion but having time-inhomogeneous drift coefficient
was studied and its large time behaviour was described. Moreover, sharp rates of convergence
are proved for the 1-dimensional marginal of the solution. In the present paper, we consider the
velocity process as satisfying the same kind of SDE.

Let us describe our framework: consider a one-dimensional time-inhomogeneous stochastic
kinetic model driven by a Brownian motion. We denote by (Xt)t≥0 the one-dimensional process
describing the position of a particle at time t having the velocity Vt. The velocity process (Vt)t≥0

is supposed to follow a Brownian dynamic in a potential U(t, v), varying in time:

dVt = dBt −
1

2
∂vU(t, Vt) dt and Xt = X0 +

∫ t

0

Vs ds.

This system can be viewed as a perturbation of the classical two-component Kolmogorov diffusion

dVt = dBt and Xt = X0 +

∫ t

0

Vs ds.

In the present paper the potential is supposed to grow slowly to infinity, and it will be supposed
to be of the form t−β

∫ v

0 F (u) du, with β > 0 and F satisfying some homogeneity condition. It

describes a one dimensional particle evolving in a force field Ft−β and undergoing many small
random shocks. A natural question is to understand the behaviour of the process (V,X) in large
time. More precisely we look for the limit in distribution of v(ε)(Vt/ε, εXt/ε)t, as ε → 0, where
v(ε) is some rate of convergence. Our results are proved on the product of path spaces and
consequently contain those of [GO13].
If F = 0, it is not difficult to see that the rescaled position process (ε1/2Vt/ε, ε

3/2Xt/ε)t converges

in distribution towards the Kolmogorov diffusion (Bt,
∫ t

0
Bs ds)t. We prove that this kinetic

behaviour still holds for sufficiently "small at infinity" potential. The strategy to tackle this
problem is based on estimates of moments of the velocity process. The main result can then be
extended for the case when the potential is equally weighted in some sense as the random noise.
The potential either offsets the random noise (critical regime) or swings with it (sub-critical
regime).
As suggested at the beginning of the introduction, other random noises can be considered. In
[GL21], the case of a Lévy random noise is analysed. The case of a stochastic system in a
harmonic potential is the purpose of a future work (see [Lui22]).

The organisation of our paper is as follows: in the next section we introduce notations, and
we state our main results. Results about existence and non-explosion of solutions are stated in
Section 3. Estimates of the moments of the velocity process are given in Section 4 while the
proofs of our main results are presented in Section 5.

2 Notations and main results

Let (Bt)t≥0 be a standard Brownian motion, β a real number and F a continuous function which
is supposed to satisfy either

for some γ ∈ R, ∀v ∈ R, λ > 0, F (λv) = λγF (v), (Hγ
1 )
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or
|F | ≤ G where G is a positive function satisfying (Hγ

1 ). (Hγ
2 )

Each assumption implies that there exist a positive constant K such that, for all v ∈ R,
|F (v)| ≤ K |v|γ . Obviously (Hγ

2 ) is a generalisation of (Hγ
1 ). In the following, sgn is the sign

function with convention sgn(0) = 0. As an example of function satisfying (Hγ
1 ) one can keep in

mind F : v 7→ sgn(v) |v|γ (see also [GO13]), and as an example of function satisfying (Hγ
2 ) (with

γ = 0) F : v 7→ v/(1+v2) (see also [FT21]).

Remark 2.1. If a function π satisfies (Hγ
1 ), then for all x ∈ R, π(x) = π(sgn(x)) |x|γ .

We consider the following one-dimensional stochastic kinetic model, for t ≥ t0 > 0,

dVt = dBt − t−βF (Vt) dt, Vt0 = v0 > 0, and dXt = Vt dt, Xt0 = x0 ∈ R. (SKE)

Most of the convergences take place in the space of continuous functions C((0,+∞),R) endowed
by the uniform topology

du : f, g ∈ C((0,+∞),R) 7→
+∞∑

n=1

1

2n
min

(
1, sup

[ 1
n
,n]

|f − g|
)
.

For a family ((Z
(ε)
t )t>0)ε>0 of continuous processes, we write

(Z
(ε)
t )t>0 =⇒ (Zt)t>0,

if (Z
(ε)
t )t>0 converges in distribution to (Zt)t>0 in C((0,+∞),R), as ε→ 0.

We write

(Z
(ε)
t )t>0

f.d.d.
=⇒ (Zt)t>0,

if for all finite subsets S ⊂ (0,+∞), the vector (Z
(ε)
t )t∈S converges in distribution to (Zt)t∈S in

R
S , as ε→ 0.

Let us state our main results. Set q :=
β

γ + 1
.

Theorem 2.2. Consider γ ≥ 0, and q > 1
2 . Assume that either (Hγ

1 ) or (Hγ
2 ) is satisfied. Let

(Vt, Xt)t≥t0 be the solution to (SKE) and (Bt)t≥0 be a standard Brownian motion. Furthermore,
if γ ≥ 1, we suppose that for all v ∈ R, vF (v) ≥ 0.
Then, as ε→ 0, (√

εVt/ε, ε
3/2Xt/ε

)
t≥εt0

=⇒
(
Bt,

∫ t

0

Bs ds

)

t≥0

.

Theorem 2.3. Consider γ ≥ 0 and q = 1
2 . Assume that (Hγ

1 ) is satisfied. Let (Vt, Xt)t≥t0 be
the solution to (SKE). If γ ≥ 1, we suppose furthermore that for all v ∈ R, vF (v) ≥ 0.

Call H̃ the eternal ergodic process, solution to the homogeneous SDE

dHs = dWs −
Hs

2
ds− F

(
Hs

)
ds,

such that the law of H−∞ is the invariant measure, where (Wt)t≥0 is again a standard Brownian

motion. Setting ΛF,t1,··· ,td for the f.d.d. of H̃, we call (Vt)t≥0 the process whose finite dimensional
distribution (f.d.d.) are T ∗ ΛF,log(t1),··· ,log(td), the pushforward measure of ΛF,log(t1),··· ,log(td) by

the linear map T (u1, · · · , ud) := (
√
t1u1, · · · ,

√
tdud), that is (Vt)t≥0 = (

√
tH̃log(t))t≥0.

Then, as ε→ 0, (√
εVt/ε, ε

3/2Xt/ε

)
t≥εt0

=⇒
(
Vt,

∫ t

0

Vs ds

)

t≥0

.
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Remark 2.4. The one-dimensional distribution of (Vt)t≥0 has already been explicitly computed
(see Theorem 4.1 in [GO13]).

Theorem 2.5. Consider γ ≥ 1 and q < 1
2 . Assume that F : v 7→ ρ sgn(v) |v|γ with ρ > 0. Let

(Vt, Xt)t≥t0 be the solution to (SKE). Call Ĥ the ergodic process, solution to the homogeneous
SDE

dHs = dWs − F (Hs) ds,

where (Wt)t≥0 is a standard Brownian motion. Call ΠF its invariant measure. We call (Vt)t≥0

the process whose f.d.d. are T ∗
(
⊗dΠF

)
, the pushforward measure of ⊗dΠF by the linear map

T (u1, · · · , ud) := (t1
qu1, · · · , tdqud).

Then, as ε→ 0, (
εqVt/ε

)
t≥εt0

f.d.d.
=⇒ (Vt)t≥0 .

Moreover, in the linear case (i.e. γ = 1) and if β > − 1
2 , we define (Xt)t≥0 the centered Gaussian

process with covariance function K(s, t) := (ρ2(1 + 2β))−1(s ∧ t)1+2β.
Then, as ε→ 0, (

εβ+
1
2Xt/ε

)
t≥εt0

f.d.d.
=⇒ (Xt)t≥0 . (1)

Remark 2.6. If β = 0, one can prove using the martingale method, that (
√
εXt/ε)t≥0 converges

towards a Brownian motion. Assume, by way of contradiction, that the process (εqVt/ε)t≥εt0

would converge (i.e. were tight), then by the continuous mapping theorem, the process (εXt/ε)t≥0

should converge. This is a contradiction with (1). Here is why we deal only with finite-dimensional
convergence for the velocity process.

3 Changed-of-time processes

In the following, we suppose that γ > −1 and set Ω = C([t0,+∞)) the set of continuous functions,
that equal +∞ after their (possibly infinite) explosion time. Following the idea used in [GO13],
we first perform a change of time in (SKE) in order to produce at least one time-homogeneous
coefficient in the transformed equation. For every C2-diffeomorphism ϕ : [0, t1) → [t0,+∞), let
introduce the scaling transformation Φϕ defined, for ω ∈ Ω, by

Φϕ(ω)(s) :=
ω(ϕ(s))√
ϕ′(s)

, with s ∈ [0, t1).

The result containing the change of time transformation can be found in [GO13], Proposition
2.1, p. 187.
Let V be solution to the equation (SKE). Thanks to Lévy’s characterization theorem of the

Brownian motion, (Wt)t≥0 :=

(∫ t

0

dBϕ(s)√
ϕ′(s)

)

t≥0

is a standard Brownian motion. Then, by a

change of variable t = ϕ(s), one gets

Vϕ(t) − Vϕ(0) =

∫ t

0

√
ϕ′(s) dWs −

∫ t

0

F (Vϕ(s))

ϕ(s)β
ϕ′(s) ds.

The integration by parts formula yields

d

(
Vϕ(s)√
ϕ′(s)

)
= dWs −

√
ϕ′(s)

ϕ(s)β
F (Vϕ(s)) ds−

ϕ′′(s)

2ϕ′(s)

Vϕ(s)√
ϕ′(s)

ds.

As a consequence, we can state the following result in our context.
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Proposition 3.1. If V is a solution to the equation (SKE), then V (ϕ) := Φϕ(V ) is a solution
to

dV (ϕ)
s = dWs −

√
ϕ′(s)

ϕ(s)β
F (
√
ϕ′(s)V (ϕ)

s ) ds− ϕ′′(s)

ϕ′(s)

V
(ϕ)
s

2
ds, V

(ϕ)
0 =

Vϕ(0)√
ϕ′(0)

, (2)

where Wt :=
∫ t

0

dBϕ(s)√
ϕ′(s)

.

If V (ϕ) is a solution to (2), then Φ−1
ϕ (V (ϕ)) is a solution to the equation (SKE), where Bt−Bt0 :=∫ t

t0

√
(ϕ′ ◦ ϕ−1)(s) dWϕ−1(s).

Furthermore, uniqueness in law, pathwise uniqueness or strong existence hold for the equation
(SKE) if and only if they hold for the equation (2).

In the following, we will use two particular changes of time, depending on which term of (2)
should become time-homogeneous.

• The exponential change of time: denoting ϕe : t 7→ t0e
t, the exponential scaling transfor-

mation is defined by Φe(ω) : s ∈ R
+ 7→ ωt0es√

t0e
s/2

, for ω ∈ Ω. Thanks to Proposition 3.1, the

process V (e) := Φe(V ) satisfies the equation

dV (e)
s = dWs −

V
(e)
s

2
ds− t

1/2−β
0 e(

1/2−β)sF
(√
t0e

s/2V (e)
s

)
ds,

where (Wt)t≥0 is a standard Brownian motion.

• The power change of time: for q = β
γ+1 6= 1

2 , consider ϕq ∈ C2([0, t1)) the solution to the
Cauchy problem

ϕ′
q = ϕ2q

q , ϕq(0) = t0.

Clearly, ϕq(t) =
(
t1−2q
0 + (1− 2q)t

)1/(1−2q)
, when 2q 6= 1, and ϕq = ϕe, when 2q = 1.

The time t1 satisfies t1 = +∞, when 2q ≤ 1, and t1 = t1−2q
0 (2q − 1)−1, when 2q > 1.

The power scaling transformation is defined by Φq(ω) : s ∈ R
+ 7→ ω(ϕq(s))

ϕq(s)q
. The process

V (q) := V (ϕq) satisfies the equation

dV (q)
s = dWs − ϕ−γq

q (s)F
(√

ϕ′
q(s)V

(q)
s

)
ds− qϕ2q−1

q (s)V (q)
s ds, (3)

where (Wt)t≥0 is a standard Brownian motion.

Adapting the proof of Propositions 3.2, 3.6 and 3.7 p. 188, in [GO13], one can prove the following
proposition.

Proposition 3.2. For γ ≥ 0, there exists a pathwise unique strong solution to (SKE), defined
up to the explosion time τ∞ of V .

• When γ ≤ 1 or for all v ∈ R, vF (v) ≥ 0, then τ∞ is a.s. infinite.

• When 2q > 1, then P(τ∞ = +∞) > 0.

• Under (Hγ
1 ), if γ > 1 and (F (−1), F (1)) ∈ ((0,+∞)) × [0,+∞)) ∪ (R × (−∞, 0)), then

P(τ∞ = +∞) < 1.
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Remark 3.3. Assume that (Hγ
1 ) is satisfied. In the linear case (γ = 1), the drift and the

diffusion terms are Lipschitz and satisfy locally linear growth condition. The existence and non-
explosion of V follow from Theorem 2.9, p. 289, in [KS98].

For more details, we refer to [Lui22].

4 Moment estimates of the velocity process

In this section, we give estimates for the moment of the velocity process. It will be useful to
control some stochastic terms appearing later.

Proposition 4.1. Assume that γ ≥ 0 and β ∈ R. The inequality

∀t ≥ t0, E [|Vt|κ] ≤ Cγ,κ,β,t0t
κ
2

holds for

• κ ∈ [0, 1], when γ < 1 and β ≥ γ+1
2 ,

• κ ≥ 0, when for all v ∈ R, vF (v) ≥ 0.

If κ ∈ [0, 1], γ < 1 and β < γ+1
2 , then

∀t ≥ t0, E [|Vt|κ] ≤ Cγ,κ,β,t0t
κ 1−β

1−γ .

Remark 4.2. When −1 < γ < 0, it can be proved that for all t ≥ t0, E [|Vt|] ≤ Cγ,β,t0

√
t,

without hypothesis of the positivity of the function v 7→ vF (v).

Proof. Step 1. Assume that γ ≥ 1 and that for all v ∈ R, vF (v) ≥ 0.
Define, for all n ≥ 0, the stopping times Tn := inf{t ≥ t0, |Vt| ≥ n}. By Itô’s formula, for all
t ≥ t0, we have

V 2
t∧Tn

= v20 +

∫ t∧Tn

t0

2Vs dBs −
∫ t∧Tn

t0

2s−βVsF (Vs) ds+ (t ∧ Tn − t0)

= v20 +

∫ t

t0

1s≤Tn
2Vs dBs −

∫ t∧Tn

t0

2s−βVsF (Vs) ds+ (t ∧ Tn − t0)

≤ v20 +

∫ t

t0

1s≤Tn
2Vs dBs + (t− t0).

Since
∫ t

t0
41s≤Tn

V 2
s ds ≤ 4n2(t− t0) < +∞, taking expectation yields

E
[
V 2
t∧Tn

]
≤ v20 + (t− t0) ≤ Ct0t.

Set κ ∈ [0, 2], we obtain by Jensen’s inequality that

E [|Vt|κ] ≤ E

[
|Vt|2

] κ
2 ≤

(
lim inf
n→+∞

E
[
V 2
t∧Tn

])κ
2

≤ Cκ,t0t
κ
2 . (4)

When κ > 2, the function v 7→ |v|κ is C2, so by Itô’s formula, we can write for all t ≥ t0,

|Vt∧Tn
|κ = |v0|κ +

∫ t∧Tn

t0

κ sgn(Vs) |Vs|κ−1
dBs −

∫ t∧Tn

t0

κs−β |Vs|κ−1
sgn(Vs)F (Vs) ds

+

∫ t∧Tn

t0

κ(κ− 1)

2
|Vs|κ−2

ds.
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In addition, using the hypothesis on the sign of F , we have

|Vt∧Tn
|κ ≤ |v0|κ +

∫ t

t0

1s≤Tn
κ sgn(Vs) |Vs|κ−1 dBs +

∫ t∧Tn

t0

κ(κ− 1)

2
|Vs|κ−2 ds. (5)

We observe that
∫ t

t0
κ2V 2κ−2

s 1s≤Tn
ds ≤ κ2n2κ−2(t − t0) < +∞. Taking expectation in (5), we

obtain

E [|Vt|κ] ≤ lim inf
n→+∞

E [|Vt∧Tn
|κ] ≤ |v0|κ +

∫ t

t0

κ(κ− 1)

2
E

[
|Vs|κ−2

]
ds.

When 0 ≤ κ− 2 ≤ 2, we can upper bound E

[
|Vs|κ−2

]
by injecting (4) and get

E [|Vt|κ] ≤ |v0|κ +

∫ t

t0

κ(κ− 1)

2
Cκ,t0s

κ−2
2 ds ≤ Cκ,t0s

κ
2 .

The same method is then applied inductively to prove the inequality for all κ > 2.

Step 2. Assume now that γ ∈ [0, 1[. Fix κ ∈ [0, 1]. Then Jensen’s inequality yields, for all
t ≥ t0, E [|Vt|κ] ≤ E [|Vt|]κ, hence it suffices to verify the inequality only for κ = 1.
Define, for all n ≥ 0, the stopping times Tn := inf{t ≥ t0, |Vt| ≥ n} and let us recall that under
both hypotheses (Hγ

1 ) or (Hγ
2 ), there exists a positive constant K, such that |F (v)| ≤ K |v|γ .

We can write, for t ≥ t0 and n ≥ 0,

|Vt∧Tn
| ≤ |v0 −Bt0 |+ |Bt∧Tn

|+
∫ t∧Tn

t0

s−β |F (Vs∧Tn
)| ds

≤ |v0 −Bt0 |+ |Bt∧Tn
|+
∫ t∧Tn

t0

s−βK |Vs∧Tn
|γ ds.

By noting that γ ∈ [0, 1[ and (B2
t − t)t≥0 is a martingale, taking expectation we get

E [|Vt∧Tn
|] ≤ E [|v0 −Bt0 |] + E [|Bt∧Tn

|] +
∫ t

t0

s−βKE [|Vs∧Tn
|γ ] ds

≤ E [|v0 −Bt0 |] +
√

E
[
B2

t∧Tn

]
+

∫ t

t0

s−βKE [|Vs∧Tn
|]γ ds

≤ E [|v0 −Bt0 |] +
√

E [t ∧ Tn] +
∫ t

t0

s−βKE [|Vs∧Tn
|]γ ds

≤ Ct0

√
t+

∫ t

t0

s−βKE [|Vs∧Tn
|]γ ds.

The function gn : t 7→ E [|Vt∧Tn
|] is bounded by n. Applying a Gronwall-type lemma, stated

below (Lemma 4.3) and Fatou’s lemma, for β 6= 1 and for all t ≥ t0, we end up with

E [|Vt|] ≤ lim inf
n→+∞

E [|Vt∧Tn
|] ≤ Cγ

[
Ct0

√
t+

(
1− γ

1− β
K(t1−β − t1−β

0 )

) 1
1−γ

]

≤ Cγ,β,t0

{√
t if β ≥ γ+1

2 ,

t
1−β
1−γ else.

The case β = 1 can be treated similarly.
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Lemma 4.3 (Gronwall-type lemma). Fix r ∈ [0, 1) and t0 ∈ R. Assume that g is a non-
negative real-valued function, b is a positive function and a is a differentiable real-valued function.
Moreover, suppose that the function bgr is continuous. If

∀t ≥ t0, g(t) ≤ a(t) +

∫ t

t0

b(s)g(s)r ds, (6)

then,

∀t ≥ t0, g(t) ≤ 2
1

1−r

[
a(t) +

(
(1− r)

∫ t

t0

b(s) ds

) 1
1−r

]
.

Proof. For t ≥ t0, since r ≥ 0,

g(t)r ≤
(
a(t) +

∫ t

t0

b(s)g(s)r ds

)r

,

then, multiplying by b(t) > 0,

b(t)g(t)r ≤ b(t)

(
a(t) +

∫ t

t0

b(s)g(s)r ds

)r

.

Now, let us make appear the derivative of H

a′(t) + b(t)g(t)r ≤ a′(t) + b(t)

(
a(t) +

∫ t

t0

b(s)g(s)r ds

)r

,

that is

a′(t) + b(t)g(t)r(
a(t) +

∫ t

t0
b(s)g(s)r ds

)r ≤ b(t) +
a′(t)(

a(t) +
∫ t

t0
b(s)g(s)r ds

)r ≤ b(t) +
a′(t)

a(t)r
.

Integrating, since r 6= 1, we obtain

(1−r)−1

[(
a(t) +

∫ t

t0

b(s)g(s)r ds

)1−r

− a(t0)
1−r

]
≤ (1−r)−1

[
a(t)1−r − a(t0)

1−r
]
+

∫ t

t0

b(s) ds

or equivalently, setting H for the right-hand side of (6) and using that r < 1, we get

H(t)1−r ≤ a(t)1−r + (1 − r)

∫ t

t0

b(s) ds.

Since 1
1−r > 0 and using (6)

g(t) ≤
(
a(t)1−r + (1− r)

∫ t

t0

b(s) ds

) 1
1−r

≤ Cr

[
a(t) +

(
(1− r)

∫ t

t0

b(s) ds

) 1
1−r

]
.

This concludes the proof of the lemma.

Remark 4.4. Call H(t) the right-hand side of (6). If g is not continuous, note that the function
H is continuous and satisfies (6) (since b is positive and g ≤ H). Therefore, one can apply the
lemma to H and then use the inequality g ≤ H.
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5 Proof of the asymptotic behaviour of the solution

This section is devoted to the proofs of our main results.

5.1 Asymptotic behaviour in the super-critical regime under both as-

sumptions

In this section, we assume that γ ≥ 0 and q > 1
2 .

Proof of Theorem 2.2. We split the proof into three steps.

Step 1. We note that it is enough to prove that the process

(V
(ε)
t )t≥0 := (

√
εVt/ε)t≥0

converges in distribution to a Brownian motion in the space of continuous functions C([0,+∞))
endowed by the uniform topology. In order to see V (ε) as a process of C([0,+∞)), let us state

for all s ∈ [0, εt0], V
(ε)
s := V

(ε)
εt0 =

√
εv0.

For every ε ∈ (0, 1] and t ≥ εt0, we can write

ε
3/2Xt/ε = ε

3/2x0 +

∫ t

εt0

V (ε)
s ds.

Clearly, the theorem will be proved once we show that gε(V
(ε)
• ) := (V

(ε)
• ,

∫ •

εt0
V

(ε)
s ds) con-

verges weakly in C([0,+∞)) endowed by the uniform topology. Here the mapping gε : v 7→(
vt,
∫ t

εt0
vs ds

)
t≥0

is defined and valued on C((0,+∞)). This mapping is converging, as ε → 0,

to the continuous mapping g : v 7→
(
vt,
∫ t

0
vs ds

)
t≥0

.

We have, for every ε ∈ (0, 1] and t ≥ εt0,

V
(ε)
t =

√
εVt/ε =

√
ε(v0 −Bt0) +

√
εBt/ε −

√
ε

∫ t/ε

t0

F (Vs)s
−β ds

=
√
ε(v0 −Bt0) +B

(ε)
t − εβ−1/2

∫ t

εt0

F (Vu/ε)u
−β du.

By self-similarity, B(ε) := (
√
εBt/ε)t≥0 has the same distribution as a standard Brownian motion.

Assume that the convergence of the rescaled velocity process is proved in the strong way, that is

∀T ≥ t0, sup
εt0≤t≤T

∣∣∣V (ε)
t −B

(ε)
t

∣∣∣ P−→ 0, as ε→ 0. (7)

Then it suffices to prove that gε(B
(ε)) =⇒ g(B) and du

(
gε(V

(ε)), gε(B
(ε))
)

P−→ 0, as ε→ 0 (see
Theorem 3.1, p. 27, in [Bil99]).
On the one hand, the process B(ε) being a Brownian motion and |·|

R2 denoting a norm on R
2,

the first convergence follows from

∀T ≥ t0, sup
εt0≤t≤T

|gε(Bt)− g(Bt)|R2

P−→ 0, as ε→ 0. (8)

9



Let us prove (8). For every εt0 ≤ t ≤ T , we get

|gε(Bt)− g(Bt)|R2 =

∣∣∣∣
∫ εt0

0

Bs ds

∣∣∣∣

≤
∫ εt0

0

|Bs| ds.

Hence,

E

[
sup

εt0≤t≤T
|gε(Bt)− g(Bt)|R2

]
≤
∫ εt0

0

E |Bs| ds ≤ C

∫ εt0

0

√
s ds −→

ε→0
0.

On the other hand, we prove that

∀T ≥ t0, sup
εt0≤t≤T

∣∣∣gε(V (ε)
t )− gε(B

(ε)
t )
∣∣∣
R2

P−→ 0, as ε→ 0. (9)

For every εt0 ≤ t ≤ T , using (7)

∣∣∣gε(V (ε)
t )− gε(B

(ε)
t )
∣∣∣
R2

=
∣∣∣V (ε)

t −B
(ε)
t

∣∣∣+
∣∣∣∣
∫ t

εt0

V (ε)
s −B(ε)

s ds

∣∣∣∣

≤ (1 + T − εt0) sup
εt0≤t≤T

∣∣∣V (ε)
t −B

(ε)
t

∣∣∣ P−→ 0.

Step 2. Let us prove now (7). Recall that under both hypothesis (Hγ
1 ) and (Hγ

2 ), there exists

a positive constant K, such that (
√
ε)γ

∣∣∣∣∣F
(
V

(ε)
u√
ε

)∣∣∣∣∣ ≤ K
∣∣∣V (ε)

u

∣∣∣
γ

. Modifying the factor in front

of the integral part, we get

V
(ε)
t =

√
ε(v0 −Bt0) +

√
εBt/ε − εβ−

(γ+1)/2

∫ t

εt0

(
√
ε)γF

(
V

(ε)
u√
ε

)
u−β du.

It follows that, for all t0 ≤ T ,

sup
εt0≤t≤T

∣∣∣V (ε)
t −B

(ε)
t

∣∣∣ ≤
√
ε |v0 −Bt0 |+ εβ−

(γ+1)/2 sup
εt0≤t≤T

∣∣∣∣∣

∫ t

εt0

(
√
ε)γF

(
V

(ε)
u√
ε

)
u−β du

∣∣∣∣∣

≤
√
ε |v0 −Bt0 |+ εβ−

(γ+1)/2

∫ T

εt0

K
∣∣∣V (ε)

u

∣∣∣
γ

u−β du.

Taking the expectation and using moment estimates (Proposition 4.1), we obtain, when β 6= γ
2+1

and since β > γ+1
2 ,

εβ−
(γ+1)/2

E

[∫ T

εt0

K
∣∣∣V (ε)

u

∣∣∣
γ

u−β du

]
= εβ−

(γ+1)/2

∫ T

εt0

KE

[∣∣∣V (ε)
u

∣∣∣
γ]
u−β du

≤ εβ−
(γ+1)/2

∫ T

εt0

KCγ,β,t0u
γ
2−β du

≤ C
(
εβ−

(γ+1)/2T
γ
2 −β+1 − t

γ
2 −β+1
0

√
ε
)
−→
ε→0

0.
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Hence, setting r = min(12 , β − (γ+1)/2) > 0

E

[
sup

εt0≤t≤T

∣∣∣V (ε)
t −B

(ε)
t

∣∣∣
]
= O(εr).

The case β = γ
2 + 1 can be treated similarly to get

E

[
sup

εt0≤t≤T

∣∣∣V (ε)
t −B

(ε)
t

∣∣∣
]
= O(

√
ε ln(ε)).

This concludes the proof.

Remark 5.1. One can observe that the only moment in this proof, when we need the condition
"γ < 1 or for all v ∈ R, vF (v)" is when we are proving the moment estimates.

5.2 Asymptotic behaviour in the critical regime under (Hγ

1
)

Assume in this section that β = γ+1
2 and (Hγ

1 ) is satisfied.

Proof of Theorem 2.3. Step 1. As in the first step of the previous section, it suffices to prove
the convergence of the rescaled velocity process (

√
εVt/ε)t. Keeping same notations, we prove

that gε(V
(ε)) converges in distribution in C([0,+∞)) to g(V). In order to see V (ε) as a process

of C([0,+∞)), let us set for all s ∈ [0, εt0], V
(ε)
s := V

(ε)
εt0 =

√
εv0. Call Pε, P the distribution

of V (ε), V respectively. Then, using Pormanteau theorem (see Theorem 2.1 p.16 in [Bil99]), it
suffices to prove that for all function h : C([0,+∞)) × C([0,+∞)) → R bounded and uniformly
continuous, ∫

C([0,+∞))2
h(gε(ω)) dPε(dω) −→

ε→0

∫

C([0,+∞))2
h(g(ω)) dP (dω).

Take a bounded and uniformly continuous function h. By assumption, one knows that Pε =⇒
P , hence, by Problem 4.12 p. 64, in [KS98], it suffices to prove that the uniformly bounded
sequence (h ◦ gε) of continuous functions on C([0,+∞)) converges uniformly on compact subsets
of C([0,+∞)) to the continuous function h ◦ g. Let K be a compact set of C([0,+∞)). Then, for
all ω ∈ K, max[0,εt0] |ω| is uniformly bounded by a constant, called M .
Fix η > 0. By the uniform continuity of h, there exists δ > 0 such that for all ω ∈ K,

du(gε(ω), g(ω)) ≤ δ ⇒ |h ◦ gε(ω), h ◦ g(ω)| ≤ η.

However, there exists ε1 > 0 small enough, such that for all ε ≤ ε1, for all ω ∈ K,

du(gε(ω), g(ω)) ≤ C

∣∣∣∣
∫ εt0

0

ω(s) ds

∣∣∣∣ ≤ Cεt0M ≤ δ.

Step 2. We first prove the f.d.d. convergence. The exponential scaling process V (e) satisfies the
time-homogeneous equation

dV (e)
s = dWs −

V
(e)
s

2
ds− F

(
V (e)
s

)
ds, (10)
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where (Wt)t≥0 is a standard Brownian motion.
Using the bijection induced by the exponential change of time (Proposition 3.1), we get

(
Vt0et√
t0et/2

)

t≥0

= (Ht)t≥0,

as solutions of the same SDE, starting at the same point. This can also be written as

(
Vt√
t

)

t≥t0

= (Hlog(t/t0))t≥t0 .

So, we have, for all ε > 0, and (t1, · · · , td) ∈ [εt0,+∞)d,

(
Vε−1t1√
ε−1t1

, · · · , Vε−1td√
ε−1td

)
=
(
Hlog(t1)+log((εt0)−1), · · · , Hlog(td)+log((εt0)−1)

)
. (11)

As in [GO13], the scale function and the speed measure of H are respectively

p(x) :=

∫ x

0

exp

(
y2

2
+

2

γ + 1
sgn(y)F (sgn(y)) |y|γ+1

)
dy

and

νF (dx) := exp

(
−x

2

2
− 2

γ + 1
sgn(x)F (sgn(x)) |x|γ+1

)
dx.

By the ergodic theorem (Theorem 23.15 p. 465 in [Kal02]), H is ΛF -ergodic, where ΛF is the

probability measure associated to νF . Call H̃ the solution of the time homogeneous equation
(10) such that the initial condition H̃−∞ has the distribution ΛF .

For t1, · · · , td ∈ [εt0,+∞)d, let ΛF,t1,··· ,td := L(H̃t1 , · · · , H̃td) be the distribution of (H̃t1 , · · · , H̃td).
Then, for all s ≥ 0, ΛF,t1,··· ,td = ΛF,t1+s,··· ,td+s. Indeed, thanks to the invariance property of

ΛF , (H̃t)t∈R and (H̃t+s)t∈R satisfy the same SDE, starting at the same distribution. As a con-
sequence, for all ε > 0,

L
(
H̃log(t1)+log((εt0)−1), · · · , H̃log(td)+log((εt0)−1)

)
= ΛF,log(t1),··· ,log(td). (12)

Moreover, by exponential ergodicity, for every ψ : R
d → R continuous and bounded function, we

can prove that
∣∣∣E
[
ψ
(
Hlog(t1/(t0ε)), · · · , Hlog(td/(t0ε))

)]
− E

[
ψ
(
H̃log(t1/(t0ε)), · · · , H̃log(td/(t0ε))

)]∣∣∣ −→
ε→0

0. (13)

We postpone the proof of this convergence in Step 3.
To conclude this step, gather (11), (12) and (13) to get

(
Vε−1t1√
ε−1t1

, · · · , Vε−1td√
ε−1td

)
=⇒
ε→0

ΛF,log(t1),··· ,log(td).

This can be written as

(√
εVt1/ε, · · · ,

√
εVtd/ε

)
=⇒
ε→0

T ∗ ΛF,log(t1),··· ,log(td),

where T ∗ ΛF,log(t1),··· ,log(td) is the pushforward of the measure ΛF,log(t1),··· ,log(td) by the linear
map T (u1, · · · , ud) := (

√
t1u1, · · · ,

√
tdud).
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Step 3. Let us now prove (13). Pick εt0 ≤ s ≤ t. Set h0 = v0
√
t0

−1
. Actually we prove a more

general result, which will also be useful in the last regime. The convergence (13) will be a direct
consequence of this lemma.

Lemma 5.2. Let H be an exponential ergodic process with invariant measure ν, solution to a
SDE driven by a Brownian motion. Pick a continuous function φ : [t0,+∞) → R satisfying
lims→+∞ φ(s) = +∞.
Then, for all integer d ≥ 1, every continuous and bounded function ψ : R

d → R, all h0 ∈ R and
all t1, · · · , td ∈ [εt0,+∞)d,

∣∣∣E
[
ψ
(
Hφ(ε−1t1), · · · , Hφ(ε−1td)

) ∣∣∣H0 = h0

]
− E

[
ψ
(
Hφ(ε−1t1), · · · , Hφ(ε−1td)

) ∣∣∣H0 ∼ ν
]∣∣∣ −→

ε→0
0.

Proof. For the sake of clarity, let us give a proof for d = 2. The general case d ≥ 2 is similar.
Let ψ : R

2 → R be a continuous and bounded function.

We set µε := L
(
Hφ(ε−1s)

∣∣∣H0 = h0

)
. We use the generalized Markov property of solution to SDE

driven by Brownian motion process (see Theorem 21.11 p. 421 in [Kal02]). This leads to

E

[
ψ
(
Hφ(ε−1s), Hφ(ε−1t)

) ∣∣∣H0 = h0

]
= E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ µε

]

and, since ΛF is invariant,

E

[
ψ
(
Hφ(ε−1s), Hφ(ε−1t)

) ∣∣∣H0 ∼ ν
]
= E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ ν
]
.

Then, we are reduced to prove

∣∣∣E
[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ µε

]
− E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ ν
]∣∣∣ −→

ε→0
0.

Hence, setting p(t, x, dy) := Px(Ht ∈ dy) and ‖.‖TV for the total variation norm, we get

∣∣∣E
[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ µε

]
− E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ ν
]∣∣∣

≤
∣∣∣∣
∫

R

E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 = y
]
(µε(dy)− ν(dy))

∣∣∣∣

≤ ‖ψ‖∞
∫

R

∣∣p
(
φ(ε−1s), h0, dy

)
− ν(dy)

∣∣

≤ ‖ψ‖∞ ‖p
(
φ(ε−1s), h0, ·

)
− ν‖TV .

We let ε→ 0, using the exponential ergodicity of H .

Step 4. Let us prove now the tightness of the family of laws of continuous process
(
V (ε)

)
t≥εt0

=(√
εVt/ε

)
t≥εt0

on every compact interval [m,M ], 0 < m ≤M . We prove the Kolmogorov criterion

stated in Problem 4.11 p. 64, in [KS98].
Take ε0 small enough such that for all ε ≤ ε0, εt0 ≤ m. Fix m ≤ s ≤ t ≤M and α > 2. Recalling
that B(ε) is a Brownian motion, using Jensen’s inequality, moment estimates (Proposition 4.1)
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and the relation β = γ+1
2 , we can write

E

[∣∣∣V (ε)
t − V (ε)

s

∣∣∣
α]

≤ CαE

[∣∣∣B(ε)
t −Bε

s

∣∣∣
α]

+ CαE

[∣∣∣∣∣
√
ε

∫ t/ε

s/ε

F (Vu)u
−β du

∣∣∣∣∣

α]

≤ CαE [|Bt −Bs|α] + Cαε
1−α

2 (t− s)α−1
E

[∫ t/ε

s/ε

|F (Vu)|α u−βα du

]

≤ CαE [|Bt−s|α] + Cαε
1−α

2 (t− s)α−1

∫ t/ε

s/ε

u
γα
2

−βα du

≤ Cα(t− s)
α
2 + Cαε

1−α
2 (t− s)α−1

∫ t/ε

s/ε

u−
α
2 du

≤ Cα(t− s)
α
2 + Cα(t− s)α−1(t1−

α
2 − s1−

α
2 )

≤ Cα(t− s)
α
2 + Cα,m,M (t− s)α−1

≤ Cα,m,M (t− s)
α
2 .

Since α > 2, then α
2 > 1 and the upper bound does not depend on ε. Furthermore, by moment

estimates (Proposition 4.1),

sup
ε≤ε0

E

[∣∣∣V (ε)
m

∣∣∣
]
≤

√
m < +∞.

Conclusion. The previous steps yields weak convergence on every compact set (Theorem 13.1
p. 139, in [Bil99]). The conclusion follows from Theorem 16.7 p. 174, in [Bil99], since all
processes considered are continuous.

Example 5.1. We will see that the limiting process V is more explicit in the linear case (γ = 1).

Choose F (1) = 1, F (−1) = −1, the process H̃ solution of (10) is in fact an Ornstein Uhlenbeck

process with invariant measure ΛF (dx) := e−
3x2

2 dx. It is a centered Gaussian process, hence
for all s1, · · · , sd, its f.d.d. ΛF,s1,··· ,sd are Gaussian. As a consequence, knowing the covariance

function K is enough to provide the law of the process. Since H̃ is a stationary Ornstein-
Uhlenbeck process, one has K : s, t 7→ 1

3e
− 3

2 |t−s|. Hence, the limiting process V having f.d.d

T ∗ ΛF,log(t1),··· ,log(td) is a centered Gaussian process with covariance function s, t 7→ 1
3
(s∧t)2

s∨t .

5.3 Asymptotic behaviour in the subcritical regime under (Hγ

1
)

Assume in this section that β < γ+1
2 and F : v 7→ ρ sgn(v) |v|γ with γ ≥ 1. For simplicity, we

shall write ϕ instead of ϕq.

Proof of Theorem 2.5. Step 1. We first prove the f.d.d. convergence of the velocity process

(V
(ε)
t )t≥εt0 := (εqVt/ε)t≥εt0 . Again we give a proof only for d = 2, since the general case

d ≥ 2 is similar.
The power scaling process V (q), solution to (3) satisfies

dV (q)
s = dWs − F

(
V (q)
s

)
ds− qϕ2q−1(s)V (q)

s ds.

We call H the ergodic process solution to the SDE

dHs = dWs − F
(
Hs

)
ds, with H0 = h0 := v0t

−q
0 . (14)
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We denote by ΠF (dx) := e−
2ρ

γ+1 |x|
γ+1

dx its invariant measure. Using the bijection induced by
the power change of time (Proposition 3.1), as solutions of the same SDE starting at the same
point, we have, for all ε > 0, and s, t ∈ [εt0,+∞)2,

(
εq
Vε−1s

sq
, εq

Vε−1t

tq

)
=
(
V

(q)
ϕ−1(ε−1s), V

(q)
ϕ−1(ε−1t)

)
.

Using Theorem 3.1 p. 27, in [Bil99], it suffices to prove that for all s, t ∈ [εt0,+∞)2,

•
∣∣∣
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

)
−
(
V

(q)
ϕ−1(ε−1s), V

(q)
ϕ−1(ε−1t)

)∣∣∣
R2

−→
ε→0

0.

•
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

)
=⇒
ε→0

ΠF ⊗ΠF .

Step 2. We prove that for all t ≥ εt0, E

[(
Hϕ−1(ε−1t) − V

(q)
ϕ−1(ε−1t)

)2]
−→
ε→0

0.

Pick t ≥ εt0. For simplicity of notation, we write H
(ϕ,ε)
t := Hϕ−1(ε−1t) and V

(ϕ,ε)
t := V

(q)
ϕ−1(ε−1t).

We have

d
(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)
= −ε2q−1

(
F (H

(ϕ,ε)
t )− F (V

(ϕ,ε)
t )

)
t−2q dt+ qt−1V

(ϕ,ε)
t dt.

Pick δ > 0. By straightforward differentiation, we can write

d
(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)2
≤ −2ε2q−1

t2q

(
F (H

(ϕ,ε)
t )− F (V

(ϕ,ε)
t )

)(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)
1
∣

∣

∣
H

(ϕ,ε)
t −V

(ϕ,ε)
t

∣

∣

∣
>δ

dt

+ 2t−1qV
(ϕ,ε)
t

(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)
dt.

Since γ ≥ 1, the function F−1 is 1
γ -Hölder, therefore there exists Cγ > 0 such that,

d
(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)2
≤ −2ε2q−1

t2q
Cγδ

γ−1
(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)2
1
∣

∣

∣
H

(ϕ,ε)
t −V

(ϕ,ε)
t

∣

∣

∣
>δ

dt

+ 2t−1qV
(ϕ,ε)
t

(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)
dt. (15)

We set gε(t) = E

[(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)2]
and g̃ε(t) = E

[(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)2
1∣

∣

∣
H

(ϕ,ε)
t −V

(ϕ,ε)
t

∣

∣

∣
>δ

]
.

Taking expectation in (15), we get

g̃′ε(t) ≤ −2ε2q−1

t2q
Cγδ

γ−1g̃ε(t) + bε(t), with g̃ε(εt0) = 0 (16)

where
bε(t) := 2t−1qE

[
V

(ϕ,ε)
t

(
H

(ϕ,ε)
t − V

(ϕ,ε)
t

)]
.

Using Cauchy-Schwarz inequality and moment estimates (Proposition 4.1), we have

|bε(t)| ≤ 2t−1 |q|
√

E

[(
V

(ϕ,ε)
t

)2]√
gε(t) ≤ C2t−1 |q|

√
ε2q−1t1−2qgε(t).
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Set h(t) :=
1

1− 2q
Cγδ

γ−1t1−2q.We use the comparison theorem for ordinary differential equation

on (16) to get

g̃ε(t) ≤
∫ t

εt0

bε(s) exp(−2ε2q−1 (h(t)− h(s))) ds.

As a consequence, we deduce that

gε(t) ≤ δ2 + g̃ε(t)

≤ δ2 + exp(−2ε2q−1h(t))C

∫ t

εt0

2s−1
√
ε2q−1s1−2q

√
gε(s) exp(2ε2q−1h(s)) exp(ε2q−1h(s)) ds.

Applying a Gronwall-type lemma (Lemma 4.3) to the function gε exp(2ε
2q−1h), we obtain

gε(t) ≤ Cδ2 + C

(∫ t

εt0

s−1
√
ε2q−1s1−2q exp(−ε2q−1(h(t)− h(s))) ds

)2

.

We conclude, using the dominated convergence theorem, since 1− 2q > 0, that for all δ > 0

0 ≤ lim sup
ε→0

gε(t) ≤ δ2. (17)

To prove the domination hypothesis, notice that by optimization of the function x 7→ √
x exp(−Ax),

1εt0≤s≤ts
−1

√
ε2q−1s1−2q exp(−ε2q−1(h(t)− h(s))) ≤ 10≤s≤ts

− 1
2−q 1√

h(t)− h(s)
.

This function is integrable, since 1− 2q > 0.
We let δ → 0 in (17) to conclude that for all t > 0, limε→0 gε(t) = 0.

Step 3. Pick s, t ∈ [εt0,+∞)2. We prove that the solution H to (14) satisfies
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

)
=⇒
ε→0

ΠF ⊗ΠF . (18)

Observe that

ϕ−1(ε−1t)− ϕ−1(ε−1s) =
t1−2q − s1−2q

ε1−2q
−→
ε→0

0. (19)

By Lemma 5.2, for every continuous and bounded function ϕ, we can write
∣∣∣E
[
ψ
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

) ∣∣∣H0 = h0

]
− E

[
ψ
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

) ∣∣∣H0 ∼ ΠF

]∣∣∣ −→
ε→0

0.

Hence, it suffices to prove that for every bounded continuous functions f, g : R → R, the following
convergence holds

lim
ε→0

E

[
f
(
Hϕ−1(ε−1s)

)
g
(
Hϕ−1(ε−1t)

) ∣∣∣H0 ∼ ΠF

]
= ΠF (f)ΠF (g).

The following reasoning is inspired from the proof of Lemma 3.2 p. 7-8 in [CCM10]. Since H0 is
starting from the invariant measure, up to considering f −ΠF (f) and g−ΠF (g), we can assume
that f and g have zero ΠF -mean. We call (Pt)t≥0 the semigroup of H , then we get, by invariance
property of ΠF ,

E

[
f
(
Hϕ−1(ε−1s)

)
g
(
Hϕ−1(ε−1t)

) ∣∣∣H0 ∼ ΠF

]
=

∫
Pϕ−1(ε−1s)

(
fPϕ−1(ε−1t)−ϕ−1(ε−1s)g

)
dΠF

=

∫
fPϕ−1(ε−1t)−ϕ−1(ε−1s)g dΠF .
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Note that U : v 7→ |v|1+γ

1+γ is a convex function, thus a λ-Poincaré inequality holds for the process

H (see [Bob99] p. 1904). This implies the exponential decay of the variance (see Theorem 4.2.5
p. 183, in [BGL14]), i.e. there exists a constant C > 0 such that, since ΠF is a probability
measure,

∣∣∣∣
∫
fPϕ−1(ε−1t)−ϕ−1(ε−1s)g dΠF

∣∣∣∣ ≤
∥∥fPϕ−1(ε−1t)−ϕ−1(ε−1s)g

∥∥
2

≤ ‖f‖∞
∥∥Pϕ−1(ε−1t)−ϕ−1(ε−1s)g

∥∥
2

≤ C ‖f‖∞ ‖g‖∞ e−λ(ϕ−1(ε−1t)−ϕ−1(ε−1s)).

We deduce (18) from (19).

Step 4. We prove the f.d.d. convergence of the position process (X
(ε)
t )t≥εt0 := (εβ+

1
2Xt/ε)t≥εt0 .

Take γ = 1 and β ∈ (− 1
2 , 1). Pick t ≥ εt0. By Itô’s formula applied to tβVt, we get

ρX
(ε)
t = εβ+

1
2 (tβ0v0 + x0)− ε

1−β
2 tβV

(ε)
t + εβ+

1
2

∫ t/ε

t0

sβ dBs + εβ+
1
2

∫ t/ε

t0

βsβ−1Vs ds.

Since β > − 1
2 , the first term converges to 0 in probability as ε→ 0. Moreover, by Itô’s formula,

for all t ≥ t0,
d

dt
E
[
V 2
t

]
= −2ρs−β

E
[
V 2
s

]
+ 1.

Hence, by comparison theorem for ordinary differential equation,

E
[
V 2
t

]
≤ exp(−2ρ

t1−β

1− β
)

(
v20 +

∫ t

t0

exp(2ρ
s1−β

1− β
) ds

)
.

Using an integration by parts, we deduce that there exists a positive constant C such that, for
all t ≥ t0,

E
[
V 2
t

]
≤ Ctβ .

As a consequence, we obtain

E

[∣∣∣∣∣−ε
1−β
2 tβV

(ε)
t + εβ+

1
2

∫ t/ε

t0

βsβ−1Vs ds

∣∣∣∣∣

]
≤ ε

1−β
2 tβE

[∣∣∣V (ε)
t

∣∣∣
]
+ εβ+

1
2

∫ t/ε

t0

βsβ−1
E [|Vs|] ds

≤ Cε
1
2 t

3β
2 + Cε

1−β
2 t

3β
2 − Cεβ+

1
2 t

3β
2
0 −→

ε→0
0.

It remains to study the centered Gaussian process M
(ε)
t := εβ+

1
2

∫ t/ε

t0
sβ dBs. By Itô’s isometry

and since β > − 1
2 , for all εt0 ≤ s ≤ t, we can write

Cov(M (ε)
s ,M

(ε)
t ) = ε2β+1

∫ s/ε

t0

u2β ds ∼
ε→0

s1+2β

1 + 2β
.

Since the convergence of centered Gaussian processes is characterized by the convergence of their
covariance functions, the conclusion follows from Theorem 3.1, p. 27, in [Bil99].
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