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Abstract: We study a kinetic stochastic model with a non-linear time-inhomogeneous drag force and a

Brownian-type random force. More precisely, the Kolmogorov type diffusion (V,X) is considered. Here

X is the position of the particle and V is its velocity and is solution of a stochastic differential equation

driven by a one-dimensional Brownian motion, with the drift of the form t−βF (v). The function F

satisfies some homogeneity condition and β is positive. The behaviour of the process (V,X) in large

time is proved and the precise rate of convergence is pointed out by using stochastic analysis tools.
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1 Introduction

In several domains as fluids dynamics, statistical mechanics, biology, a number of models are
based on the Fokker-Planck and Langevin equations driven by Brownian motion or could be
non-linear or driven by other random noises. For instance, in [CCM10] the persistent turn-
ing walker model was introduced, inspired by the modelling of fish motion. An associated
two-component Kolmogorov type diffusion solves a kinetic Fokker-Planck equation based on
an Ornstein-Uhlenbeck Gaussian process and the authors studied the large time behaviour of
this model by using appropriate tools from stochastic analysis. One of the natural questions is
the behaviour in large time of the solution to the corresponding stochastic differential equation.
Although the tools of partial differential equations allowed to ask of this kind of questions, since
these models are probabilistic, tools based on stochastic processes could be more natural to use.

In the last decade the asymptotic study of solutions of non-linear Langevin’s type was the
subject of an important number of papers, see for instance [CNP19], [EG15], [FT18]. For instance
in [FT18] the following system is studied

Vt = v0 +Bt −
ρ

2

∫ t

0

F (Vs) ds and Xt = x0 +

∫ t

0

Vs ds.

In other words one considers a particle moving such that its velocity is a diffusion with an in-
variant measure behaving like (1+ |v|2)−ρ/2, as |v| → ∞. The authors prove that for large time,
after a suitable rescaling, the position process behaves as a Brownian motion or other stable
processes, following the values of ρ. It should be noted that in these cited papers the standard
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tools associated with time-homogeneous equations are used: invariant measure, scale function,
speed measure and so on. Several of these tools will not be available when the drag force is
depending explicitly on time. In [GO13], a non-linear SDE driven by a Brownian motion but
having time-inhomogeneous drift coefficient was studied and its large time behaviour was de-
scribed. Moreover, sharp rates of convergence are proved for the 1-dimensional marginal of the
solution. In the present paper, we consider the velocity process as satisfying the same kind of
SDE.
Let us describe our problem: consider a one-dimensional time-inhomogeneous stochastic kinetic
model driven by a Brownian motion. We denote by (Xt)t≥0 the one-dimensional process describ-
ing the position of a particle at time t having the velocity Vt. The velocity process (Vt)t≥0 is
supposed to follow a Brownian dynamics in a potential U(t, v), varying in time :

dVt = dBt −
1

2
∂vU(t, Vt) dt and Xt = X0 +

∫ t

0

Vs ds. (1)

It can be viewed as the perturbation of the classical two-component Kolmogorov diffusion

dVt = dBt and Xt = X0 +

∫ t

0

Vs ds.

In the present paper the potential is supposed to grow slowly to infinity and it will be supposed
to be of the form t−β

∫ v

0
F (u) du, with β > 0 and F satisfying some homogeneity condition. It

describes a one dimensional particle evolving in a force field Ft−β and undergoing many small
random shocks. A natural question is to understand the behaviour of the process (V,X) in large
time. More precisely we look for the limit in distribution of v(ε)(Vt/ǫ, ǫXt/ε)t, as ε → 0, where
v(ε) is some rate of convergence. Our results are proved on the product of path spaces and
consequently contain those of [GO13].

When F = 0, it is not difficult to see that the rescaled position process (ǫ1/2Vt/ǫ, ε
3/2Xt/ǫ)t

converges in distribution towards the Kolmogorov diffusion (Bt,
∫ t
Bs ds)t. We prove that this

anomalous diffusion behaviour still holds for sufficiently "small at infinity" potential. The strat-
egy to tackle this problem is based on estimates of moments of the velocity process. We can
even provide the growth rate of the velocity process, even if we do not use this when proving
our convergence results. The main result can be then extended for the case when the potential
is equally weighted as the random noise, in some sense (called, in the following critical).

The organisation of our paper is as follows: in the next section we introduce notations and
we state our main results. Existence and non-explosion of solutions are studied in Section 3.
Estimates of the moments of the velocity process are given in Section 4 while the proofs of our
main results are presented in Section 5. Section 6 is devoted to the analysis of the growth rates
of the velocity and position processes.

2 Notations and main results

We consider the following one-dimensional stochastic kinetic model, for t ≥ t0 > 0,

dVt = dBt − t−βF (Vt) dt, Vt0 = v0 > 0, and dXt = Vt dt, Xt0 = x0 ∈ R. (SKE)

Here (Bt)t≥0 is a standard Brownian motion and β is a real number. The function F is supposed
to satisfy either

for some γ ∈ R, ∀v ∈ R, λ > 0, F (λv) = λγF (v), (Hγ
1 )

2



or
|F | ≤ G where G is a positive function satisfying (Hγ

1 ). (Hγ
2 )

These assumptions implies that there exist a positive constant K such that, for all v ∈ R,
|F (v)| ≤ K |v|γ . Obviously (Hγ

2 ) is a generalization of (Hγ
1 ). In the following, sgn is the sign

function with convention sgn(0) = 0. As an example of function satisfying (Hγ
1 ) one can keep in

mind F : v 7→ sgn(v) |v|γ (see also [GO13]), and as an example of function satisfying (Hγ
2 ) (with

γ = 0) F : v 7→ v/(1+v2) (see also [FT18]).

Remark 2.1. If a function π satisfies (Hγ
1 ), then for all x ∈ R, π(x) = π(sgn(x)) |x|γ .

In the following, the space of continuous functions C((0,∞),R) is endowed by the uniform
topology

du : f, g ∈ C((0,+∞)) 7→
+∞∑

n=1

1

2n
min

(

1, sup
[ 1
n
,n]

|f(t)− g(t)|
)

.

Let us state our main results.

Theorem 2.2. Consider γ ≥ 0, and β > γ+1
2 . Assume that Hγ

1 either Hγ
2 are satisfied. Let

(Vt, Xt)t≥t0 be a solution to (SKE). When γ ≥ 1, we suppose also that for all v ∈ R, vF (v) ≥ 0.
Then, as ε→ 0,

(
√
εVt/ε, ε

3/2Xt/ε)t≥εt0 =⇒ (Bt,

∫ t

0

Bs ds)t>0, (2)

in the space of continuous functions C((0,∞)) endowed by the uniform topology, where (Bt)t≥0

is a standard Brownian motion.

Theorem 2.3. Consider γ ≥ 0 and β = γ+1
2 . Assume taht Hγ

1 is satisfied. Let (Vt, Xt)t≥t0 be
a solution to (SKE). When γ ≥ 1, we suppose also that for all v ∈ R, vF (v) ≥ 0.
Call H̃ the ergodic process solution to

dHs = dWs −
Hs

2
ds− F

(
Hs

)
ds, (3)

starting at its invariant measure, where (Wt)t≥0 is a standard Brownian motion. Setting ΛF,t1,··· ,td

for the f.d.d. of H̃, we call (Vt)t≥0 the process whose finite dimensional distribution are T ∗
ΛF,log(t1/t0),··· ,log(td/t0): the pushforward measure of ΛF,log(t1/t0),··· ,log(td/t0) by the linear map-
ping T : u := (u1, · · · , ud) 7→ (

√
t1u1, · · · ,

√
tdud).

Then under (Hγ
1 ) as ε→ 0,

(
√
εVt/ε, ε

3/2Xt/ε)t≥εt0 =⇒ (Vt,

∫ t

0

Vs ds)t>0, (4)

in the space of continuous functions C((0,∞)) endowed by the uniform topology.

Remark 2.4. The unidimensional law of (Vt)t≥0 was explicitely computed (see Theorem 4.1 in
[GO13]).

3 Existence and non-explosion of solution

In this section, we will prove the existence of solution to (SKE) up to explosion time and the
non explosion of such solution with additional assumption. In the following, we suppose that
γ > −1 and set Ω = C([t0,∞)) the set of continuous functions, that equal ∞ after their (possibly
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infinite) explosion time . Following the idea used in [GO13], we first perform a change of time in
(SKE) in order to produce at least one time-homogeneous coefficient in the transformed equation.
For every C2-diffeomorphism ϕ : [0, t1) → [t0,∞), let introduce the scaling transformation Φϕ

defined, for ω ∈ Ω, by

Φϕ(ω)(s) :=
ω(ϕ(s))
√

ϕ′(s)
, with s ∈ [0, t1).

The result containing the change of time transformation can be found in [GO13], Proposition
2.1, p. 187:

Let V be a solution to equation (SKE). Thanks to Lévy’s characterization theorem of the

Brownian motion,

(∫ t

0

dBϕ(s)
√

ϕ′(s)

)

t≥0

is a standard Brownian motion. Then, by a change of

variable t = ϕ(s), one gets

Vϕ(t) − Vϕ(0) =

∫ t

0

√

ϕ′(s) dWs −
∫ t

0

F (Vϕ(s))

ϕ(s)β
ϕ′(s) ds.

The integration by parts formula yields

d

(

Vϕ(s)
√

ϕ′(s)

)

= dWs −
√

ϕ′(s)

ϕ(s)β
F (Vϕ(s)) ds−

ϕ′′(s)

2ϕ′(s)

Vϕ(s)
√

ϕ′(s)
ds.

As a consequence, we can state the following result in our context.

Proposition 3.1. If V is a solution to equation (SKE), then V (ϕ) := Φϕ(V ) is a solution to

dV (ϕ)
s = dWs −

√

ϕ′(s)

ϕ(s)β
F (
√

ϕ′(s)V (ϕ)
s ) ds− ϕ′′(s)

ϕ′(s)

V
(ϕ)
s

2
ds, V

(ϕ)
0 =

Vϕ(0)
√

ϕ′(0)
, (5)

where Wt :=
∫ t

0

dBϕ(s)
√

ϕ′(s)
.

If V (ϕ) is a solution to (5), then Φ−1
ϕ (V (ϕ)) is a solution to equation (SKE), where Bt −Bt0 :=∫ t

t0

√

(ϕ′ ◦ ϕ−1)(s) dWϕ−1(s).

Furthermore uniqueness in law, pathwise uniqueness or strong existence hold for equation (SKE)
if and only if they hold for equation (5).

In the following, we will use two particular changes of time, depending on which term of (5)
should become time-homogeneous.

• The exponential change of time: denoting ϕe : t 7→ t0e
t, the exponential scaling transfor-

mation is defined by Φe(ω) : s ∈ R
+ 7→ ωt0es√

t0e
s/2

, for ω ∈ Ω. Thanks to Proposition 3.1, the

process V (e) := Φe(V ) satisfies the equation

dV (e)
s = dWs −

V
(e)
s

2
ds− t

1/2−β
0 e(

1/2−β)sF
(√
t0e

s/2V (e)
s

)
ds, (6)

where (Wt)t≥0 is a standard Brownian motion.
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• The power change of time: for q := 2β
γ+1 6= 1, consider ϕq ∈ C2([0, t1)) the solution to the

Cauchy problem
ϕ′
q = ϕq

q, ϕq(0) = t0.

Clearly, ϕq(t) =
(
t1−q
0 + (1− q)t

)1/(1−q)
, when q 6= 1, and ϕq = ϕe, when q = 1.

The time t1 satisfies t1 = ∞, when q ≤ 1, and t1 = t1−q
0 (q − 1)−1, when q > 1. The

power scaling transformation is defined by Φq(ω) : s ∈ R
+ 7→ ω(ϕq(s))

ϕq(s)
q/2

. The process

V (q) := V (ϕq) satisfies the equation

dV (q)
s = dWs − ρϕ−γβ/(γ+1)

q (s)F
(√

ϕ′
q(s)V

(q)
s

)

ds− qϕq−1
q (s)

V
(q)
s

2
ds, (7)

where (Wt)t≥0 is a standard Brownian motion.

We now study the existence and the explosion of the solution to (SKE), first under the
homogeneity assumption (Hγ

1 ) and then under the domination assumption (Hγ
2 ).

Until further notice, (Hγ
1 ) is supposed to be satisfied. As a consequence, the power

scaling process V (q) satisfies the equation

dV (q)
s = dWs − F (V (q)

s ) ds− qϕq−1
q (s)

V
(q)
s

2
ds, s ∈ [0, t1), (8)

which can be written, when q > 1, as

dV (q)
s = dWs − F (V (q)

s ) ds− δ
V

(q)
s

t1 − s
ds, s ∈ [0, t1), (9)

where δ =
q

2(q − 1)
. Proposition 3.2, p. 188, in [GO13] can be stated in the present situation.

Proposition 3.2. For γ > −1, there exists a pathwise unique strong solution to (SKE), defined
up to the explosion time.

Remark 3.3. In the linear case (γ = 1), drift and diffusion are Lipschitz and satisfy locally linear
growth. The existence and non-explosion of V follow from Theorem 2.9, p. 289, in [KS98].

Proof. We sketch the proof in our context. Remark first that, since γ > −1, x 7→ |x|γ is locally
integrable. Leaving out the third term on the right-hand side of (8), one gets a time-homogeneous
equation:

dHs = dWs − F (Hs) ds, s ∈ [0, t1). (10)

By using Proposition 2.2, p. 28, in [CE05], there exists a unique weak solution H to this
time-homogeneous equation (10) defined up to the explosion time. Moreover, the Girsanov
transformation induces a linear bijection between weak solutions defined up to the explosion
time to equations (8) and (10). It follows that there exists a unique weak solution V (q) to
equation (8). Therefore, by using the bijection induces by the change of time (Proposition 3.1),
there exists a unique weak solution V to equation (SKE). Besides, by using Corollary 3.4 and
Proposition 3.2, pp. 389-390, in [RY05], pathwise uniqueness holds for the equation (SKE). The
conclusion follows (Theorem 1.7, p. 368, in [RY05]).

Proposition 3.4.

5



• When γ ≤ 1 or for all v ∈ R, vF (v) ≥ 0, the explosion time of V is a.s. infinite.

• When 2β > γ + 1, then P(τ∞ = ∞) > 0.

• If γ > 1 and (F (−1), F (1)) ∈ ((0,∞)) × [0,∞)) ∪ (R × (−∞, 0)), P(τ∞ = ∞) < 1, where
τ∞ denotes the explosion time of V .

Remark 3.5. If 2β < γ + 1 and F (1) = −F (−1) < 0, it follows from Proposition 3.6 p.9 in
[GO13] that the explosion time of V is finite a.s.

Proof. This proof is inspired by those of Propositions 3.6 and 3.7 in [GO13]. We split the proof
into several steps.

Step 1. Assume first that γ ≤ 1 or vF (v) ≥ 0. We will use a criterion of non explosion
stated in [SV06]. Call Lt the time-inhomogeneous infinitesimal generator of V , then

Lt :=
1

2

∂2

∂x2
− F (x)

tβ
∂

∂x
. (11)

Let ψ be a twice continuous differentiable positive function such that

for all |x| ≥ 1, ψ(x) = 1 + x2, for all |x| ≤ 1

2
, ψ(x) = 1, and ψ ≥ 1, on R.

Note that ψ does not depend on time. Hence
(
∂t + Lt

)
ψ = Ltψ.

Fix T ≥ t0 and call cT the supremum of the continuous function Ltψ on [t0, T ]× [−1, 1]. Then,
for all |x| ≤ 1 and t ∈ [t0, T ],

Ltψ(x) ≤ cT ≤ cTψ(x).

Moreover, for all |x| > 1 and t ∈ [t0, T ], for C a positive constant,

Ltψ(x) = −2x
F (x)

tβ
+ 1 ≤

{

1 ≤ ψ(x), if for all v ∈ R, vF (v) ≥ 0,

2max(|F (1)| , |F (−1)|)x2 + 1 ≤ Cψ(x), if γ ≤ 1.

So, by using Theorem 10.2.1, p. 254, in [SV06], we deduce that τ∞ is infinite a.s.
Step 2. In this step, we suppose that 2β > γ + 1. We follow the ideas of the proof of

Proposition 3.7, pp. 191-192, in [GO13]. We first show that P(τ∞ = ∞) > 0. Let V (q) be the
pathwise unique strong solution to equation (9). Also denote by b, the δ-Brownian bridge, the
pathwise unique strong solution to equation

dbs = dWs − δ
bs

t1 − s
ds, b0 = x0, s ∈ [0, t1). (12)

Note that the equation (12) is obtained from (9) by omitting the second term on the right-

hand side. Setting τ
(q)
∞ for the explosion time of V (q), then τ

(q)
∞ ∈ [0, t1] ∪ {∞} a.s. and

{τ (q)∞ ≥ t1} = {τ∞ = ∞}. Note that b becomes continuous on [0, t1] by setting bt1 = 0 a.s.
Fix n ≥ 1 and for all s ∈ [0, t1], define

Tn := inf
{

s ∈ [0, t1),
∣
∣
∣V (q)

s

∣
∣
∣ ≥ n

}

, σn := inf{s ∈ [0, t1], |bs| ≥ n},

and

E(s) := exp

(∫ s

0

−F (bu) dWu − 1

2

∫ s

0

F (bu)
2 du

)

.
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Since γ > 1 ≥ 0, we have

E

[

exp

(
1

2

∫ s∧σn

0

F (bu)
2 du

)]

≤ E

[

exp

(
1

2

∫ s∧σn

0

n2γ max(F (1)2, F (−1)2) du

)]

≤ exp

(
t1
2
n2γ max(F (1)2, F (−1)2)

)

.

We observe that Novikov’s condition applies to (Es∧σn
)s≥0. Therefore, by using the Girsanov

transformation between b and V (q), we can write for every integer n ≥ 1, s ∈ [0, t1] and A ∈ Fs,

E

[

1A

(

V
(q)
•∧Tn

)

1Tn>s

]

= E
[
1A (b•∧σn

) E(s ∧ σn)1σn>s

]
.

Letting n→ ∞, by dominated convergence theorem and Fatou’s lemma, we obtain

E

[

1A

(

V (q)
)

1
τ
(q)
∞ >s

]

≥ E [1A (b)E(s)] .

Hence, P(τ∞ = ∞) = P(τ
(q)
∞ ≥ t1) ≥ E[E(t1)] > 0.

Step 3.Assume now that γ > 1 and (F (−1), F (1)) ∈ ((0,∞))× [0,∞))∪ (R× (−∞, 0)). We will
show that P(τ∞ = ∞) < 1 when F (1) > 0 and F (−1) > 0. Our strategy is to apply the criterion
for explosion stated in [SV06], Theorem 10.2.1, p. 254. Let T > t0 and choose a ∈ (1, γ). Also,
one can choose k ≥ 1 such that a(a− 1)−1 < k(T − t0). Introduce the continuous differentiable

negative function f1 : x 7→ −1/2

1 + |x|a , and, for µ > 0, the bounded twice continuous differentiable

function

G1,µ(x) = exp

(

µ

∫ x

−∞

f1(y) dy

)

, x ∈ R.

For all t ∈ [t0, T ] and all x ∈ R,

(
∂t + Lt

)
G1,µ(x) = LtG1,µ(x) = µG1,µ(x)

[

F (x)t−β |f1(x)| +
1

2
f ′
1(x) +

µ

2
f2
1 (x)

]

≥ µG1,µ(x)

[

F (x)T−β |f1(x)|+
1

2
f ′
1(x) +

µ

2
f2
1 (x)

]

.

Since |f1(x)| ∼
|x|→∞

1
2 |x|

−a, lim
|x|→∞

F (x) |f1(x)| = +∞, and using that lim
|x|→∞

f ′
1(x) = 0, there

exists r ≥ 1 such that, for all µ > 0,

(
∂t + Lt

)
G1,µ(x) ≥ µG1,µ(x)

[

F (x)T−β |f1(x)|+
1

2
f ′
1(x)

]

≥ kµG1,µ(x) on [t0, T ]× [−r, r]c.

Moreover, since f2
1 is bounded away from zero, while |f ′

1| is bounded on [−r, r] and since F is
non-negative, there exists µ0, such that,

(
∂t + Lt

)
G1,µ0(x) ≥ µ0G1,µ0(x)

[
1

2
f ′
1(x) +

µ0

2
f2
1 (x)

]

≥ kµ0G1,µ0(x) on [t0, T ]× [−r, r].

Hence, for all t ∈ [t0, T ] and all x ∈ R,
(
∂t + Lt

)
G1,µ0(x) ≥ kµ0G1,µ0(x). Besides, since

|f1(x)| ≤ 1 ∧ |x|−a
,

∫ x0

−∞

(
− f1(x)

)
dx ≤

∫

R

(
1 ∧ |x|−a )

dx = a(a− 1)−1 < k(T − t0).
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Thus, we get a lower bound

G1,µ0(x0) > e−kµ0(T−t0) ≥ e−kµ0(T−t0) sup
x∈R

G1,µ0(x).

Therefore, Theorem 10.2.1, p. 254, in [SV06] applies and V explodes in finite time with positive
probability.

When F (−1) < 0 and F (1) < 0, one can proceed in the same way, using the function

x 7→ exp
(

µ
∫ +∞

x
f1(y) dy

)

instead of G1,µ, in order to get that P(τ∞ = ∞) < 1.

Step 4. It remains to show that P(τ∞ = ∞) < 1 when F (1) < 0 and F (−1) > 0. As in
the previous step, we choose a ∈ (1, γ) and for every T > t0, we choose again k ≥ 1 such that
a(a−1)−1 < k(T−t0). Moreover, it can be noted that there exists a continuous differentiable odd
function f2, defined on R, vanishing only at x = 0, such that |f2(x)| ≤ 1 ∧ |x|−a

, and satisfying

f2(x) := kx, x ∈
[

− 1

2k
,
1

2k

]

, lim
|x|→∞

|x|γ |f2(x)| = ∞ and lim
|x|→∞

f ′
2(x) = 0.

For µ > 0, we introduce the bounded twice continuous differentiable function

G2,µ(x) := exp

(

µ

∫ x

0

f2(y) dy

)

, x ∈ R.

Then for all t ∈ [t0, T ] and all x ∈ R,

(
∂t + Lt

)
G2,µ(x) = LtG2,µ(x) = µG2,µ(x)

[ |F (x)f2(x)|
tβ

+
1

2
f ′
2(x) +

µ

2
f2
2 (x)

]

≥ µG2,µ(x)

[

ρ
|x|γ |f2(x)|

tβ
+

1

2
f ′
2(x) +

µ

2
f2
2 (x)

]

,

where ρ = min
{
|F (1)| , |F (−1)|

}
> 0. One can conclude, using the same argument as in the

proof of Proposition 3.7, p. 13, in [GO13].

Assume now that (Hγ
2 ) is satisfied. Since the equation satisfied by the power scaling process

(7) doesn’t have any time-homogeneous term, the previous method cannot be used to conclude
to the existence up to the explosion. Instead, one get the following results in the same way as
previously, by using the exponential change of time process or by considering G instead of |F |

Proposition 3.6. If γ ≥ 0, there exists a pathwise unique strong solution to (SKE), defined up
to the explosion time.

Proposition 3.7.

• When γ ≤ 1 or for all v ∈ R, vF (v) ≥ 0, the explosion time of V is a.s. infinite.

• Else, when 2β > γ + 1, P(τ∞ = ∞) > 0, where τ∞ denotes the explosion time of V .

4 Moments estimates of the velocity process

In this section, we give estimates for the moment of the velocity process. It will be useful to
control some stochastic terms appearing later.
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Proposition 4.1. Assume that γ ≥ 0. The inequality

∀t ≥ t0, E [|Vt|κ] ≤ C γ,κ,β,t0t
κ
2

yields for

• κ ∈ [0, 1] when γ < 1,

• κ ≥ 0, when for all v ∈ R, vF (v) ≥ 0.

Remark 4.2. It can proved, when −1 < γ < 0, that for all t ≥ t0, E [|Vt|] ≤ Cγ,β,t0

√
t, without

hypothesis of the positivity of the function v 7→ vF (v).

Proof. Step 1. Assume that γ ≥ 1 and that for all v ∈ R, vF (v) ≥ 0.
Define, for all n ≥ 0, the stopping times Tn := inf{t ≥ t0, |Vt| ≥ n}. By Itô’s formula, for all
t ≥ t0,

V 2
t∧Tn

= v0 +

∫ t∧Tn

t0

2Vs dBs −
∫ t∧Tn

t0

2s−βVsF (Vs) ds+ (t ∧ Tn − t0)

= v20 +

∫ t

t0

1s≤Tn
2Vs dBs −

∫ t∧Tn

t0

2s−βVsF (Vs) ds+ (t− t0)

≤ v20 +

∫ t

t0

1s≤Tn
2Vs dBs + (t− t0).

Since
∫ t

t0
41s≤Tn

V 2
s ds ≤ 4n2(t− t0) <∞, taking expectation yields

E
[
V 2
t∧Tn

]
≤ v20 + (t− t0) ≤ Ct0t.

Set κ ∈ [0, 2], then, by Jensen’s inequality,

E [|Vt|κ] ≤ E

[

|Vt|2
]κ

2 ≤
(

lim inf
n→∞

E
[
V 2
t∧Tn

])
κ
2 ≤ Cκ,t0t

κ
2 . (13)

When κ > 2, v 7→ |v|κ is C2, so by Itô’s formula, for all t ≥ t0,

|Vt∧Tn
|κ = |v0|κ +

∫ t∧Tn

t0

κ sgn(Vs) |Vs|κ−1
dBs −

∫ t∧Tn

t0

κs−β |Vs|κ−1
sgn(Vs)F (Vs) ds

+

∫ t∧Tn

t0

κ(κ− 1)

2
|Vs|κ−2

ds. (14)

In addition, using the hypothesis on the sign of F ,

|Vt∧Tn
|κ ≤ |v0|κ +

∫ t

t0

1s≤Tn
κ sgn(Vs) |Vs|κ−1

dBs +

∫ t∧Tn

t0

κ(κ− 1)

2
|Vs|κ−2

ds. (15)

We observe that
∫ t

t0
κ2V 2κ−2

s 1s≤Tn
ds ≤ κ2n2κ−2(t− t0) <∞. Taking expectation in 15, we have

E [|Vt|κ] ≤ lim inf
n→∞

E [|Vt∧Tn
|κ] ≤ |v0|κ +

∫ t

t0

κ(κ− 1)

2
E

[

|Vs|κ−2
]

ds.

When 0 ≤ κ− 2 ≤ 2, we can upper bound E

[

|Vs|κ−2
]

by injecting 13 and get

E [|Vt|κ] ≤ |v0|κ +

∫ t

t0

κ(κ− 1)

2
Cκ,t0s

κ−2
2 ds ≤ Cκ,t0s

κ
2 .
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The method is then applied step by step to prove the inequality for all κ > 2.
Step 2. Assume now that γ ∈ [0, 1[. Fix κ ∈ [0, 1]. Then Jensen’s inequality yields, for all
t ≥ t0, E [|Vt|κ] ≤ E [|Vt|]κ, hence it suffices to verify only the inequality for κ = 1.
Define, for all n ≥ 0, the stopping times Tn := inf{t ≥ t0, |Vt| ≥ n} and let us recall that under
both hypotheses ((Hγ

1 ) or (Hγ
2 )), there exists a positive constant K, such that |F (v)| ≤ K |v|γ .

One can write, for t ≥ t0 and n ≥ 0,

|Vt∧Tn
| ≤ |v0 −Bt0 |+ |Bt∧Tn

|+
∫ t∧Tn

t0

s−β |F (Vs∧Tn
)| ds

≤ |v0 −Bt0 |+ |Bt∧Tn
|+
∫ t∧Tn

t0

s−βK |Vs∧Tn
|γ ds.

By noting that γ ∈ [0, 1[ and (B2
t − t)t≥0 is a martingale, taking expectation we get

E [|Vt∧Tn
|] ≤ E [|v0 −Bt0 |] + E [|Bt∧Tn

|] +
∫ t

t0

s−βKE [|Vs∧Tn
|γ ] ds

≤ E [|v0 −Bt0 |] +
√

E
[
B2

t∧Tn

]
+

∫ t

t0

s−βKE [|Vs∧Tn
|]γ ds

≤ E [|v0 −Bt0 |] +
√

E [t ∧ Tn] +
∫ t

t0

s−βKE [|Vs∧Tn
|]γ ds

≤ Ct0

√
t+

∫ t

t0

s−βKE [|Vs∧Tn
|]γ ds.

The function gn : t 7→ E [|Vt∧Tn
|], which is bounded by n. Applying a Gronwall-type lemma,

stated below (Lemma 4.3) and Fatou’s lemma, we end up, for all t ≥ t0, with

E [|Vt|] ≤ lim inf
n→∞

E [|Vt∧Tn
|] ≤ Cγ

[

Ct0

√
t+

(
1− γ

1− β
K(t1−β − t1−β

0 )

) 1
1−γ

]

≤ Cγ,β,t0

√
t.

Lemma 4.3 (Gronwall-type lemma). Fix r ∈ [0, 1) and t0 ∈ R. Assume that g is a non-
negative real-valued function, b is a positive function and a is a differentiable real-valued function.
Moreover, suppose that the function bgr is a continuous function. If

∀t ≥ t0, g(t) ≤ a(t) +

∫ t

t0

b(s)g(s)r ds. (16)

Then,

∀t ≥ t0, g(t) ≤ Cr

[

a(t) +

(

(1− r)

∫ t

t0

b(s) ds

) 1
1−r

]

,

where Cr := 2
1

1−r .

Proof. For t ≥ t0, since r ≥ 0,

g(t)r ≤
(

a(t) +

∫ t

t0

b(s)g(s)r ds

)r

,
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then, multiplying by b(t) > 0,

b(t)g(t)r ≤ b(t)

(

a(t) +

∫ t

t0

b(s)g(s)r ds

)r

.

Now, let make us appearing the derivative of H

a′(t) + b(t)g(t)r ≤ a′(t) + b(t)

(

a(t) +

∫ t

t0

b(s)g(s)r ds

)r

.

That is

a′(t) + b(t)g(t)r
(

a(t) +
∫ t

t0
b(s)g(s)r ds

)r ≤ a′(t)






a(t) +

∫ t

t0

b(s)g(s)r ds

︸ ︷︷ ︸

≥0








r + b(t) ≤ b(t) +
a′(t)

a(t)r
.

Integrating, since r 6= 1,

(1−r)−1

[(

a(t) +

∫ t

t0

b(s)g(s)r ds

)1−r

− a(t0)
1−r

]

≤ (1−r)−1
[
a(t)1−r − a(t0)

1−r
]
+

∫ t

t0

b(s) ds

or equivalently, using that r < 1,

H(t)1−r ≤ a(t)1−r + (1 − r)

∫ t

t0

b(s) ds.

Since 1
1−r > 0 and using (16)

g(t) ≤
(

a(t)1−r + (1− r)

∫ t

t0

b(s) ds

) 1
1−r

≤ Cr

[

a(t) +

(

(1− r)

∫ t

t0

b(s) ds

) 1
1−r

]

.

This concludes the proof of the lemma.

Remark 4.4. Call H(t) the right-hand side of (16). If g is not continuous, note that the function
H is continuous and satisfies (16) (since b is positive and g ≤ H). So, one can apply the lemma
to H and then use the inequality g ≤ H. 1

5 Proof of the asymptotic behaviour of the solution

This section is devoted to the proofs of our main results.

1We are thankful to Thomas Cavallazzi for this remark.
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5.1 Asymptotic behaviour above the critical line under both assump-

tions

In this section, we assume that γ ≥ 0 and β > γ+1
2 .

Proof of Theorem 2.2. We split the proof into three steps.

Step 1. We note that it is enough to prove that (V
(ε)
t )t>0 := (

√
εVt/ε)t>0 converges in

distribution to a Brownian motion in the space of continuous functions C((0,∞)) endowed by
the uniform topology. Indeed, assume that the convergence of the rescaled velocity process is
proved. For ǫ ∈ (0, 1] and t ≥ ǫt0 we can write

ε
3/2Xt/ε = ε

3/2x0 +

∫ t

εt0

V (ε)
s ds.

Clearly, the theorem will be proved once we show that (V
(ε)
• ,

∫ •

εt0
V

(ε)
s ds) =: gε(V

(ε)
• ) con-

verges weakly in C((0,∞)) endowed by the uniform topology. Here the mapping gε : v 7→
(

vt,
∫ t

εt0
vs ds

)

t>0
is defined and valued on C((0,∞)). This mapping is converging, as ε→ 0, to

the continuous mapping g : v 7→
(

vt,
∫ t

0 vs ds
)

t>0
.

Let h : C((0,∞))× C((0,∞)) → R be a bounded and uniformly continuous function. We will
show that E[(h ◦ gǫ)(V (ǫ))] −→

ǫ→0
E[(h ◦ g)(B)], where B is a standard Brownian motion. Using the

continuous mapping theorem (see Theorem 2.7 p. 21, in [Bil99]), E
[
(h ◦ g)(V (ǫ))

]
converges to

E[(h ◦ g)(B)]. Since h is bounded and uniformly continuous, for all η > 0, there exists δ > 0 such
that,

lim sup
ε→0

E

[∣
∣
∣h ◦ gǫ(V (ǫ))− h ◦ g(V (ǫ))

∣
∣
∣

]

≤ η + 2‖h‖∞ lim sup
ε→0

P

(

du

(

gε(V
ε), g(V (ε))

)

> δ
)

≤ η + 2‖h‖∞ lim sup
ε→0

P

(

C

∫ εt0

0

∣
∣
∣V (ε)

s

∣
∣
∣ ds > δ

)

≤ η.

One can prove the almost sure convergence of
∫ εt0
0

∣
∣
∣V

(ε)
s

∣
∣
∣ ds towards 0 using moment estimates

(Proposition 4.1). One concludes, letting η → 0 and using the Portmanteau theorem (see Theo-
rem 2.1. p. 16, in [Bil99]).

Step 2. Let us prove now the convergence of the rescaled velocity process.
Let ǫ ∈ (0, 1] and t ≥ ǫt0. One can write

V
(ε)
t =

√
εVt/ε =

√
ε(v0 −Bt0) +

√
εBt/ε −

√
ε

∫ t/ε

t0

F (Vs)s
−β ds

=
√
ε(v0 −Bt0) +B

(ε)
t − εβ−1/2

∫ t

εt0

F (Vu/ε)u
−β du,

by self-similarity, B(ε) := (
√
εBt/ε)t≥0 has the same distribution as a standard Brownian motion.

The proof will be complete once we prove that

∀T > 0 sup
εt0≤t≤T

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣

P→ 0, as ε→ 0. (17)
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Indeed, fix a > 0 and choose N > 0 such that
∑+∞

n=N+1
1
2n ≤ a

2 . Then,

du

(

V (ε), B(ε)
)

≤ a

2
+

N∑

n=1

1

2n
sup
[ 1
n
,n]

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣ .

It follows that

P

(

du

(

V (ε), B(ε)
)

> a
)

≤
N∑

n=1

P

(

sup
[ 1
n
,n]

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣ > a′

)

−→
ǫ→0

0,

where a′ = a(
∑+∞

n≥1
1/2n)−1. It remains to apply Theorem 3.1, p. 27, in [Bil99] to conclude.

Step 3. Let us prove now (17). Recall that under both hypothesis ((Hγ
1 ) and (Hγ

2 )), there

exists a positive constant K, such that (
√
ε)γ

∣
∣
∣
∣
∣
F

(

V
(ε)
u√
ε

)∣
∣
∣
∣
∣
≤ K

∣
∣
∣V

(ε)
u

∣
∣
∣

γ

. Modifying the factor in

front of the integral part, we get

V
(ε)
t =

√
ε(v0 −Bt0) +

√
εBt/ε − εβ−

(γ+1)/2

∫ t

εt0

(
√
ε)γF

(

V
(ε)
u√
ε

)

u−β du. (18)

It follows that, for all εt0 ≤ T ,

sup
εt0≤t≤T

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣ ≤

√
ε |v0 −Bt0 |+ εβ−

(γ+1)/2 sup
εt0≤t≤T

∣
∣
∣
∣
∣

∫ t

εt0

(
√
ε)γF

(

V
(ε)
u√
ε

)

u−β du

∣
∣
∣
∣
∣

≤
√
ε |v0 −Bt0 |+ εβ−

(γ+1)/2

∫ T

εt0

K
∣
∣
∣V (ε)

u

∣
∣
∣

γ

u−β du.

Taking the expectation and using moment estimates (Proposition 4.1), we obtain

εβ−
(γ+1)/2

E

[
∫ T

εt0

K
∣
∣
∣V (ε)

u

∣
∣
∣

γ

u−β du

]

= εβ−
(γ+1)/2

∫ T

εt0

KE

[∣
∣
∣V (ε)

u

∣
∣
∣

γ]

u−β du

≤ εβ−
(γ+1)/2

∫ T

εt0

KCγ,β,t0u
γ
2−β du

≤ C
(

εβ−
(γ+1)/2T

γ
2 −β+1 − t

γ
2 −β+1
0

√
ε
)

−→
ε→0

0,

since β > γ+1
2 . Hence

E

[

sup
εt0≤t≤T

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣

]

= O(εq),

where q = min(12 , β − (γ+1)/2) > 0. This concludes the proof.

Remark 5.1. One can observe that the only moment in this proof, when we need the condition
"γ < 1 or for all vR, vF (v)" is to get the moment estimates.

5.2 Asymptotic behaviour on the critical line under (Hγ

1
)

Assume in this section that β = γ+1
2 and (Hγ

1 ) is satisfied. As in the first step of the previous
section, it suffices to prove the convergence of the rescaled velocity process (

√
εVt/ε)t.
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Step 1. We first prove the finite dimensional convergence. The exponential scaling process V (e)

satisfies the time-homogeneous equation

dV (e)
s = dWs −

V
(e)
s

2
ds− F

(
V (e)
s

)
ds, (19)

where (Wt)t≥0 is a standard Brownian motion.
By using Proposition 2.2, p. 28, in [CE05], there exists a unique weak solution H to the time-
homogeneous equation (19) defined up to the explosion time. Using the bijection induced by the
exponential change of time (Proposition 3.1) and the non explosion of the velocity process V
(Proposition 3.4), we can conclude that the explosion time of H is almost surely infinite. Hence,

(
Vt0et√
t0et/2

)

t≥0

= (Ht)t≥0,

as solutions of the same SDE, starting at the same point. This can also be written as
(
Vt√
t

)

t≥t0

= (Hlog(t/t0))t≥t0 . (20)

So, we have, for all ǫ > 0, and t1, · · · , td ≥ t0
(
Vǫ−1t1√
ǫ−1t1

, · · · , Vǫ−1td√
ǫ−1td

)

=
(
Hlog(t1/t0)+log(ǫ−1), · · · , Hlog(td/t0)+log(ǫ−1)

)
.

As in [GO13], the scale function and the speed measure of H are respectively

p(x) :=

∫ x

0

exp

(
y2

2
+

2

γ + 1
sgn(y)F (sgn(y)) |y|γ+1

)

dy

and

νF (dx) := exp

(

−x
2

2
− 2

γ + 1
sgn(x)F (sgn(x)) |x|γ+1

)

dx.

By the ergodic theorem (Theorem 23.15 p. 465 in [Kal02]), H is ΛF -ergodic, where ΛF is the
probability measure associated to νF . Call H̃ the solution of the time homogeneous equation
(19) starting from ΛF .
For t1, · · · , td ∈ R

d, let ΛF,t1,··· ,td := L(H̃t1 , · · · , H̃td) be the law of (H̃t1 , · · · , H̃td). Then, for all

s ≥ 0, ΛF,t1,··· ,td = ΛF,t1+s,··· ,td+s. Indeed, thanks to the invariance property of ΛF , (H̃) and

(H̃·+s) satisfy the same SDE, starting at the same point. As a consequence, for all ǫ→ 0,

L
(

H̃log(t1/t0)+log(ǫ−1), · · · , H̃log(td/t0)+log(ǫ−1)

)

= ΛF,log(t1/t0),··· ,log(td/t0).

Moreover, thanks to Theorem 23.17 p.466 in [Kal02]

‖L
(
Hlog(t1/t0ǫ), · · · , Hlog(td/t0ǫ)

)
− L

(

H̃log(t1/t0ǫ), · · · , H̃log(td/t0ǫ)

)

‖TV −→
ε→0

0.

Hence,
(
Vǫ−1t1√
ǫ−1t1

, · · · , Vǫ−1td√
ǫ−1td

)

=⇒
ε→0

ΛF,log(t1/t0),··· ,log(td/t0).

Or,
(√
εVt1/ε, · · · ,

√
εVtd/ε

)
=⇒
ε→0

T ∗ ΛF,log(t1/t0),··· ,log(td/t0),
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where T ∗ ΛF,log(t1/t0),··· ,log(td/t0) is the pushforward of the measure ΛF,log(t1/t0),··· ,log(td/t0) by
the linear mapping T : u := (u1, · · · , ud) 7→ (

√
t1u1, · · · ,

√
tdud).

Step 2. Let us prove now the tightness of the family of laws of continuous process
(
V (ε)

)

t≥t0
=

(√
εVt/ε

)

t≥t0
on every compact interval [t0,M ].

Fix η > 0. Using Markov inequality and moment estimates (Proposition 4.1), for R big enough,
and t0 ≤ t ≤M ,

sup
ε>0

P

(∣
∣
∣V

(ε)
t

∣
∣
∣ ≤ R

)

≤ Cγ,β,t0

√
t

R
≤ Cγ,β,t0

√
M

R
≤ η.

By Definition 30.3 p. 239 in [Bil99], we deduce that (V
(ε)
t )t0≤t≤M is tight.

Step 3. The two first steps yields weak convergence on every compact set (Theorem 13.1 p.139 in
[Bil99]). The conclusion follows from Theorem 16.7 p.174 in [Bil99], since all processes considered
are continuous.

Example 5.1. We will see that the limiting process V is more explicit in the linear case (γ = 1).
Choose F (1) = 1, F (−1) = −1, the process H̃ solution of (19) is in fact an Ornstein Uhlenbeck

process with speed measure ΛF (dx) := exp

(

−3x2

2

)

dx. It is a Gaussian process, hence for

all s1, · · · , sd, its f.d.d. ΛF,s1,··· ,sd are Gaussian. As a consequence, knowing the expectaction

function m and the covariance function K is enough to provide the law of the process. Since, H̃
is a stationnary Ornstein-Uhlenbeck process, one has m ≡ 0 and K : s, t 7→ 1

3e
− 3

2 |t−s|. Hence,
the limiting process V having f.d.d T ∗ΛF,log(t1/t0),··· ,log(td/t0) is a centered Gaussian process with

covariance function s, t 7→ 1
3
(s∧t)2

s∨t .

6 Growth rate of velocity and position processes

We turn now to the study of the growth rate of the velocity process V . In this section, we assume
that (γ+1)/2 − β ≤ 0 and

∀x ∈ R, ∀λ > 0, sgn(F (λx)) = sgn(F (x)). (H3)

Proposition 6.1. When γ ≥ 1, assume also that for all v ∈ R, vF (v) ≥ 0,

lim sup
t→∞

|Vt|
√

2 ln(ln(t))
≤ 1 a.s. and lim sup

t→∞

Vt
√

2 ln(ln(t))
= 1 a.s. (21)

Besides,

lim sup
t→∞

|Xt|
∫ t

1

√

2 ln(ln(s)) ds
≤ 1 a.s. (22)

First, we discuss results of existence and behaviour of some time-homogeneous processes V ±

such that V − ≤ V (e) ≤ V + almost surely. For γ > −1, let π be a non-negative function satisfying

∀x ∈ R, λ > 0, π(λx) = λγπ(x).

Recall that π satisfies Eq. (Hγ
1 ). Under (Hγ

1 ) we take π = |F | and under (Hγ
2 ), we take π = G.

Define the pathwise unique strong solution (up to the explosion time) to the time-homogeneous
equation

dV ±
s = dWs −

V ±
s

2
ds± t

γ+1
2 −β

0 π(V ±
s )1{±F (V ±

s )<0} ds. (23)
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Lemma 6.2. Set τ±∞, τ∞, respectively the explosion time of V ± and V .

(i) If γ ≤ 1 or F (1) ≥ 0, then τ+∞ = ∞ a.s.

(ii) If γ ≤ 1 or F (−1) ≤ 0, then τ−∞ = ∞ a.s.

(iii) If γ > 1 and F (1) < 0, then P(τ+∞ = ∞) = 0.

(iv) If γ > 1 and F (−1) > 0, then P(τ−∞ = ∞) = 0.

Proof. Step 1. Firstly, let us prove that V − ≤ V (e) ≤ V + almost surely. Indeed, if we denote

b(t, x) = −x
2
− t

1/2−β
0 e(

1/2−β)tF (
√
t0e

t/2x) and b+(x) = −x
2
+ t

(γ+1)/2−β
0 π(x)1{F (x)≤0},

we can write, for all t ≥ 0 and all x ∈ R,

b(t, x) ≤ b
+(x) ⇐⇒ −e(1/2−β)tF (

√
t0e

t/2x) ≤ t
γ
2
0 π(x)1{F (x)≤0}.

This inequality holds by the choice of π, (H3), and the assumption (γ+1)/2−β ≤ 0. By using the
comparison theorem (see Theorem 1.3 in [Yam73]) we get, V (e) ≤ V +, almost surely. The other
inequality can be handled in the same way.

Step 2. Call τ
(e)
∞ the explosion time of V (e). Then {τ (e)∞ = ∞} = {τ∞ = ∞}, so

{τ−∞ = ∞} ∩ {τ+∞ = ∞} ⊂ {τ∞ = ∞}.

We give the detailed proof for (i) and (iii), the other parts could be obtained by changing "+"
and "−" in the reasoning. First, we prove (i). The scale function of V + is defined, for x ∈ R, by

p
+(x) :=

∫ x

0

exp

(
y2

2
− 2t

(γ+1)
2 −β

0

∫ y

0
π(z)1{F (z)≤0} dz

)

dy.

Note that, if x < 0,

−p+(x) ≥
∫ 0

x
e
y2/2 dy.

Thus p+(−∞) = −∞. Suppose that F (1) ≥ 0, then for x ≥ 0, p+(x) =
∫ x

0
e
y2/2 dy, so p+(∞) =

∞. By Proposition 5.22, p. 345, in [KS98], the conclusion follows. Assume now that γ < 1 and
F (1) < 0. Then, for x ≥ 0,

p+(x) =
∫ x

0
exp

(y2

2
− 2t

γ+1
2 −β

0 π(1)
yγ+1

γ + 1

)

dy,

so p+(∞) = ∞. Using the same result in [KS98], the conclusion follows. If γ = 1, the drift has
linear growth and the conclusion is clear.

Step 3. We proceed with the proof of (iii). Assume that γ > 1 and F (1) < 0. As previously,
p+(−∞) = −∞. Besides, p+(∞) < ∞. Denote m+ : y 7→ 2/(p+)′(y) the speed measure of V +.

Fix y > 0, then, setting c = 2t
γ+1
2 −β

0 π(1) > 0, one can apply integration by parts to get:

(
p
+(∞)− p

+(y)
)
m
+(y) =2 exp

(

−y
2

2
+ c

yγ+1

γ + 1

)∫ +∞

y

exp

(
z2

2
− c

zγ+1

γ + 1

)

dz

=
2

cyγ − y
+ 2 exp

(

−y
2

2
+ c

yγ+1

γ + 1

)∫ ∞

y

e
z2

2 −c
zγ+1

γ+1
1− cγzγ−1

(z − czγ)2
dz.
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One can deduce, by integrating small o, that

(
p+(∞)− p+(y)

)
m+(y) ∼

y→∞

2

cyγ − y
,

which is an integrable function at ∞. The conclusion follows from Theorem 5.29, p. 348, in
[KS98].

Proof of Proposition 6.1.
Step 1. Remark first that the first inequality of (21) is equivalent to

lim sup
t→∞

∣
∣
∣V

(e)
t

∣
∣
∣

√

2 ln(t)
≤ 1.

Assuming

lim sup
t→∞

V +
t

√

2 ln(t)
≤ 1 a.s., and lim sup

t→∞

−V −
t

√

2 ln(t)
≤ 1 a.s, (24)

one gets the first inequality of (21) writting

lim sup
t→∞

V
(e)
t

√

2 ln(t)
≤ lim sup

t→∞

V +
t

√

2 ln(t)
≤ 1 a.s. and lim sup

t→∞

−V (e)
t

√

2 ln(t)
≤ lim sup

t→∞

−V −
t

√

2 ln(t)
≤ 1 a.s.

To prove (24), we use Motoo’s theorem, borrowed from [Mot59]. This lemma is recalled here for
the sake of completeness.

Theorem 6.3 (Motoo). Let Z be a regular continuous strong Markov process in (a,∞), a ∈
[−∞,∞). Assume also that Z is time-homogeneous, with scale function s. For every real positive
increasing function h,

P

(

lim sup
t→∞

Zt

h(t)
≥ 1

)

= 0 or 1 according to whether

∫ ∞ dt

s(h(t))
<∞ or = ∞.

Motoo’s theorem yields for all ε > 0,

P

(

lim sup
t→∞

V +
t

√

2 ln(t)
≥ 1 + ε

)

= 0 and P

(

lim sup
t→∞

−V −
t

√

2 ln(t)
≥ 1 + ε

)

= 0.

Indeed, define Ṽ − := −V −, then

dṼs
−
= − dWs −

Ṽs
−

2
ds+ t

(γ+1)/2−β
0 π(−Ṽs

−
)1

{F (−Ṽs
−
)>0}

ds.

Fix y0 > 0. The scale function of V + and Ṽ − is defined, for y ≥ y0, by

s±(y) := κ
∫ y

y0

exp
(z2

2
− 2C± zγ+1

γ + 1

)

dz.

Here and elsewhere κ denotes positive constants that can change of value from line to line, and

C+ := t
γ+1
2 −β

0 π(1)1{F (1)<0} for V + and C− := t
γ+1
2 −β

0 π(−1)1{F (−1)>0} for Ṽ −.
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Note that under our hypothesis C± = 0 when γ ≥ 1.
Let ǫ > 0. Define the positive increasing function h : t 7→ (1 + ǫ)

√

2 ln(t). We will show that
1/s(h) is integrable at infinity. Firstly, remark that

∫ +∞

y0

1

s(h(t))
dt =

∫ +∞

h(y0)

1

s(y)

dy

h′(h−1(y))
=

∫ +∞

h(y0)

1

s(y)

y exp
(
y2
/
(
2(1+ǫ)2

))

(1 + ε)2
dy.

It remains to find an equivalent of s at infinity. In the following "≍" means equality up to a
multiplicative positive constant. Fix y > y0, integrating by parts, we get,

s(y) ≍
∫ y

y0

exp
(z2

2
− 2C± zγ+1

γ + 1

)(
z − 2C± zγ

)
· 1

z − 2C± zγ
dz

≍
exp

(
y2

2 − 2C± yγ+1

γ+1

)

y − 2C± yγ
− κ+

∫ y

y0

1− 2γC± zγ−1

(z − 2C± zγ)2
exp

(z2

2
− 2C± zγ+1

γ + 1

)

dz.

Since γ > −1, lim
y→∞

1− 2γC± yγ−1

(y − 2C± yγ)2
= 0. Moreover, the function y 7→ exp

(
y2

2 − 2C± yγ+1

γ+1

)

is

not integrable at infinity, since C± = 0, or γ < 1. Hence we get, by integration,

s(y) ∼
y→∞

κ
exp

(
y2

2 − 2C± yγ+1

γ+1

)

y − 2C± yγ
.

As a consequence,

1

s(y)

y exp
(

y2

2(1+ε)2

)

(1 + ε)2
∼

y→∞
κ
(
y2 − 2C± yγ+1

)
exp

(

− y2

2

(

1− 1

(1 + ε2)

)

+ 2C± yγ+1

γ + 1

)

.

which is integrable.
We can conclude using Motoo’s theorem.
Step 2. The second inequality of (21) is equivalent to

lim sup
t→∞

V
(e)
t

√

2 ln(t)
= 1 a.s.

From the first step, we have

lim sup
t→∞

V
(e)
t

√

2 ln(t)
≤ 1.

We need to prove the opposite inequality. Note first that the first inequality of (21) implies

lim
t→∞

t
1/2−β
0 e(

1/2−β)sF
(√
t0e

s/2V (e)
s

)
= 0 a.s. (25)

For u ≥ 0, introduce the pathwise unique strong solution of

dVs(u) = dWs −
(
Vs(u)

2
+ 1

)

ds, Vu(u) = V (e)
u ,

and define the stopping time

τu := inf
{

t ≥ u, t
1/2−β
0 e(

1/2−β)t
∣
∣
∣F
(√
t0e

t/2V
(e)
t

)
∣
∣
∣ > 1

}

.
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By using the comparison theorem (see Theorem 3.7 p 394, in [RY05]) we get, V·∧τu(u) ≤ V
(e)
·∧τu,

almost surely. Hence

∀t ≥ u, Vt(u) ≤ V
(e)
t a.s. on {τu = ∞} =

{

sup
t≥u

t
1/2−β
0 e(

1/2−β)t
∣
∣
∣F
(√
t0e

t/2V
(e)
t

)
∣
∣
∣ ≤ 1

}

:= Ωu.

(26)
The scale function of V (u) is defined, for y ≥ 1, by

su(y) := κ
∫ y

1
exp

(
z2

2
+ 2z

)

dz.

Hence, with g : t 7→ (1− ε)
√

2 ln(t), for t big enough,

1

su(g(t))
=

(

κ
∫ g(t)

1
exp

(
z2

2
+ 2z

)

dz

)−1

≥
(

κg(t) exp

(
g(t)2

2
+ 2g(t)

))−1

≥
exp

(

−2
√

2 ln(t)(1− ε)
)

t(1−ε)2(1− ε)
√

2 ln(t)
/∈ L1(∞).

By applying Motoo’s theorem to V (u) and using (25) we get

1 ≤ lim sup
t→∞

Vt(u)
√

2 ln(t)
≤ lim sup

t→∞

V
(e)
t

√

2 ln(t)
a.s. on Ωu, and P (∪u≥0Ωu) = 1.

This concludes the proof of (21).
Step 3. We prove now (22). Fix η > 0. thanks to (21), there exists T0 > 1 such that

∀T ≥ T0, sup
t≥T

|Vt|√
2 ln ln t

≤ 1 + η. (27)

Fix T ≥ T0, then, denoting H : t ∈ (1,∞) 7→
∫ t

1

√
2 ln ln s ds,

sup
t≥T

|Xt|
H(t)

≤ (T0 − t0) sup
s∈[t0,T0]

|Vs| sup
t≥T

1

H(t)
+ sup

t≥T
sup

s∈[T0,t]

|Vs|
√

2 ln ln(s)

1

H(t)

∫ t

T0

√

2 ln ln(s) ds

≤ (T0 − t0) sup
s∈[t0,T0]

|Vs| sup
t≥T

1

H(t)
+ (1 + η) sup

t≥T

1

H(t)

∫ t

T0

√

2 ln ln(s) ds −→
T→∞

1 + η.
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