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Abstract: In this paper, we consider a kinetic stochastic model with a non-linear time-inhomogeneous

drag force and a Brownian random force. More precisely, we study the position Xt of a particle having

the velocity as solution of a stochastic differential equation driven by a one-dimensional Brownian

motion, with the drift of the form t−βF (v), F satisfying some homogeneity condition and β > 0. The

diffusive behaviour of the position in large time is proven and the precise rate of convergence is pointed

out by using stochastic analysis tools.
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1 Introduction

It is classical that the kinetic Fokker-Planck equation is a partial differential equation that
describes the time evolution of the probability density function of the velocity of a particle
submitted to some drag and random forces. Moreover the Feynman-Kac formula allows to
make the link between the kinetic Fokker-Planck equation and stochastic differential equation
driven by a Brownian motion called Langevin equation. In the simple linear case the solution
of the Langevin equation is a well-known Gaussian process, the Ornstein-Uhlenbeck process.

Some models in several domains as fluids dynamics, statistical mechanics, biology, are
based on the Fokker-Planck and Langevin equations in their classical form or on generalisa-
tions, for instance non-linear or driven by other random noises than Brownian motion. The
behaviour in large time of the solution to the corresponding stochastic differential equation is
one of the usual questions when studying these models. Although the tools of partial differ-
ential equations allowed to ask of this kind of questions, since these models are probabilistic,
tools based on stochastic processes could be used. For instance, in [2] the persistent turn-
ing walker model was introduced, inspired from the modelling of fish motion. An associated
diffusion solves a kinetic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian
process and the authors studied the large time diffusive behaviour of this model by using
appropriate tools from stochastic analysis.

In the last decade the asymptotic study of solutions of non-linear Langevin’s type was the
subject of an important number of papers, see for instance [3], [5], [6]. For instance in [6] the
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following system is studied

Vt = v0 +Bt −
ρ

2

∫ t

0
F (Vs) ds and Xt = x0 +

∫ t

0
Vs ds.

In other words one considers a particle moving such that its velocity is a diffusion with an
invariant measure behaving like (1 + |v|2)−ρ/2, as |v| → ∞. The authors prove that for large
time, after a suitable rescaling, the position process behaves as a Brownian motion or other
stable processes, following the values of ρ. It should be noted that in these cited papers the
standard tools associated to time-homogeneous equations are used: invariant measure, scale
function, speed measure and so on. Several of these tools will not be available when the drag
force is depending explicitly on time.

Let us first describe our problem: consider a one-dimensional time-inhomogeneous stochas-
tic kinetic model driven by a Brownian motion. We denote by (Xt)t≥0 the one-dimensional
process describing the position of a particle at time t having the velocity Vt. The velocity
process (Vt)t≥0 is supposed to follow a Brownian dynamics in a potential U(t, v), varying in
time :

dVt = dBt −
1

2
∂vU(t, Vt) dt and Xt = X0 +

∫ t

0
Vs ds. (1)

In the present paper the potential is of the form t−β
∫ v
0 F (u) du, with β > 0 and F satisfying

some homogeneity condition. A natural question is to understand the behaviour of the position
process in large time. More precisely we look for the limit in distribution of v(ε)Xt/ε, as ε → 0,
where v(ε) is some rate of convergence.

We will see that the position process has a diffusive behaviour and we give the precise
rate and variance of the limit, by studying a Brownian martingale. The strategy to tackle
this problem is based on the following idea: use a scaling transformation in order to get a
stochastic differential equation having a negligible term, as t is large, in order to compare with
a simpler stochastic differential equation (see also [7] for a similar reasoning).

Our paper is organised as follows: in the next section we introduce notations and we state
our main result. Existence and non-explosion of solutions are studied in Section 3 and the
proof of our main result is given in Section 4. We collect in the Appendix our technical results.

2 Notations and main result

Assume first that the system velocity - position is given, for t ≥ t0 > 0, by

dVt = dBt − t−βF (Vt) dt, Vt0 = v0 > 0, and dXt = Vt dt, Xt0 = x0 ∈ R. (SKE)

where β > 0 and (Bt)t≥0 is a standard Brownian motion. F is supposed to satisfy either
(H1α) which is a homogeneity condition or (H2α) when it is dominated by a positive function
satisfying the homogeneity condition. That is, F satisfies either

for some α ∈ R, ∀x ∈ R, λ > 0, F (λx) = λαF (x), (H1α)

or
∀x ∈ R, ∀λ > 0, sgn(F (λx)) = sgn(F (x))

and F is dominated by a positive function G satisfying (H1α).
(H2α)
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Obviously (H2α) is a generalization of (H1α). Nevertheless, we keep both assumptions since
some proofs are simpler written under (H1α) and are similar under (H2α). As an example of
function satisfying (H1α) one can keep in mind F : v 7→ sgn(v) |v|α (see also [7]), and as an
example of function satisfying (H2α) (with α = 0) F : v 7→ v/(1+v2) (see also [6]).

Remark 2.1. If a function π satisfies (H1α), then

π(x) =











π(1)xα if x > 0,

0 if x = 0,

π(−1) |x|α if x < 0.

(2)

Let us state our main result which holds under both assumptions.

Theorem 2.2. Consider α ≥ 0 and β > α+1
2 . Let (Vt,Xt)t≥t0 be a solution to (SKE). If

α < 1 or
(

F (−1), F (1)
)

∈ R
− × R

+. Then, as ε → 0,

(ε
3/2Xt/ε)t≥t0 =⇒ (Bt3/3)t≥t0 , (3)

in the space of continuous functions C([t0,∞)) endowed by the uniform topology, were (Bt)t≥0

is a standard Brownian motion.

Remark 2.3.

1. When α = 1 and
(

F (−1), F (1)
)

/∈ R
− × R

+ the result is still true by assuming some
technical conditions on t0, F (1) and F (−1) (see Remark A.5).

2. By trying to adapt naively the proof of Theorem 1a) p. 2 in [6], we are led to find a
solution to the Poisson equation 1

2∂
2
xxg(s, x)+ ∂sg(s, x)−F (x)s−β∂xg(s, x) = −x. This

PDE does not admit an evident solution and seems to be ill-posed. Thus, due to the
time-dependence of the stochastic differential equation satisfied by the velocity process,
one has to proceed quite differently.

3 Existence and non-explosion of solution

In the following, suppose α ≥ 0 and β > α+1
2 and set Ω = C([t0,∞)), the set of continuous

functions ω : [t0,∞) → R ∪ {∞} which equals ∞ after their explosion time (possibly infi-
nite). Following the idea used in [7], we first perform a change of time in (SKE) in order
to produce at least one time-homogeneous coefficient in the transformed equation. For every
C2-diffeomorphism φ : [0, t1) → [t0,∞), let introduce the scaling transformation Φφ given, for
ω ∈ Ω, by

Φφ(ω)(s) :=
ω(φ(s))
√

φ′(s)
, with s ∈ [0, t1).

The result containing the change of time transformation is given in [7], Proposition 2.1, p.
187. For the sake of completeness we state and sketch the proof in our context.

Proposition 3.1. If V is a solution to equation (SKE), then V (φ) is a solution to

dV (φ)
s = dWs −

√

φ′(s)

φ(s)β
F (
√

φ′(s)V (φ)
s ) ds− φ′′(s)

φ′(s)

V
(φ)
s

2
ds, V

(φ)
0 =

Vφ(0)
√

φ′(0)
, (4)
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where V (φ) = Φφ(V ) and Wt :=
∫ t

0

dBφ(s)
√

φ′(s)
.

If V (φ) is a solution to (4), then V is a solution to equation (SKE), where V = Φ−1
φ (V (φ))

and Bt −Bt0 :=
∫ t

t0

√

(φ′ ◦ φ−1)(s) dWφ−1(s).

Furthermore uniqueness in law, pathwise uniqueness or strong existence hold for equation
(SKE) if and only if they hold for equation (4).

Proof. Let V be a solution to equation (SKE). Thanks to Lévy’s characterization theorem
of the Brownian motion, W is a standard Brownian motion. Then, by a change of variable
t = φ(s), one gets

Vφ(t) − Vφ(0) =

∫ t

0

√

φ′(s) dWs −
∫ t

0

F (Vφ(s))

φ(s)β
φ′(s) ds.

The integration by parts formula yields

d

(

Vφ(s)
√

φ′(s)

)

= dWs −
√

φ′(s)

φ(s)β
F (Vφ(s)) ds−

φ′′(s)

2φ′(s)

Vφ(s)
√

φ′(s)
ds.

From which follows (4). The proof of the second part is similar.

In the following, we will use two particular changes of time, depending on which term of
(4) should become time-homogeneous:

• exponential change of time: denoting φe : t 7→ t0e
t, the exponential scaling transforma-

tion is given by Φe(ω) : s ∈ R
+ 7→ ωt0es√

t0e
s/2

, for ω ∈ Ω. Set V (e) := Φe(V ). Thanks to

Proposition 3.1, the process (V (e))t≥0 satisfies the equation

dV (e)
s = dWs −

V
(e)
s

2
ds− t

1/2−β
0 e(

1/2−β)sF
(√

t0e
s/2V (e)

s

)

ds, (5)

where (Wt)t≥0 is a standard Brownian motion.

• power change of time: setting γ := 2β
α+1 > 1, consider φγ ∈ C2([0, t1)) the solution to the

Cauchy problem
φ′
γ = φγ

γ , φγ(0) = t0.

Clearly φγ(t) =
(

t1−γ
0 + (1 − γ)t

)1/(1−γ)
: the maximal time t1 satisfies (γ − 1)t1 = t1−γ

0

and the power scaling transformation is given by Φγ(ω) : s ∈ R
+ 7→ ω(φγ(s))

φγ(s)
γ/2

. The

process V (γ) := V (φγ ) satisfies the equation

dV (γ)
s = dWs − ρφ−αβ/(α+1)

γ (s)F
(√

φ′
γ(s)V

(γ)
s

)

ds− γφγ−1
γ (s)

V
(γ)
s

2
ds, (6)

where (Wt)t≥0 is a standard Brownian motion.

In the following we will study the existence and the behaviour of the solution to (SKE),
first under the homogeneity assumption (H1α) and then under the domination assumption
(H2α).
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3.1 Study under (H1α)

In the following we assume (H1α). Then the process V (γ) satisfies the equation

dV (γ)
s = dWs − F (V (γ)

s ) ds− γφγ−1
γ (s)

V
(γ)
s

2
ds, s ∈ [0, t1), (7)

which can be written, by using the expression of φγ , as

dV (γ)
s = dWs − F (V (γ)

s ) ds− δ
V

(γ)
s

t1 − s
ds, s ∈ [0, t1), (8)

where δ =
γ

2(γ − 1)
. Proposition 3.2, p. 188, in [7] can be stated in the present situation:

Proposition 3.2. For α > −1, there exists a pathwise unique strong solution to (SKE),
defined up to the explosion time.

Proof. We sketch the proof in our context. Note that, since α > −1, x 7→ |x|α is locally
integrable. Leaving out the third term on the right-hand side of (7), one gets

dHs = dWs − F (Hs) ds, s ∈ [0, t1). (9)

By using Proposition 2.2, p. 28, in [4], there exists a unique weak solution H to the time-
homogeneous equation (9) defined up to the explosion time. Moreover, the Girsanov trans-
formation induces a linear bijection between weak solutions defined up to the explosion time
to equations (7) and (9). It follows that there exists a unique weak solution V (γ) to equation
(7). Therefore, by using Proposition 3.1, there exists a unique weak solution V to equation
(SKE). Besides, by using Corollary 3.4 and Proposition 3.2, pp. 389-390, in [11], pathwise
uniqueness holds for the equation (SKE). The conclusion follows from Theorem 1.7, p. 368,
in [11].

Remark 3.3. When α = 1, drift and diffusion are Lipschitz and satisfy locally linear growth.
The existence and non-explosion of V follow from Theorem 2.9, p. 289, in [9].

Proposition 3.4.

• When α ≤ 1 or (F (−1), F (1)) ∈ R
− × R

+, the explosion time of V is a.s. infinite.

• Else, i.e. if α > 1 and (F (−1), F (1)) ∈ (R∗
+ × R+) ∪ (R × R−), P(τ∞ = ∞) ∈ (0, 1),

where τ∞ denotes the explosion time of V .

Proof. We split the proof in several steps.
Step 1. Assume first that α ≤ 1 or (F (−1), F (1)) ∈ R

− × R
+. We will use Theorem

10.2.1, p. 254, in [12]. Call Lt the time-inhomogeneous infinitesimal generator of V , given by

Lt :=
1

2

∂2

∂x2
− F (x)

tβ
∂

∂x
. (10)

Let ϕ be a twice continuous differentiable positive function such that ϕ(x) = 1 + x2 for all
|x| ≥ 1, ϕ(x) = 1 for all |x| ≤ 1

2 and ϕ ≥ 1. Note that ϕ does not depend on time. Hence
(

∂t + Lt

)

ϕ = Ltϕ.
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Let T ≥ t0 and call cT the supremum of Ltϕ on [t0, T ] × [−1, 1]. Then, for all |x| ≤ 1 and
t ∈ [t0, T ],

Ltϕ(x) ≤ cT ≤ cTϕ(x).

Moreover, for all |x| > 1 and t ∈ [t0, T ], for C a positive constant,

Ltϕ(x) = −2x
F (x)

tβ
+ 1 ≤

{

1 ≤ ϕ(x), if (F (−1), F (1)) ∈ R
− × R

+,

2max(|F (1)| , |F (−1)|)x2 + 1 ≤ Cϕ(x), if α ≤ 1.

So, by using Theorem 10.2.1, p. 254, in [12], we deduce that τ∞ is infinite a.s.
Step 2. Assume now the contrary, that is α > 1 and (F (−1), F (1)) ∈

(

R
∗
+×R+

)

∪
(

R×R−

)

.
We follow the ideas of the proof of Proposition 3.7, pp. 191-192, in [7]. We first show that
P(τ∞ = ∞) > 0. Let V (γ) be the pathwise unique strong solution to equation (8). Also denote
by b, the δ-Brownian bridge, the pathwise unique strong solution to equation

dbs = dWs − δ
bs

t1 − s
ds, b0 = x0, s ∈ [0, t1). (11)

Note that the equation (11) is obtained from (8) by omitting the second term on the right-

hand side. Denote by τ
(γ)
∞ the explosion time of V (γ), clearly, τ

(γ)
∞ ∈ [0, t1] ∪ {∞} a.s. and

{τ (γ)∞ ≥ t1} = {τ∞ = ∞}. Note that b becomes continuous on [0, t1], with bt1 = 0 a.s.
Fix n ≥ 1, for all s ∈ [0, t1], define

Tn := inf
{

s ∈ [0, t1),
∣

∣

∣
V (γ)
s

∣

∣

∣
≥ n

}

, σn := inf{s ∈ [0, t1], |bs| ≥ n},

and

E(s) := exp

(
∫ s

0
−F (bu) dWu −

1

2

∫ s

0
F (bu)

2 du

)

.

Then, one has, since α ≥ 0,

E

[

exp

(

1

2

∫ s∧σn

0
F (bu)

2 du

)]

≤ E

[

exp

(

1

2

∫ s∧σn

0
n2α max(F (1)2, F (−1)2) du

)]

≤ exp

(

t1
2
n2α max(F (1)2, F (−1)2)

)

,

so Novikov’s condition applies to (Es∧σn)s≥0. By using the Girsanov transformation between
b and V (γ), we can write for every integer n ≥ 1, s ∈ [0, t1] and A ∈ Fs,

E

[

1A

(

V
(γ)
•∧Tn

)

1Tn>s

]

= E
[

1A (b•∧σn) E(s ∧ σn)1σn>s

]

.

Letting n → ∞, we obtain by the dominated convergence theorem and Fatou’s lemma,

E

[

1A

(

V (γ)
)

1
τ
(γ)
∞ >s

]

≥ E [1A (b) E(s)] .

Hence, P(τ∞ = ∞) = P(τ
(γ)
∞ ≥ t1) ≥ E[E(t1)] > 0.

Step 3. We will show that P(τ∞ = ∞) < 1 when F (1) > 0 and F (−1) > 0. Our strategy
is to apply Theorem 10.2.1, p. 254, in [12]. Let T > t0 and choose a ∈ (1, α). Also, one can
choose k ≥ 1 such that a(a−1)−1 < k(T−t0). Introduce the continuous differentiable negative
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function f1 : x 7→ −1/2

1 + |x|a , and, for µ > 0, the bounded twice continuous differentiable

function

G1,µ(x) = exp

(

µ

∫ x

−∞
f1(y) dy

)

, x ∈ R.

For all t ∈ [t0, T ] and x ∈ R,

(

∂t + Lt

)

G1,µ(x) = LtG1,µ(x) = µG1,µ(x)

[

F (x)t−β |f1(x)|+
1

2
f ′
1(x) +

µ

2
f2
1 (x)

]

≥ µG1,µ(x)

[

F (x)T−β |f1(x)|+
1

2
f ′
1(x) +

µ

2
f2
1 (x)

]

.

Since |f1(x)| ∼
|x|→∞

1
2 |x|

−a, lim
|x|→∞

F (x) |f1(x)| = +∞, and using that lim
|x|→∞

f ′
1(x) = 0, there

exists r ≥ 1 such that, for all µ > 0,

(

∂t + Lt

)

G1,µ(x) ≥ µG1,µ(x)

[

F (x)T−β |f1(x)|+
1

2
f ′
1(x)

]

≥ kµG1,µ(x) on [t0, T ]× [−r, r]c.

Moreover, since f2
1 is bounded away from zero, while |f ′

1| is bounded on [−r, r], there exists
µ0, such that, since F is non-negative,

(

∂t + Lt

)

G1,µ0(x) ≥ µ0G1,µ0(x)

[

1

2
f ′
1(x) +

µ0

2
f2
1 (x)

]

≥ kµ0G1,µ0(x) on [t0, T ]× [−r, r].

Hence, for all t ∈ [t0, T ] and x ∈ R,
(

∂t +Lt

)

G1,µ0(x) ≥ kµ0G1,µ0(x). Besides, since |f1(x)| ≤
1 ∧ |x|−a,

∫ x0

−∞

(

− f1(x)
)

dx ≤
∫

R

(

1 ∧ |x|−a ) dx = a(a− 1)−1 < k(T − t0).

Thus, G1,µ0(x0) > e−kµ0(T−t0) ≥ e−kµ0(T−t0) supx∈RG1,µ0(x). Therefore, Theorem 10.2.1, p.
254, in [12] applies and V explodes in finite time with positive probability.

When F (−1) < 0 and F (1) < 0, one can work in the same way, using instead G1,µ the

function x 7→ exp
(

µ
∫ +∞
x f1(y) dy

)

, in order to get that P(τ∞ = ∞) < 1.

Step 4. It remains to show that P(τ∞ = ∞) < 1 when F (1) < 0 and F (−1) > 0. As in
the previous step, we choose a ∈ (1, α) and for any T > t0, one can choose again k ≥ 1 such
that a(a−1)−1 < k(T−t0). Moreover, one can see that there exists a continuous differentiable
odd function f2, defined on R, vanishing only at x = 0, such that |f2(x)| ≤ 1 ∧ |x|−a, and

f2(x) := kx, x ∈
[

− 1

2k
,
1

2k

]

, lim
|x|→∞

|x|α |f2(x)| = ∞ and lim
|x|→∞

f ′
2(x) = 0.

For µ > 0, we introduce the bounded twice continuous differentiable function

G2,µ(x) := exp

(

µ

∫ x

0
f2(y) dy

)

, x ∈ R.

Note that for all x ∈ R and t ∈ [t0, T ],

(

∂t + Lt

)

G2,µ(x) = LtG2,µ(x) = µG2,µ(x)

[ |F (x)f2(x)|
tβ

+
1

2
f ′
2(x) +

µ

2
f2
2 (x)

]

≥ µG2,µ(x)

[

ρ
|x|α |f2(x)|

tβ
+

1

2
f ′
2(x) +

µ

2
f2
2 (x)

]

,

7



where ρ = min
{

|F (1)| , |F (−1)|
}

> 0. One can conclude, using the same argument as in the
proof of Proposition 3.7, p. 13, in [7].

3.2 Study under (H2α)

We assume now (H2α). Since, the equation (6) doesn’t have any time-homogeneous term, the
previous method cannot be used to conclude to the existence up to explosion. Instead, one
will use the exponential change of time process to get

Proposition 3.5. If α ≥ 0, there exists a pathwise unique strong solution to (SKE), defined
up to the explosion time.

Proof. The proof is identical to that of Proposition 3.2, by considering V (e) instead of V (γ).

Proposition 3.6.

• When α ≤ 1 or (F (−1), F (1)) ∈ R
− × R

+, the explosion time of V is a.s. infinite.

• Else, i.e. α > 1 and (F (−1), F (1)) ∈
(

R
∗
+ × R+

)

∪
(

R × R−

)

, P(τ∞ = ∞) > 0, where
τ∞ denotes the explosion time of V .

Proof. The proof is identical to that of Proposition 3.4 by considering G instead of |F |.

4 Asymptotic behaviour of the solution

Let observe the SDE (5) satisfied by V (e): leaving out the last term, it yields the equation of
the Ornstein-Ulhenbeck process:

dUs = dWs −
Us

2
ds.

Proof of Theorem 2.2. Step 1. Firstly, for all t ≥ 0,

X
(e)
t :=

∫ t

0
V (e)
s ds =

∫ t0et

t0

Vu

u3/2
du

IBP
=

Xt0et

t
3/2
0 e3t/2

− Xt0

t
3/2
0

+
3

2

∫ t0et

t0

Xs

s5/2
ds

= Xt0ett
−3/2
0 e

−3t/2 −Xt0t
−3/2
0 +

3

2

∫ t

0
Xt0eut

−3/2
0 e

−3u/2 du. (12)

The behaviour of the third term on the right-hand side is unknown. However, by setting

G : t 7→
∫ t

0
Xt0eut

−3/2
0 e−3u/2 du, (12) may be written as

G′(t) +
3

2
G(t) = X

(e)
t +Xt0t

−3/2
0 , G(0) = 0.

This ODE can be solved :

G : t 7→e
−3t/2

∫ t

0

(

X(e)
s +Xt0t

−3/2
0

)

e
3s/2 ds = e

−3t/2

∫ t

0
X(e)

s e
3s/2 ds+

2

3
Xt0t

−3/2
0 (1− e

−3t/2).
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Hence, using the two equalities of G′, one obtains that, for all t ≥ 0,

Xt0ett
−3/2
0 e

−3t/2 = X
(e)
t − 3

2
e
−3t/2

∫ t

0
X(e)

s e
3s/2 ds+Xt0t

−3/2
0 e

−3t/2.

Step 2. We now study the second term on the right-hand side. Since for u ≥ 0, X
(e)
u =∫ u

0
V

(e)
s ds, by Itô’s formula one gets,

3

2
e
−3t/2

∫ t

0
X(e)

u e
3u/2 du = X

(e)
t − e

−3t/2

∫ t

0
V (e)
s e

3s/2 ds.

Replacing in the preceding equality,

Xt0ett
−3/2
0 e

−3t/2 = Xt0t
−3/2
0 e

−3t/2 + e
−3t/2

∫ t

0
V (e)
s e

3s/2 ds. (13)

Moreover, applying again Itô’s formula,

V
(e)
t e

3t/2 = V
(e)
0 +

3

2

∫ t

0
V (e)
s e

3s/2 ds+

∫ t

0
e
3s/2 dV (e)

s

= V
(e)
0 +

∫ t

0
V (e)
s e

3s/2 ds+

∫ t

0
e
3s/2 dWs −

∫ t

0
e
3s/2t

1/2−β
0 e(

1/2−β)sF (
√
t0e

s/2V (e)
s ) ds.

Hence,

Xt0ett
−3/2
0 e

−3t/2 = e
−3t/2(Xt0t

−3/2
0 − V

(e)
0 ) + V

(e)
t −

∫ t

0
e
−3(t−s)/2 dWs

+ t
1/2−β
0

∫ t

0
e
−3(t−s)/2e(

1/2−β)sF (
√
t0e

s/2V (e)
s ) ds.

One can express V (e) with the help of Itô’s formula again:

V
(e)
t = V

(e)
0 e

−t/2 +

∫ t

0
e
−(t−s)/2 dWs −

∫ t

0
e
−(t−s)/2t

1/2−β
0 e(

1/2−β)sF (
√
t0e

s/2V (e)
s ) ds. (14)

Hence, it becomes

Xt0ett
−3/2
0 e

−3t/2 = e
−3t/2(Xt0t

−3/2
0 − V

(e)
0 ) + V

(e)
0 e

−t/2 +

∫ t

0

[

e−
(t−s)

2 − e−
3(t−s)

2

]

dWs

− t
1/2−β
0

∫ t

0

[

e−
(t−s)

2 − e−
3(t−s)

2

]

e(
1/2−β)sF (

√
t0e

s/2V (e)
s ) ds.

It follows that, for all u ≥ t0, and ε > 0,

ε
3/2Xu/ε = ε

3/2(Xt0−V
(e)
0 t

3/2
0 )+V

(e)
0

√
t0εu+u

3/2

∫ ln(u/t0ε)

0

[

e−
(ln(u/t0ε)−s)

2 − e−
3(ln(u/t0ε)−s)

2

]

dWs

− u
3/2t

1/2−β
0

∫ ln(u/t0ε)

0

[

e−
(ln(u/t0ε)−s)

2 − e−
3(ln(u/t0ε)−s)

2

]

e(
1/2−β)sF (

√
t0e

s/2V (e)
s ) ds. (15)
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Set, for t ≥ 0, the continuous local martingale, vanishing at 0,

Mt :=
∫ t

0

(

e
3t/2e

−(t−s)/2 − e
3s/2
)

dWs.

The quadratic variation of (Mt)t≥0 is 〈M,M〉t = (et−1)3/3. Hence 〈M,M〉∞ = ∞, so by
the Dambis-Dubins-Schwarz theorem (Theorem 1.6, p. 181, in [11]), there exists a standard
Brownian motion (Bt)t≥0 such that Mt = B(et−1)3/3. Then one can write

ε
3/2Xu/ε = ε

3/2(Xt0 − V
(e)
0 t

3/2
0 ) + V

(e)
0

√
t0εu+ (t0ε)

3/2Mln(u/t0ε)

− u
3/2t

1/2−β
0

∫ ln(u/t0ε)

0

[

e−
(ln(u/t0ε)−s)

2 − e−
3(ln(u/t0ε)−s)

2

]

e(
1/2−β)sF (

√
t0e

s/2Vs(e)) ds. (16)

Step 3. Letting ε → 0 in (16), the first two terms on the right-hand side converge to 0
a.s. and uniformly on compact sets, while the third term converges to 0 a.s. uniformly on
compact sets, by the dominated convergence theorem. We fix T ≥ t0.
For all s ≥ 0,

sup
u∈[t0,T ]

∣

∣

∣
1[0,ln(u/t0ε)]u

3/2t
1/2−β
0

[

e−
(ln(u/t0ε)−s)

2 − e−
3(ln(u/t0ε)−s)

2

]

e(
1/2−β)sF (

√
t0e

s/2V (e)
s )

∣

∣

∣

≤ 1R+(s)t
1/2−β
0

[

T
√
εt0e

s/2 + (t0ε)
3/2e

3s/2
]

e(
1/2−β)sF (

√
t0e

s/2V (e)
s ) −→

ε→0
0 a.s.

For all ε > 0 and s ≥ 0,

sup
u∈[t0,T ]

∣

∣

∣
1[0,ln(u/t0ε)]u

3/2t
1/2−β
0

[

e−
(ln(u/t0ε)−s)

2 − e−
3(ln(u/t0ε)−s)

2

]

e(
1/2−β)sF (

√
t0e

s/2V (e)
s )

∣

∣

∣

≤























2T 3/2t
(α+1)/2−β
0 e(

α+1
2

−β)s(2 ln(s))α/2

∣

∣

∣

∣

∣

F

(

V
(e)
s

√

2 ln(s)

)
∣

∣

∣

∣

∣

1R+(s) under (H1α),

2T 3/2t
(α+1)/2−β
0 e(

(α+1)
2

−β)s(2 ln(s))α/2G

(

V
(e)
s

√

2 ln(s)

)

1R+(s) under (H2α).

Recall that α ≥ 0, then F is a continuous function on R. Thus, thanks to Remark A.3,
∣

∣

∣
F
(

V
(e)
s√
2 ln(s)

)
∣

∣

∣
is bounded for s large enough. Using the continuity of G, the same argument

applies under (H2α).
Finally, we obtain

ε
3/2Xu/ε = Y ε,t0

u + (t0ε)
3/2B( u

t0ε
−1)3/3

d
= Y ε,t0

u + B(u−t0ε)
3/3.

where supu∈[t0,T ] Y
ε,t0
u −→

ε→0
0 almost surely, for all T ≥ t0. Thus, as ε → 0,

d
(

ε
3/2Xu/ε, (t0ε)

3/2B( u
t0ε

−1)3/3

)

P−→ 0,

where

d : f, g ∈ C([t0,+∞)) 7→
+∞
∑

n=1

1

2n
min

(

1, sup
[t0,n]

|f(t)− g(t)|
)

is a metric on C([t0,+∞)).
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Indeed, fix a > 0 and choose N > 0 such that
∑+∞

n=N+1
1
2n ≤ a

2 , then,

d
(

ε
3/2Xu/ε, (t0ε)

3/2B( u
t0ε

−1)3/3

)

≤ a

2
+

N
∑

n=1

1

2n
sup
[t0,n]

∣

∣Y ǫ,t0
u

∣

∣ .

It follows that

P

(

d
(

ε
3/2Xu/ε, (t0ε)

3/2B( u
t0ε

−1)3/3

)

> a
)

≤
N
∑

n=1

P

(

sup
[t0,n]

∣

∣Y ǫ,t0
u

∣

∣ > a′

)

−→
ǫ→0

0,

where a′ = a(
∑+∞

n≥N
1/2n)−1. The proof will be complete by applying Theorem 3.1, p. 27, in

[1].

Appendix

We collect in this section some technical results. First, we discuss results of existence, explosion
and behaviour of some time-homogeneous processes V + and V −. For α > −1, let π be a non-
negative function satisfying

∀x ∈ R, λ > 0, π(λx) = λαπ(x).

Recall that π satisfies (2). Under (H1α) we take π = |F | and under (H2α), we take π = G.
Define the pathwise unique strong solution (up to the explosion time) to the time-homogeneous

equation

dV ±
s = dWs −

V ±
s

2
ds± t

α+1
2

−β

0 π(V ±
s )1{±F (V ±

s )<0} ds. (17)

Lemma A.1. Set τ±∞, τ∞, respectively the explosion time of V ± and V .

(i) If α ≤ 1 or F (1) ≥ 0, then τ+∞ = ∞ a.s.

(ii) If α ≤ 1 or F (−1) ≤ 0, then τ−∞ = ∞ a.s.

(iii) If α > 1 and F (1) < 0, then P(τ+∞ = ∞) = 0.

(iv) If α > 1 and F (−1) > 0, then P(τ−∞ = ∞) = 0.

Proof. Step 1. Firstly let us prove that V − ≤ V (e) ≤ V + almost surely. Indeed, if we denote

b(t, x) = −x

2
− t

1/2−β
0 e(

1/2−β)tF (
√
t0e

t/2x) and b+(x) = −x

2
+ t

(α+1)/2−β
0 π(x)1{F (x)≤0},

we can write, for all t ≥ 0 and all x ∈ R,

b(t, x) ≤ b+(x) ⇐⇒ −e(1/2−β)tF (
√
t0e

t/2x) ≤ t
α
2
0 π(x)1{F (x)≤0}.

This inequality holds true by the choice of π and the assumption (α+1)/2 − β < 0. By using a
comparison theorem (see Theorem 1.1, Chap. VI p.437, in [8]) one gets, V (e) ≤ V +, almost
surely. The other inequality can be obtained in the same way.
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Step 2. Call τ
(e)
∞ the explosion time of V (e), then {τ (e)∞ = ∞} = {τ∞ = ∞}. So,

{τ−∞ = ∞} ∩ {τ+∞ = ∞} ⊂ {τ∞ = ∞}.
We give the detailed proof for (i) and (iii), the other parts could be obtained by changing "+"
and "−" in the reasoning. First, we prove (i). The scale function of V + is given, for x ∈ R, by

p+(x) :=

∫ x

0
exp

(

y2

2
− 2t

(α+1)
2

−β

0

∫ y

0
π(z)1{F (z)≤0} dz

)

dy.

Note that, if x < 0, −p+(x) ≥
∫ 0

x
e
y2/2 dy. Thus p+(−∞) = −∞. Suppose that F (1) ≥ 0,

then for x ≥ 0, p+(x) =
∫ x

0
e
y2/2 dy, so p+(∞) = ∞. By Proposition 5.22, p. 345, in

[9], the conclusion follows. Assume now that α < 1 and F (1) < 0. Then, for x ≥ 0,

p+(x) =
∫ x

0
exp

(y2

2
− 2t

α+1
2

−β
0 π(1)

yα+1

α + 1

)

dy, so p+(∞) = ∞. Using the same result in [9],

the conclusion follows. If α = 1, the drift has linear growth and the conclusion is clear.
Step 3. We proceed with the proof of (iii). Assume α > 1 and F (1) < 0. As previously,

p+(−∞) = −∞. Besides, p+(∞) < ∞. Denote m+ : y 7→ 2/(p+)′(y) the speed measure of

V +. Fix y > 0, then, setting c = 2t
α+1
2

−β

0 π(1) > 0, one can apply integration by parts to get:

(

p+(∞)− p+(y)
)

m+(y) =2 exp

(

−y2

2
+ c

yα+1

α+ 1

)
∫ +∞

y
exp

(

z2

2
− c

zα+1

α+ 1

)

dz

=
2

cyα − y
+ 2exp

(

−y2

2
+ c

yα+1

α+ 1

)
∫ ∞

y
e

z2

2
−c

zα+1

α+1
1− cαzα−1

(z − czα)2
dz.

One can deduce, by integrating small o, that

(

p+(∞)− p+(y)
)

m+(y) ∼
y→∞

2

cyα − y

which is an integrable function at ∞. The conclusion follows from Theorem 5.29, p. 348, in
[9].

We turn now to the study of the growth rate of the velocity process V (e).

Lemma A.2. When α < 1 or (F (−1), F (1)) ∈ R
− × R

+,

lim sup
t→∞

V +
t

√

2 ln(t)
≤ 1 a.s., and lim sup

t→∞

−V −
t

√

2 ln(t)
≤ 1 a.s. (18)

Moreover,

lim sup
t→∞

∣

∣

∣
V

(e)
t

∣

∣

∣

√

2 ln(t)
≤ 1 a.s. (19)

Remark A.3. As a consequence of (19), when α < 1 or (F (−1), F (1)) ∈ R
− × R

+, for t

large enough,
∣

∣

∣
V

(e)
t

∣

∣

∣
≤ C

√

2 ln(t) for some positive constant C.

Proof. Assuming (18), one gets (19) writting

lim sup
t→∞

V
(e)
t

√

2 ln(t)
≤ lim sup

t→∞

V +
t

√

2 ln(t)
≤ 1 a.s. and lim sup

t→∞

−V
(e)
t

√

2 ln(t)
≤ lim sup

t→∞

−V −
t

√

2 ln(t)
≤ 1 a.s.

Before, proving (18) let us state Motoo’s theorem which proof is given in [10].
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Theorem A.4 (Motoo). Let X be a regular continuous strong Markov process in (a,∞),
a ∈ [−∞,∞). Assume also that X is time-homogeneous, with scale function s. For every real
positive increasing function h,

P

(

lim sup
t→∞

Xt

h(t)
≥ 1

)

= 0 or 1 according to whether

∫ ∞ dt

s(h(t))
< ∞ or = ∞.

Motoo’s theorem yields for all ε > 0,

P

(

lim sup
t→∞

V +
t

√

2 ln(t)
≥ 1 + ε

)

= 0 and P

(

lim sup
t→∞

−V −
t

√

2 ln(t)
≥ 1 + ε

)

= 0.

Indeed, define Ṽ − := −V −, then

dṼs
−
= − dWs −

Ṽs
−

2
ds+ t

(α+1)/2−β
0 π(−Ṽs

−
)1

{F (−Ṽs
−
)>0}

ds.

Fix y0 > 0. The scale function of V + and Ṽ − is given, for y ≥ y0, by

s±(y) = κ
∫ y

y0
exp

(z2

2
− 2C± zα+1

α+ 1

)

dz.

Here and elsewhere κ denotes positive constants which can change of value from line to line,
and

C+ := t
α+1
2

−β

0 π(1)1{F (1)<0} for V + and C− := t
α+1
2

−β

0 π(−1)1{F (−1)>0} for Ṽ −.

Let ǫ > 0. Define the positive increasing function h : t 7→ (1 + ǫ)
√

2 ln(t). We will show that
1/s(h) is integrable at infinity. Firstly, remark that

∫ +∞

y0

1

s(h(t))
dt =

∫ +∞

h(y0)

1

s(y)

dy

h′(h−1(y))
=

∫ +∞

h(y0)

1

s(y)

y exp
(

y2/
(

2(1+ǫ)2
))

(1 + ε)2
dy.

It remains to find an equivalent of s at infinity. In the following "≍" means equality up to a
multiplicative positive constant. Fix y > y0, integrating by parts, one gets,

s(y) ≍
∫ y

y0

exp
(z2

2
− 2C± zα+1

α+ 1

)

(

z − 2C± zα
)

· 1

z − 2C± zα
dz

≍
exp

(y2

2 − 2C± yα+1

α+1

)

y − 2C± yα
− κ+

∫ y

y0

1− 2αC± zα−1

(z − 2C± zα)2
exp

(z2

2
− 2C± zα+1

α+ 1

)

dz.

Since α > −1, lim
y→∞

1− 2αC± yα−1

(y − 2C± yα)2
= 0, except when α = 1 and C± = 1

2 . Moreover the

function y 7→ exp
(

y2

2 − 2C± yα+1

α+1

)

is not integrable at infinity, when C± = 0, or α < 1, or

α = 1 and C± < 1
2 . In these cases one gets, by integration,

s(y) ∼
y→∞

κ
exp

(y2

2 − 2C± yα+1

α+1

)

y − 2C± yα
.
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Hence,

1

s(y)

y exp
( y2

2(1+ε)2

)

(1 + ε)2
∼

y→∞
κ
(

y2 − 2C± yα+1
)

exp
(

− y2

2

(

1− 1

(1 + ε2)

)

+ 2C± yα+1

α+ 1

)

.

which is integrable if C± = 0 or α < 1, or α = 1 and C± < 1
2 . One can conclude using

Motoo’s theorem.

Remark A.5. The preceding proof shows that the result of Lemma A.2 is still true for α = 1
and some condition depending on π(1) and π(−1) which ensure that C± < 1

2 . Consequently,
our main result is also true under the same condition.
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