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Abstract: We consider a kinetic stochastic model with a non-linear time-inhomogeneous drag force

and a Brownian random force. More precisely, we study the couple position Xt of a particle and its

velocity which is a solution of a stochastic differential equation driven by a one-dimensional Brownian

motion, with the drift of the form t−βF (v), F satisfying some homogeneity condition and β > 0. The

behaviour of (V,X) in large time is proven and the precise rate of convergence is pointed out by using

stochastic analysis tools.
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1 Introduction

It is classical that the kinetic Fokker-Planck equation is a partial differential equation that
describes the time evolution of the probability density function of the velocity of a particle
submitted to some drag and random forces. Moreover the Feynman-Kac formula allows to make
the link between the kinetic Fokker-Planck equation and stochastic differential equation driven
by a Brownian motion called Langevin equation. In the simple linear case the solution of the
Langevin equation is a well-known Gaussian process, the Ornstein-Uhlenbeck process.

Some models in several domains as fluids dynamics, statistical mechanics, biology, are based
on the Fokker-Planck and Langevin equations in their classical form or on generalisations, for
instance non-linear or driven by other random noises than Brownian motion. The behaviour in
large time of the solution to the corresponding stochastic differential equation is one of the usual
questions when studying these models. Although the tools of partial differential equations allowed
to ask of this kind of questions, since these models are probabilistic, tools based on stochastic
processes could be used. For instance, in [CCM10] the persistent turning walker model was in-
troduced, inspired from the modelling of fish motion. An associated two-component Kolmogorov
type diffusion solves a kinetic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian
process and the authors studied the large time behaviour of this model by using appropriate
tools from stochastic analysis.

In the last decade the asymptotic study of solutions of non-linear Langevin’s type was the
subject of an important number of papers, see for instance [CNP19], [EG15], [FT18]. For instance
in [FT18] the following system is studied

Vt = v0 +Bt −
ρ

2

∫ t

0

F (Vs) ds and Xt = x0 +

∫ t

0

Vs ds.
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In other words one considers a particle moving such that its velocity is a diffusion with an
invariant measure behaving like (1 + |v|2)−ρ/2, as |v| → ∞. The authors prove that for large
time, after a suitable rescaling, the position process behaves as a Brownian motion or other stable
processes, following the values of ρ. It should be noted that in these cited papers the standard
tools associated to time-homogeneous equations are used: invariant measure, scale function,
speed measure and so on. Several of these tools will not be available when the drag force is
depending explicitly on time.

Let us describe our problem: consider a one-dimensional time-inhomogeneous stochastic ki-
netic model driven by a Brownian motion. We denote by (Xt)t≥0 the one-dimensional process
describing the position of a particle at time t having the velocity Vt. The velocity process (Vt)t≥0

is supposed to follow a Brownian dynamics in a potential U(t, v), varying in time :

dVt = dBt −
1

2
∂vU(t, Vt) dt and Xt = X0 +

∫ t

0

Vs ds. (1)

It can be viewed as the perturbation of the classical two-component Kolmogorov diffusion

dVt = dBt and Xt = X0 +

∫ t

0

Vs ds.

In the present paper the potential is supposed to be of the form t−β
∫ v

0
F (u) du, with β > 0 and

F satisfying some homogeneity condition. It describes a one dimensional particle evolving in a
force field Ft−β with a Brownian noise. A natural question is to understand the behaviour of the
position process in large time. More precisely we look for the limit in distribution of v(ε)Xt/ε,
as ε → 0, where v(ε) is some rate of convergence.

When F = 0, it is not difficult to see that the rescaled position process ε
3/2Xt/ǫ converges

in distribution towards the non-Markov but Gaussian process
∫ t

0 Bs ds. We will prove that this
anomalous diffusion behaviour still holds for sufficiently "small at infinity" potential.

Our paper is organised as follows: in the next section we introduce notations and we state
our main result. Existence and non-explosion of solutions are studied in Section 3 and the proof
of our main result is given in Section 4. Some results on growth rate are collected in Section 5.

2 Notations and main result

Assume first that the system velocity - position is given, for t ≥ t0 > 0, by

dVt = dBt − t−βF (Vt) dt, Vt0 = v0 > 0, and dXt = Vt dt, Xt0 = x0 ∈ R. (SKE)

β > 0 and (Bt)t≥0 is a standard Brownian motion. F is supposed to satisfy either

for some α ∈ R, ∀v ∈ R, λ > 0, F (λv) = λαF (v), (H1α)

or
|F | ≤ G where G is a positive function satisfying (H1α). (H2α)

That is, there exist a positive constant K such that, for all v ∈ R, |F (v)| ≤ K |v|α.
In the following, sgn is the sign function with convention sgn(0) = 0. Obviously (H2α) is a
generalization of (H1α). Nevertheless, we keep both assumptions since some proofs are simpler
written under (H1α) and are similar under (H2α). As an example of function satisfying (H1α)
one can keep in mind F : v 7→ sgn(v) |v|α (see also [GO13]), and as an example of function
satisfying (H2α) (with α = 0) F : v 7→ v/(1+v2) (see also [FT18]).
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Remark 2.1. If a function π satisfies (H1α), then

π(x) =







π(1)xα if x > 0,

0 if x = 0,

π(−1) |x|α if x < 0.

(2)

Let us state our main result which holds under both assumptions.

Theorem 2.2. Consider α ≥ 0, and β > α+1
2 . Let (Vt, Xt)t≥t0 be a solution to (SKE). When

α > 1, we suppose also that for all v ∈ R, sgn(F (v)) = sgn(v).
Then, as ε → 0,

(
√
εVt/ε, ε

3/2Xt/ε)t≥εt0 =⇒ (Bt,

∫ t

0

Bs ds)t>0, (3)

in the space of continuous functions C(]0,∞)) endowed by the uniform topology, where (Bt)t≥0

is a standard Brownian motion.

Remark 2.3. Solving a Poisson equation is one method among usual methods to study asymptotic
behaviour of integrated processes (see for example [CCM10], [EG15], [FT18]). For instance trying
to adapt naively the proof of Theorem 1a), p. 2 in [FT18], we are led to find a solution to the
Poisson equation 1

2∂
2
xxg(s, x)+∂sg(s, x)−F (x)s−β∂xg(s, x) = −x. This PDE does not admit an

evident solution and seems to be ill-posed. Thus, due to the time-dependence of the stochastic
differential equation satisfied by the velocity process, one has to proceed quite differently.

3 Existence and non-explosion of solution

In the following, suppose α > −1 and β > α+1
2 and define Ω = C([t0,∞)), the set of continuous

functions ω : [t0,∞) → R ∪ {∞} which equals ∞ after their explosion time (possibly infinite).
Following the idea used in [GO13], we first perform a change of time in (SKE) in order to
produce at least one time-homogeneous coefficient in the transformed equation. For every C2-
diffeomorphism φ : [0, t1) → [t0,∞), let introduce the scaling transformation Φφ given, for ω ∈ Ω,
by

Φφ(ω)(s) :=
ω(φ(s))
√

φ′(s)
, with s ∈ [0, t1).

The result containing the change of time transformation is given in [GO13], Proposition 2.1, p.
187. For the sake of completeness we state and sketch the proof in our context.

Proposition 3.1. If V is a solution to equation (SKE), then V (φ) is a solution to

dV (φ)
s = dWs −

√

φ′(s)

φ(s)β
F (
√

φ′(s)V (φ)
s ) ds− φ′′(s)

φ′(s)

V
(φ)
s

2
ds, V

(φ)
0 =

Vφ(0)
√

φ′(0)
, (4)

where V (φ) = Φφ(V ) and Wt :=
∫ t

0

dBφ(s)
√

φ′(s)
.

If V (φ) is a solution to (4), then V is a solution to equation (SKE), where V = Φ−1
φ (V (φ)) and

Bt −Bt0 :=
∫ t

t0

√

(φ′ ◦ φ−1)(s) dWφ−1(s).

Furthermore uniqueness in law, pathwise uniqueness or strong existence hold for equation (SKE)
if and only if they hold for equation (4).

3



Proof. Let V be a solution to equation (SKE). Thanks to Lévy’s characterization theorem of the
Brownian motion, W is a standard Brownian motion. Then, by a change of variable t = φ(s),
one gets

Vφ(t) − Vφ(0) =

∫ t

0

√

φ′(s) dWs −
∫ t

0

F (Vφ(s))

φ(s)β
φ′(s) ds.

The integration by parts formula yields

d

(

Vφ(s)
√

φ′(s)

)

= dWs −
√

φ′(s)

φ(s)β
F (Vφ(s)) ds−

φ′′(s)

2φ′(s)

Vφ(s)
√

φ′(s)
ds.

From which follows (4). The proof of the second part is similar.

In the following, we will use two particular changes of time, depending on which term of (4)
should become time-homogeneous:

• exponential change of time: denoting φe : t 7→ t0e
t, the exponential scaling transformation

is given by Φe(ω) : s ∈ R
+ 7→ ωt0es√

t0e
s/2

, for ω ∈ Ω. Set V (e) := Φe(V ). Thanks to

Proposition 3.1, the process (V
(e)
t )t≥0 satisfies the equation

dV (e)
s = dWs −

V
(e)
s

2
ds− t

1/2−β
0 e(

1/2−β)sF
(√

t0e
s/2V (e)

s

)
ds, (5)

where (Wt)t≥0 is a standard Brownian motion.

• power change of time: setting γ := 2β
α+1 > 1, consider φγ ∈ C2([0, t1)) the solution to the

Cauchy problem
φ′
γ = φγ

γ , φγ(0) = t0.

Clearly φγ(t) =
(
t1−γ
0 +(1− γ)t

)1/(1−γ)
: the maximal time t1 satisfies (γ − 1)t1 = t1−γ

0 and

the power scaling transformation is given by Φγ(ω) : s ∈ R
+ 7→ ω(φγ(s))

φγ(s)
γ/2

. The process

V (γ) := V (φγ) satisfies the equation

dV (γ)
s = dWs − ρφ−αβ/(α+1)

γ (s)F
(√

φ′
γ(s)V

(γ)
s

)

ds− γφγ−1
γ (s)

V
(γ)
s

2
ds, (6)

where (Wt)t≥0 is a standard Brownian motion.

In the following we will study the existence and the behaviour of the solution to (SKE), first
under the homogeneity assumption (H1α) and then under the domination assumption (H2α).

3.1 Study under (H1α)

In the following we assume (H1α). Then the process V (γ) satisfies the equation

dV (γ)
s = dWs − F (V (γ)

s ) ds− γφγ−1
γ (s)

V
(γ)
s

2
ds, s ∈ [0, t1), (7)

which can be written, by using the expression of φγ , as

dV (γ)
s = dWs − F (V (γ)

s ) ds− δ
V

(γ)
s

t1 − s
ds, s ∈ [0, t1), (8)

where δ =
γ

2(γ − 1)
. Proposition 3.2, p. 188, in [GO13] can be stated in the present situation:
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Proposition 3.2. For α > −1, there exists a pathwise unique strong solution to (SKE), defined
up to the explosion time.

Proof. We sketch the proof in our context. Note that, since α > −1, x 7→ |x|α is locally integrable.
Leaving out the third term on the right-hand side of (7), one gets

dHs = dWs − F (Hs) ds, s ∈ [0, t1). (9)

By using Proposition 2.2, p. 28, in [CE05], there exists a unique weak solution H to the time-
homogeneous equation (9) defined up to the explosion time. Moreover, the Girsanov transfor-
mation induces a linear bijection between weak solutions defined up to the explosion time to
equations (7) and (9). It follows that there exists a unique weak solution V (γ) to equation (7).
Therefore, by using Proposition 3.1, there exists a unique weak solution V to equation (SKE).
Besides, by using Corollary 3.4 and Proposition 3.2, pp. 389-390, in [RY99], pathwise uniqueness
holds for the equation (SKE). The conclusion follows from Theorem 1.7, p. 368, in [RY99].

Remark 3.3. When α = 1, drift and diffusion are Lipschitz and satisfy locally linear growth. The
existence and non-explosion of V follow from Theorem 2.9, p. 289, in [KS98].

Proposition 3.4.

• When α ≤ 1 or for all v ∈ R, sgn(F (v)) = sgn(v), the explosion time of V is a.s. infinite.

• Else, i.e. if α > 1 and (F (−1), F (1)) ∈ ((0,∞)) × [0,∞)) ∪ (R × (−∞, 0]), P(τ∞ = ∞) ∈
(0, 1), where τ∞ denotes the explosion time of V .

Proof. We split the proof in several steps.
Step 1. Assume first that α ≤ 1 or sgn(F (v)) = sgn(v). We will use Theorem 10.2.1, p. 254,

in [SV06]. Call Lt the time-inhomogeneous infinitesimal generator of V , given by

Lt :=
1

2

∂2

∂x2
− F (x)

tβ
∂

∂x
. (10)

Let ϕ be a twice continuous differentiable positive function such that ϕ(x) = 1 + x2 for all
|x| ≥ 1, ϕ(x) = 1 for all |x| ≤ 1

2 and ϕ ≥ 1. Note that ϕ does not depend on time. Hence
(
∂t + Lt

)
ϕ = Ltϕ.

Let T ≥ t0 and call cT the supremum of Ltϕ on [t0, T ] × [−1, 1]. Then, for all |x| ≤ 1 and
t ∈ [t0, T ],

Ltϕ(x) ≤ cT ≤ cTϕ(x).

Moreover, for all |x| > 1 and t ∈ [t0, T ], for C a positive constant,

Ltϕ(x) = −2x
F (x)

tβ
+ 1 ≤

{

1 ≤ ϕ(x), if for all v ∈ R, sgn(F (v)) = sgn(v),

2max(|F (1)| , |F (−1)|)x2 + 1 ≤ Cϕ(x), if α ≤ 1.

So, by using Theorem 10.2.1, p. 254, in [SV06], we deduce that τ∞ is infinite a.s.
Step 2. Assume now the contrary, that is α > 1 and (F (−1), F (1)) ∈ ((0,∞)) × [0,∞)) ∪

(R × (−∞, 0]). We follow the ideas of the proof of Proposition 3.7, pp. 191-192, in [GO13]. We
first show that P(τ∞ = ∞) > 0. Let V (γ) be the pathwise unique strong solution to equation
(8). Also denote by b, the δ-Brownian bridge, the pathwise unique strong solution to equation

dbs = dWs − δ
bs

t1 − s
ds, b0 = x0, s ∈ [0, t1). (11)
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Note that the equation (11) is obtained from (8) by omitting the second term on the right-

hand side. Denote by τ
(γ)
∞ the explosion time of V (γ), clearly, τ

(γ)
∞ ∈ [0, t1] ∪ {∞} a.s. and

{τ (γ)∞ ≥ t1} = {τ∞ = ∞}. Note that b becomes continuous on [0, t1], with bt1 = 0 a.s.
Fix n ≥ 1, for all s ∈ [0, t1], define

Tn := inf
{

s ∈ [0, t1),
∣
∣
∣V (γ)

s

∣
∣
∣ ≥ n

}

, σn := inf{s ∈ [0, t1], |bs| ≥ n},

and

E(s) := exp

(∫ s

0

−F (bu) dWu − 1

2

∫ s

0

F (bu)
2 du

)

.

Then, one has, since α > 1 ≥ 0,

E

[

exp

(
1

2

∫ s∧σn

0

F (bu)
2 du

)]

≤ E

[

exp

(
1

2

∫ s∧σn

0

n2α max(F (1)2, F (−1)2) du

)]

≤ exp

(
t1
2
n2α max(F (1)2, F (−1)2)

)

,

so Novikov’s condition applies to (Es∧σn
)s≥0. By using the Girsanov transformation between b

and V (γ), we can write for every integer n ≥ 1, s ∈ [0, t1] and A ∈ Fs,

E

[

1A

(

V
(γ)
•∧Tn

)

1Tn>s

]

= E
[
1A (b•∧σn

) E(s ∧ σn)1σn>s

]
.

Letting n → ∞, we obtain by the dominated convergence theorem and Fatou’s lemma,

E

[

1A

(

V (γ)
)

1
τ
(γ)
∞ >s

]

≥ E [1A (b) E(s)] .

Hence, P(τ∞ = ∞) = P(τ
(γ)
∞ ≥ t1) ≥ E[E(t1)] > 0.

Step 3. We will show that P(τ∞ = ∞) < 1 when F (1) > 0 and F (−1) > 0. Our strategy
is to apply Theorem 10.2.1, p. 254, in [SV06]. Let T > t0 and choose a ∈ (1, α). Also, one can
choose k ≥ 1 such that a(a− 1)−1 < k(T − t0). Introduce the continuous differentiable negative

function f1 : x 7→ −1/2

1 + |x|a , and, for µ > 0, the bounded twice continuous differentiable function

G1,µ(x) = exp

(

µ

∫ x

−∞

f1(y) dy

)

, x ∈ R.

For all t ∈ [t0, T ] and x ∈ R,

(
∂t + Lt

)
G1,µ(x) = LtG1,µ(x) = µG1,µ(x)

[

F (x)t−β |f1(x)| +
1

2
f ′
1(x) +

µ

2
f2
1 (x)

]

≥ µG1,µ(x)

[

F (x)T−β |f1(x)|+
1

2
f ′
1(x) +

µ

2
f2
1 (x)

]

.

Since |f1(x)| ∼
|x|→∞

1
2 |x|

−a
, lim

|x|→∞
F (x) |f1(x)| = +∞, and using that lim

|x|→∞
f ′
1(x) = 0, there

exists r ≥ 1 such that, for all µ > 0,

(
∂t + Lt

)
G1,µ(x) ≥ µG1,µ(x)

[

F (x)T−β |f1(x)|+
1

2
f ′
1(x)

]

≥ kµG1,µ(x) on [t0, T ]× [−r, r]c.
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Moreover, since f2
1 is bounded away from zero, while |f ′

1| is bounded on [−r, r], there exists µ0,
such that, since F is non-negative,

(
∂t + Lt

)
G1,µ0(x) ≥ µ0G1,µ0(x)

[
1

2
f ′
1(x) +

µ0

2
f2
1 (x)

]

≥ kµ0G1,µ0(x) on [t0, T ]× [−r, r].

Hence, for all t ∈ [t0, T ] and x ∈ R,
(
∂t + Lt

)
G1,µ0(x) ≥ kµ0G1,µ0(x). Besides, since |f1(x)| ≤

1 ∧ |x|−a,
∫ x0

−∞

(
− f1(x)

)
dx ≤

∫

R

(
1 ∧ |x|−a )

dx = a(a− 1)−1 < k(T − t0).

Thus, G1,µ0(x0) > e−kµ0(T−t0) ≥ e−kµ0(T−t0) supx∈R
G1,µ0(x). Therefore, Theorem 10.2.1, p.

254, in [SV06] applies and V explodes in finite time with positive probability.
When F (−1) < 0 and F (1) < 0, one can work in the same way, using instead G1,µ the

function x 7→ exp
(

µ
∫ +∞

x
f1(y) dy

)

, in order to get that P(τ∞ = ∞) < 1.

Step 4. It remains to show that P(τ∞ = ∞) < 1 when F (1) < 0 and F (−1) > 0. As in the
previous step, we choose a ∈ (1, α) and for any T > t0, one can choose again k ≥ 1 such that
a(a− 1)−1 < k(T − t0). Moreover, one can see that there exists a continuous differentiable odd
function f2, defined on R, vanishing only at x = 0, such that |f2(x)| ≤ 1 ∧ |x|−a

, and

f2(x) := kx, x ∈
[

− 1

2k
,
1

2k

]

, lim
|x|→∞

|x|α |f2(x)| = ∞ and lim
|x|→∞

f ′
2(x) = 0.

For µ > 0, we introduce the bounded twice continuous differentiable function

G2,µ(x) := exp

(

µ

∫ x

0

f2(y) dy

)

, x ∈ R.

Note that for all x ∈ R and t ∈ [t0, T ],

(
∂t + Lt

)
G2,µ(x) = LtG2,µ(x) = µG2,µ(x)

[ |F (x)f2(x)|
tβ

+
1

2
f ′
2(x) +

µ

2
f2
2 (x)

]

≥ µG2,µ(x)

[

ρ
|x|α |f2(x)|

tβ
+

1

2
f ′
2(x) +

µ

2
f2
2 (x)

]

,

where ρ = min
{
|F (1)| , |F (−1)|

}
> 0. One can conclude, using the same argument as in the

proof of Proposition 3.7, p. 13, in [GO13].

3.2 Study under (H2α)

We assume now (H2α). Since, the equation (6) doesn’t have any time-homogeneous term, the
previous method cannot be used to conclude to the existence up to explosion. Instead, one will
use the exponential change of time process to get

Proposition 3.5. If α ≥ 0, there exists a pathwise unique strong solution to (SKE), defined up
to the explosion time.

Proof. The proof is identical to that of Proposition 3.2, by considering V (e) instead of V (γ).

Proposition 3.6.

• When α ≤ 1 or sgn(F (v)) = sgn(v), the explosion time of V is a.s. infinite.

• Else, P(τ∞ = ∞) > 0, where τ∞ denotes the explosion time of V .

Proof. The proof is identical to that of Proposition 3.4 by considering G instead of |F |.
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4 Asymptotic behaviour of the solution

Proposition 4.1. Assume α ≥ 0. If α ≤ 1 or sgn(F (v)) = sgn(v), then

∀t ≥ t0, E [|Vt|] ≤ Cα,β,t0

√
t and E [|Vt|α] ≤ Cα,β,t0t

α
2 .

Proof.
Step 1. Assume first that α > 1, hence we have supposed that sgn(F (v)) = sgn(v). By Itô’s

formula, for all t ≥ t0,

(Vt)
2 = v20 +

∫ t

t0

2Vs dBs −
∫ t

t0

2s−βVsF (Vs) ds+ (t− t0).

By using the well known Lévy’s characterization, the local martingale dβt =
Vt

|Vt|
1Vt 6=0 dBt is a

Brownian motion. Thus, one can write,

|Vt|2 = (Vt)
2 = v20 +

∫ t

t0

2

√

|Vs|2 dβs −
∫ t

t0

2s−βVsF (Vs) ds

︸ ︷︷ ︸

≤0

+(t− t0).

Defining the square of the one-dimensional Bessel process started at v20 (see p 439 in [RY99]) by

Zt = v20 +

∫ t

t0

2
√

|Zs| dβs + (t− t0), (12)

and using the comparison theorem (see Theorem 3.7 p 394, in [RY99]), one deduces that for all
t ≥ t0, |Vt|2 ≤ Zt. Since the square of a Brownian motion is a solution, unique in law, of (12),
putting to the power κ

2 with κ ∈ {1, α}, and taking the expectation one gets, for all t ≥ t0

E [|Vt|κ] ≤ E

[

Z
κ
2
t

]

= E [|v0 +Bt|κ] ≤ cκ |v0|κ + cκt
κ
2 E [|B1|κ] = Cκt

κ
2 .

Step 2. Assume now that α ∈ [0, 1]. Then Jensen’s inequality yields, for all t ≥ t0,
E [|Vt|α] ≤ E [|Vt|]α, hence it suffices to verify only the first inequality.

Defining, for all n ≥ 0, the stopping times Tn := inf{t ≥ t0, |Vt| ≥ n}, one can write, for
t ≥ t0 and n ≥ 0,

Vt∧Tn
= v0 −Bt0 +Bt∧Tn

−
∫ t∧Tn

t0

s−βF (Vs∧Tn
) ds.

Note that under both hypotheses ((H1α) or (H2α)), there exists a positive constant K, such
that |F (v)| ≤ K |v|α, so

|Vt∧Tn
| ≤ |v0 −Bt0 |+ |Bt∧Tn

|+
∫ t∧Tn

t0

s−β |F (Vs∧Tn
)| ds

≤ |v0 −Bt0 |+ |Bt∧Tn
|+
∫ t∧Tn

t0

s−βK |Vs∧Tn
|α ds.

8



Taking expectation, it becomes since (B2
t − t)t≥0 is a martingale,

E [|Vt∧Tn
|] ≤ E [|v0 −Bt0 |] + E [|Bt∧Tn

|] +
∫ t

t0

s−βKE [|Vs∧Tn
|α] ds

≤ E [|v0 −Bt0 |] +
√

E
[
B2

t∧Tn

]
+

∫ t

t0

s−βKE [|Vs∧Tn
|]α ds

≤ E [|v0 −Bt0 |] +
√

E [t ∧ Tn] +

∫ t

t0

s−βKE [|Vs∧Tn
|]α ds

≤ Ct0

√
t+

∫ t

t0

s−βKE [|Vs∧Tn
|]α ds.

At this level we need a slightly modified Gronwall’s lemma:

Lemma 4.2 (Gronwall-type lemma). Fix α ∈ [0, 1), t0 ∈ R. Assume that g is a non-negative
real-valued function, that b is a positive function and a is a differentiable real-valued function.
Moreover suppose that bgα is a continuous function. If

∀t ≥ t0, g(t) ≤ a(t) +

∫ t

t0

b(s)g(s)α ds < ∞. (13)

Then,

∀t ≥ t0, g(t) ≤ Cα

[

a(t) +

(

(1− α)

∫ t

t0

b(s) ds

) 1
1−α

]

,

where Cα := 2
1

1−α .

We postpone the proof of this lemma and we apply it with gn : t 7→ E [|Vt∧Tn
|] which is

bounded by n. By Fatou’s lemma one gets,

∀t ≥ t0, E [|Vt|] ≤ lim inf
n→∞

E [|Vt∧Tn
|] ≤ Cα

[

Ct0

√
t+

(
1− α

1− β
K(t1−β − t1−β

0 )

) 1
1−α

]

≤ Cα,β,t0

√
t.

This ends the proof of the proposition except for the proof of Lemma 4.2.

Proof of Lemma 4.2. For t ≥ t0 we set H(t) the right-hand side of (13) so the hypothesis can
be written g(t) ≤ H(t). Since α ≥ 0, g(t)α ≤ H(t)α, then, multiplying by b(t) > 0,

b(t)g(t)α ≤ b(t)H(t)α.

Now, let’s bring in the derivative of H

H ′(t) = a′(t) + b(t)g(t)α ≤ a′(t) + b(t)H(t)α.

We deduce that

H ′(t)

H(t)α
=

a′(t) + b(t)g(t)α

H(t)α
≤ a′(t)
(

a(t) +
∫ t

t0
b(s)g(s)α ds

)α + b(t) ≤ a′(t)

a(t)α
+ b(t)

9



where we used again (13) and the non-negativity of

∫ t

t0

b(s)g(s)α ds. By integrating, since α < 1,

(1− α)−1
[
H(t)1−α − a(t0)

1−α
]
≤ (1− α)−1

[
a(t)1−α − a(t0)

1−α
]
+

∫ t

t0

b(s) ds

or equivalently,

H(t)1−α ≤ a(t)1−α + (1− α)

∫ t

t0

b(s) ds.

By using again (13), since 1
1−α > 0,

g(t) ≤
(

a(t)1−α + (1− α)

∫ t

t0

b(s) ds

) 1
1−α

≤ Cα

[

a(t) +

(

(1− α)

∫ t

t0

b(s) ds

) 1
1−α

]

.

Remark 4.3. If g is not continuous, note that the function H is continuous and satisfies (13),
since b is positive and g ≤ H . So, one can apply the lemma to H and then use the inequality
g ≤ H . 1

Proof of Theorem 2.2. We split the proof in three steps.

Step 1. We note that it is enough to prove that (V
(ε)
t )t>0 := (

√
εVt/ε)t>0 converges in

distribution to a Brownian motion in the space of continuous functions C(]0,∞)) endowed by
the uniform topology

d : f, g ∈ C(]0,+∞)) 7→
+∞∑

n=1

1

2n
min

(

1, sup
[ 1
n
,n]

|f(t)− g(t)|
)

.

Indeed, assume that the convergence of the rescaled velocity process is proved. For ǫ ∈ (0, 1] and
t ≥ ǫt0 one can write

ε
3/2Xt/ε = ε

3/2x0 +

∫ t

εt0

V (ε)
s ds.

Clearly the theorem will be proved once we show that (V
(ε)
• ,

∫ •

εt0
V

(ε)
s ds) =: gε(V

(ε)
• ) con-

verges weakly in C(]0,∞)) endowed by the uniform topology. Here the mapping gε : v 7→
(

vt,
∫ t

εt0
vs ds

)

t>0
is defined and valued on C(]0,∞)) × C(]0,∞)). This mapping is converging,

as ε → 0, to the continuous mapping g : v 7→
(

vt,
∫ t

0
vs ds

)

t>0
.

Let h : C(]0,∞))× C(]0,∞)) → R be a bounded and uniformly continuous function. We will
show that E[(h ◦ gǫ)(V (ǫ))] −→

ǫ→0
E[(h ◦ g)(B)]. One can write

E

[

(h ◦ gǫ)(V (ǫ))
]

= E

[

(h ◦ gǫ)(V (ǫ))− (h ◦ g)(V (ǫ))
]

+ E

[

(h ◦ g)(V (ǫ))
]

.

The second term converges to E[(h ◦ g)(B)] by the continuous mapping theorem (see Theorem
2.7 p. 21, in [Bil99]), since (V (ǫ))ǫ>0 converges in distribution towards a Brownian motion.
Moreover, since h is uniformly continuous, for any η > 0, there exists δ > 0 such that,

∀(f, g) ∈ C(]0,+∞)), d(f, g) ≤ δ ⇒ |h ◦ f − h ◦ g| ≤ η. (14)

1We thank Thomas Cavallazzi for this remark.
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Hence, since h is bounded, one gets with C a positive constant,

E

[∣
∣
∣h ◦ gǫ(V (ǫ))− h ◦ g(V (ǫ))

∣
∣
∣

]

≤ η + 2‖h‖∞P

(

d
(

gε(V
ε), g(V (ε))

)

> δ
)

≤ η + 2‖h‖∞P

(

C

∫ εt0

0

∣
∣
∣V (ε)

s

∣
∣
∣ds > δ

)

−→
ǫ→0

η,

because
∫ εt0
0

∣
∣
∣V

(ε)
s

∣
∣
∣ds converges almost surely towards 0. One concludes using the Portmanteau

theorem (see Theorem 2.1. p. 16, in [Bil99]).
Step 2. Let us prove now the convergence of the rescaled velocity process.

Let ǫ ∈ (0, 1] and t ≥ ǫt0. One can write

√
εVt/ε =

√
ε(v0 −Bt0) +

√
εBt/ε −

√
ε

∫ t/ε

t0

F (Vs)s
−β ds

=
√
ε(v0 −Bt0) +

√
εBt/ε − εβ−1/2

∫ t

εt0

F (Vu/ε)u
−β du.

It becomes

V
(ε)
t =

√
ε(v0 −Bt0) +

√
εBt/ε − εβ−

(α+1)/2

∫ t

εt0

(
√
ε)αF

(

V
(ε)
u√
ε

)

u−β du. (15)

By self-similarity, B(ε) := (
√
εBt/ε)t≥0 has the same distribution as a Brownian motion B. The

proof will be complete once we prove that

∀T ≥ εt0, sup
εt0≤t≤T

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣

P→ 0, as ε → 0. (16)

Indeed, fix a > 0 and choose N > 0 such that
∑+∞

n=N+1
1
2n ≤ a

2 . Then,

d
(

V (ε), B(ε)
)

≤ a

2
+

N∑

n=1

1

2n
sup
[ 1
n
,n]

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣ .

It follows that

P

(

d
(

V (ε), B(ε)
)

> a
)

≤
N∑

n=1

P

(

sup
[ 1
n
,n]

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣ > a′

)

−→
ǫ→0

0,

where a′ = a(
∑+∞

n≥1
1/2n)−1. It remains to apply Theorem 3.1, p. 27, in [Bil99].

Step 3. Let us prove now (16). Recall that under both hypothesis ((H1α) and (H2α)), there

exists a positive constant K, such that (
√
ε)α

∣
∣
∣
∣
∣
F

(

V
(ε)
u√
ε

)∣
∣
∣
∣
∣
≤ K

∣
∣
∣V

(ε)
u

∣
∣
∣

α

. It follows from (15) that,

for all T ≥ εt0,

sup
εt0≤t≤T

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣ ≤

√
ε |v0 −Bt0 |+ εβ−

(α+1)/2 sup
εt0≤t≤T

∣
∣
∣
∣
∣

∫ t

εt0

(
√
ε)αF

(

V
(ε)
u√
ε

)

u−β du

∣
∣
∣
∣
∣

≤
√
ε |v0 −Bt0 |+ εβ−

(α+1)/2

∫ T

εt0

K
∣
∣
∣V (ε)

u

∣
∣
∣

α

u−β du.
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Taking the expectation and using Proposition 4.1,

εβ−
(α+1)/2

E

[
∫ T

εt0

K
∣
∣
∣V (ε)

u

∣
∣
∣

α

u−β du

]

= εβ−
(α+1)/2

∫ T

εt0

KE

[∣
∣
∣V (ε)

u

∣
∣
∣

α]

u−β du

≤ εβ−
(α+1)/2

∫ T

εt0

KCα,β,t0u
α
2 −β du

≤ C
(

εβ−
(α+1)/2T

α
2 −β+1 − t

α
2 −β+1
0

√
ε
)

.

Hence

E

[

sup
εt0≤t≤T

∣
∣
∣V

(ε)
t −B

(ε)
t

∣
∣
∣

]

= O(εγ),

where γ = min(12 , β − (α+1)/2) > 0. This concludes the proof.

5 Growth rate of the velocity process V

We turn now to the study of the growth rate of the velocity process V . In this section, we assume
also that

∀x ∈ R, ∀λ > 0, sgn(F (λx)) = sgn(F (x)). (H3)

Proposition 5.1. When α < 1 or sgn(F (v)) = sgn(v),

lim sup
t→∞

|Vt|√
2 ln ln t

≤ 1 a.s. and lim sup
t→∞

Vt√
2 ln ln t

= 1 a.s. (17)

Besides

lim sup
t→∞

|Xt|
∫ t

1

√
2 ln ln s ds

≤ 1 a.s. (18)

We discuss first results of existence and behaviour of some time-homogeneous processes V ±

such that V − ≤ V (e) ≤ V + almost surely. For α > −1, let π be a non-negative function satisfying

∀x ∈ R, λ > 0, π(λx) = λαπ(x).

Recall that π satisfies (2). Under (H1α) we take π = |F | and under (H2α), we take π = G.
Define the pathwise unique strong solution (up to the explosion time) to the time-homogeneous

equation

dV ±
s = dWs −

V ±
s

2
ds± t

α+1
2 −β

0 π(V ±
s )1{±F (V ±

s )<0} ds. (19)

Lemma 5.2. Set τ±∞, τ∞, respectively the explosion time of V ± and V .

(i) If α ≤ 1 or F (1) ≥ 0, then τ+∞ = ∞ a.s.

(ii) If α ≤ 1 or F (−1) ≤ 0, then τ−∞ = ∞ a.s.

(iii) If α > 1 and F (1) < 0, then P(τ+∞ = ∞) = 0.

(iv) If α > 1 and F (−1) > 0, then P(τ−∞ = ∞) = 0.
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Proof. Step 1. Firstly let us prove that V − ≤ V (e) ≤ V + almost surely. Indeed, if we denote

b(t, x) = −x

2
− t

1/2−β
0 e(

1/2−β)tF (
√
t0e

t/2x) and b+(x) = −x

2
+ t

(α+1)/2−β
0 π(x)1{F (x)≤0},

thanks to (H3), we can write, for all t ≥ 0 and all x ∈ R,

b(t, x) ≤ b
+(x) ⇐⇒ −e(1/2−β)tF (

√
t0e

t/2x) ≤ t
α
2
0 π(x)1{F (x)≤0}.

This inequality holds true by the choice of π and the assumption (α+1)/2 − β < 0. By using the
comparison theorem (see Theorem 3.7 p 394, in [RY99]) one gets, V (e) ≤ V +, almost surely. The
other inequality can be obtained in the same way.

Step 2. Call τ
(e)
∞ the explosion time of V (e), then {τ (e)∞ = ∞} = {τ∞ = ∞}. So, {τ−∞ =

∞} ∩ {τ+∞ = ∞} ⊂ {τ∞ = ∞}.
We give the detailed proof for (i) and (iii), the other parts could be obtained by changing "+"
and "−" in the reasoning. First, we prove (i). The scale function of V + is given, for x ∈ R, by

p+(x) :=

∫ x

0

exp

(
y2

2
− 2t

(α+1)
2 −β

0

∫ y

0
π(z)1{F (z)≤0} dz

)

dy.

Note that, if x < 0, −p+(x) ≥
∫ 0

x
e
y2/2 dy. Thus p+(−∞) = −∞. Suppose that F (1) ≥ 0,

then for x ≥ 0, p+(x) =
∫ x

0
e
y2/2 dy, so p+(∞) = ∞. By Proposition 5.22, p. 345, in [KS98],

the conclusion follows. Assume now that α < 1 and F (1) < 0. Then, for x ≥ 0, p+(x) =∫ x

0
exp

(y2

2
− 2t

α+1
2 −β

0 π(1)
yα+1

α+ 1

)

dy, so p+(∞) = ∞. Using the same result in [KS98], the

conclusion follows. If α = 1, the drift has linear growth and the conclusion is clear.
Step 3. We proceed with the proof of (iii). Assume α > 1 and F (1) < 0. As previously,

p+(−∞) = −∞. Besides, p+(∞) < ∞. Denote m+ : y 7→ 2/(p+)′(y) the speed measure of V +.

Fix y > 0, then, setting c = 2t
α+1
2 −β

0 π(1) > 0, one can apply integration by parts to get:

(
p
+(∞) − p

+(y)
)
m
+(y) =2 exp

(

−y2

2
+ c

yα+1

α+ 1

)∫ +∞

y

exp

(
z2

2
− c

zα+1

α+ 1

)

dz

=
2

cyα − y
+ 2 exp

(

−y2

2
+ c

yα+1

α+ 1

)∫ ∞

y

e
z2

2 −c
zα+1

α+1
1− cαzα−1

(z − czα)2
dz.

One can deduce, by integrating small o, that

(
p+(∞)− p+(y)

)
m+(y) ∼

y→∞

2

cyα − y

which is an integrable function at ∞. The conclusion follows from Theorem 5.29, p. 348, in
[KS98].

Proof of Proposition 5.1.

Step 1. Remark first that the first inequality of (17) is equivalent to lim supt→∞

∣
∣
∣V

(e)
t

∣
∣
∣

√
2 ln t

≤ 1.

Assuming

lim sup
t→∞

V +
t√
2 ln t

≤ 1 a.s., and lim sup
t→∞

−V −
t√

2 ln t
≤ 1 a.s, (20)
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one gets the first inequality of (17) writting

lim sup
t→∞

V
(e)
t√
2 ln t

≤ lim sup
t→∞

V +
t√
2 ln t

≤ 1 a.s. and lim sup
t→∞

−V
(e)
t√

2 ln t
≤ lim sup

t→∞

−V −
t√

2 ln t
≤ 1 a.s.

Before, proving (20) let us state Motoo’s theorem which proof is given in [Mot59].

Theorem 5.3 (Motoo). Let Z be a regular continuous strong Markov process in (a,∞), a ∈
[−∞,∞). Assume also that Z is time-homogeneous, with scale function s. For every real positive
increasing function h,

P

(

lim sup
t→∞

Zt

h(t)
≥ 1

)

= 0 or 1 according to whether

∫ ∞ dt

s(h(t))
< ∞ or = ∞.

Motoo’s theorem yields for all ε > 0,

P

(

lim sup
t→∞

V +
t√
2 ln t

≥ 1 + ε
)

= 0 and P

(

lim sup
t→∞

−V −
t√

2 ln t
≥ 1 + ε

)

= 0.

Indeed, define Ṽ − := −V −, then

dṼs
−
= − dWs −

Ṽs
−

2
ds+ t

(α+1)/2−β
0 π(−Ṽs

−
)1

{F (−Ṽs
−
)>0}

ds.

Fix y0 > 0. The scale function of V + and Ṽ − is given, for y ≥ y0, by

s
±(y) := κ

∫ y

y0

exp
(z2

2
− 2C± zα+1

α+ 1

)

dz.

Here and elsewhere κ denotes positive constants which can change of value from line to line, and

C+ := t
α+1
2 −β

0 π(1)1{F (1)<0} for V + and C− := t
α+1
2 −β

0 π(−1)1{F (−1)>0} for Ṽ −.

Let ǫ > 0. Define the positive increasing function h : t 7→ (1 + ǫ)
√
2 ln t. We will show that 1/s(h)

is integrable at infinity. Firstly, remark that
∫ +∞

y0

1

s(h(t))
dt =

∫ +∞

h(y0)

1

s(y)

dy

h′(h−1(y))
=

∫ +∞

h(y0)

1

s(y)

y exp
(
y2
/
(
2(1+ǫ)2

))

(1 + ε)2
dy.

It remains to find an equivalent of s at infinity. In the following "≍" means equality up to a
multiplicative positive constant. Fix y > y0, integrating by parts, one gets,

s(y) ≍
∫ y

y0

exp
(z2

2
− 2C± zα+1

α+ 1

)(
z − 2C± zα

)
· 1

z − 2C± zα
dz

≍
exp

(
y2

2 − 2C± yα+1

α+1

)

y − 2C± yα
− κ+

∫ y

y0

1− 2αC± zα−1

(z − 2C± zα)2
exp

(z2

2
− 2C± zα+1

α+ 1

)

dz.

Since α > −1, lim
y→∞

1− 2αC± yα−1

(y − 2C± yα)2
= 0, except when α = 1 and C± = 1

2 . Moreover the function

y 7→ exp
(

y2

2 − 2C± yα+1

α+1

)

is not integrable at infinity, when C± = 0, or α < 1, or α = 1 and

C± < 1
2 . In these cases one gets, by integration,

s(y) ∼
y→∞

κ
exp

(
y2

2 − 2C± yα+1

α+1

)

y − 2C± yα
.
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Hence,

1

s(y)

y exp
(

y2

2(1+ε)2

)

(1 + ε)2
∼

y→∞
κ
(
y2 − 2C± yα+1

)
exp

(

− y2

2

(

1− 1

(1 + ε2)

)

+ 2C± yα+1

α+ 1

)

.

which is integrable if C± = 0 or α < 1, or α = 1 and C± < 1
2 . One can conclude using Motoo’s

theorem.

Step 2. The second inequality of (17) is equivalent to lim supt→∞

V
(e)
t√
2 ln t

= 1 a.s. From the

first step, we have lim supt→∞

V
(e)
t√
2 ln t

≤ 1. We need to prove the opposite inequality. Note that

the first inequality of (17) implies

lim
t→∞

t
1/2−β
0 e(

1/2−β)tF
(√

t0e
t/2V

(e)
t

)
= 0 a.s. (21)

For u ≥ 0, introduce the pathwise unique strong solution of

dVs(u) = dWs −
(
Vs(u)

2
+ 1

)

ds, Vu(u) = V (e)
u ,

and define the stopping time τu := inf
{

t ≥ u, t
1/2−β
0 e(1/2−β)t

∣
∣
∣F
(√

t0e
t/2V

(e)
t

)
∣
∣
∣ > 1

}

. By using the

comparison theorem (see Theorem 3.7 p 394, in [RY99]) and a classical argument of localisation

one gets, V•∧τu(u) ≤ V
(e)
•∧τu , almost surely. Hence

∀t ≥ u, Vt(u) ≤ V
(e)
t a.s. on {τu = ∞} =

{

sup
t≥u

t
1/2−β
0 e(

1/2−β)t
∣
∣
∣F
(√

t0e
t/2V

(e)
t

)
∣
∣
∣ ≤ 1

}

:= Ωu.

(22)
The scale function of V (u) is given, for y ≥ 1, by

su(y) := κ
∫ y

1
exp

(
z2

2
+ 2z

)

dz.

Hence, with g : t 7→ (1− ε)
√
2 ln t, for t big enough,

1

su(g(t))
=

(

κ
∫ g(t)

1
exp

(
z2

2
+ 2z

)

dz

)−1

≥
(

κg(t) exp

(
g(t)2

2
+ 2g(t)

))−1

≥
exp

(

−2
√
2 ln t(1− ε)

)

t(1−ε)2(1− ε)
√
2 ln t

, which is not integrable at infinity.

By applying Motoo’s theorem to V (u) and using (21) we get

1 ≤ lim sup
t→∞

Vt(u)√
2 ln t

≤ lim sup
t→∞

V
(e)
t√
2 ln t

a.s. on Ωu, and P (∪u≥0Ωu) = 1.

This concludes the proof of (17).
Step 3. We prove now (18). Fix η > 0. thanks to (17), there exists T0 > 1 such that

∀T ≥ T0, sup
t≥T

|Vt|√
2 ln ln t

≤ 1 + η. (23)
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Fix T ≥ T0, then, denoting H : t ∈ (1,∞) 7→
∫ t

1

√
2 ln ln s ds,

sup
t≥T

|Xt|
H(t)

≤ (T0 − t0) sup
s∈[t0,T0]

|Vs| sup
t≥T

1

H(t)
+ sup

t≥T
sup

s∈[T0,t]

|Vs|√
2 ln ln s

1

H(t)

∫ t

T0

√
2 ln ln s ds

≤ (T0 − t0) sup
s∈[t0,T0]

|Vs| sup
t≥T

1

H(t)
+ (1 + η) sup

t≥T

1

H(t)

∫ t

T0

√
2 ln ln s ds −→

T→∞
1 + η.
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