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Abstract

Recently, benefiting from the advances of the deep con-
volution neural networks (CNNs), significant progress has
been made in the field of the face verification and face
recognition. Specially, the performance of the FaceNet
has overpassed the human level performance in terms of
the accuracy on the datasets “Labeled Faces in the Wild
(LFW)”and “Youtube Faces in the Wild (YTF)”. The triplet
loss used in the FaceNet has proved its effectiveness for face
verification. However, the number of the possible triplets
is explosive when using a large scale dataset to train the
model. In this paper, we propose a simple class-wise triplet
loss based on the intra/inter-class distance metric learning
which can largely reduce the number of the possible triplets
to be learned. However the simplification of the classic
triplet loss function has not degraded the performance of the
proposed approach. The experimental evaluations on the
most widely used benchmarks LFW and YTF show that the
model with the proposed class-wise simple triplet loss can
reach the state-of-the-art performance. And the visualiza-
tion of the distribution of the learned features based on the
MNIST dataset has also shown the effectiveness of the pro-
posed method to better separate the classes and make the
features more discriminative in comparison with the other
state-of-the-art loss function.

1. Introduction

The face verification and face recognition problems rep-
resent a sub-domain of the more general problem of visual
object recognition or classification. In recent years, thanks
to the great development of the deep CNNs the effective
and powerful high-level features have been learned which
can very well represent the images, and the state-of-the-art
of visual object classification and recognition has been sig-
nificantly improved [10, 24, 12, 7, 8]. Generally, the deep
CNNs mainly develops in the following three directions:

1) constructing deeper networks, such as the VGG net-
works [18] which has 19 layers, and the RsNet series [7, 8]
which has even more that 1000 layers; 2) constructing wider
networks, such as the Inception networks [24, 25] which
contain more than one branch by extending one layer with
several different convolution blocks or the maxpool module;
3) constructing the networks by fusing the two structures
from 1) and 2) such as the InceptionV4 [23] which fuses the
inception module into a very deep RsNet networks aiming
to take advantage of the depth and width of the networks.
Given the success of these networks obtained in the field of
the classification or recognition of the visual objects, these
powerful networks have also been applied to the face recog-
nition problem. With the very deep and wide CNNs, this is
first time that the accuracy of face verification/recognition
has overpassed the human-level performance, as evaluated
on some benchmarks such as LFW [9] and YTF [16]. Con-
sidering the good representation capacity of the Inception
networks and the residual learning framework making it
possible to train a deep networks without the problem of
vanishing gradient, in this work we propose to use a deep
networks based on the Inception-RsNet structure. Beside
the architecture of the networks, another important factor
for both general image classification and face verification
problem is the design of the loss function. The loss func-
tion not only controls the object of the optimization of the
deep networks but also affects their efficiency during the
training of the model. In the field of face recognition, the
state-of-the-art FaceNet proposes to use the triplet-loss as
the loss function to train a deep CNNs for establishing an
embedding space, in which the face images of the same
identity should be more close to the face images of the dif-
ferent persons. Ideally, the triplet loss would compare all
the possible pairs of the images in the dataset during the
training. This is unpractical since the number of the pos-
sible pairs will be explosive when the size of the dataset
increases. Thus a complicated sampling strategy was pro-
posed in [16], which only selects the hard or semi-hard sam-
ples to train the model. However even with the vast com-

4321



putation resources at Google, it took hundreds of hours to
train the model. Inspired by the center-loss in [27] and the
idea of Linear Discriminative Analysis (LDA), we propose
a simple class-wise triplet loss based on the intra/inter-class
distance metric learning to employ the idea of the triplet
loss on the level of classes instead of the individual samples.
The loss function that we have proposed in this work, aims
to decrease the distance of the samples to the center within
the same class and enlarge the distances to the centers of
inter-classes by enforcing a margin between intra-class and
inter-class distances. Specifically, we use the centers of the
classes, instead of the individual samples, as the possible
positives and negatives in the triplet pairs. Since the class-
wise loss function only considers the distance of a sample to
the intra- and inter-classes centers, the number of the triplets
used for training the model can be largely reduced, which
results in a decrease of the computation cost of the train-
ing processing. Our main contributions are summarized as
follows.

• We propose a simple class-wise triplet loss based on
intra/inter-class distance metric learning. The pro-
posed class-wise triplet loss aims to minimize the
intra-class distance of the features meanwhile maxi-
mize the inter-class distance. By using the centers in-
stead of the individual samples as the possible posi-
tives and negatives in the triplets, the class-wise triplet
loss can largely reduce the number of the triplets to be
learned which can consequently simplify the training
procedure.

• The visualization of the distributions of the features
learned by the different loss functions shows the ad-
vantage of the proposed approach which can better
separate the classes and make the data more discrimi-
native.

• The evaluations on the widely used benchmarks LFW
and YTF show the state-of-art performance of the pro-
posed class-wise loss function, even with a small train-
ing dataset the model can reach a comparable state-of-
art performance.

• The deep CNNs networks based on the Inception-
RsNet is proposed to implement the proposed loss
function.

In the following parts of this paper: in Section 2 we
review the related works in the area of face verifica-
tion/recognition; in Section 3 we conduct a preliminary
study based on the dataset MNIST to have an intuitive idea
and then elaborate the formulations of the proposed class-
wise triplet loss function based on intra/inter-loss metric
learning; Section 4 describes the deep CNNs networks used
in this work; and Section 5 presents the datasets used for the

training and the evaluations; finally in Section 6 and 7 we
present the experimental evaluations of our proposed model
and the conclusion, respectively.

2. Related Work
The face verification and recognition problem have al-

ways received the great interests of the researchers. Before
the deep learning, the classification methods for face recog-
nition are mainly based on the well-designed handcrafted
features extracted by the feature engineering. To make a
distinction from the deep neural architecture, these mod-
els are so called “shallow” models. In order to represent
the face image, many local descriptor have been proposed
for face recognition task, such as LBP, HOG, Gabor-LBP,
SIFT [4, 28, 19, 14]. Later, the Fisher Vector [17, 28] has
been proposed to employ a fusion mechanism to integrate
the different features into an overall face descriptor. Re-
cently, face verification or recognition has achieved a series
breakthrough via the deep neural networks and especially
the deep CNNs architecture.

DeepFace [26] firstly introduced a siamese networks ar-
chitecture for the face verification problem. Siamese net-
works consists of two identical CNNs, in parallel, which
are fed by two images in the pair to be distinguished. Two
high-level features extracted from the two CNNs are em-
ployed as the descriptors of the images. A metric learning
based on the L2-norm distance of the two extracted features
is used to train the model, in which the model minimizes
the Euclidean distance of the images of the same identity
and maximizes the distance of the images from the different
person. Besides, a 3D to 2D alignment prep-processing is
applied to align the different poses of the face images. Thus,
in addition to a deep CNNs model, a 3D-based pose align-
ment model has also been adopted in DeepFace. Training
on a private dataset including 4 million examples of 4000
identities, DeepFace has achieved 97.35% on the LFW and
91.4% on the YTF.

DeepID [21, 20, 22] series continue the work of the
DeepFace. The significant feature of the DeepID series is
using more than 200 CNNs to form the so-called multi-scale
ConNets for face verification. However, DeepID [21] and
DeepID2 [20] still keep the structure of siamese architecture
using the Joint Bayesian [2] technique for face verification.
Unlike the DeepFace, DeepID use a simple 2D alignment
instead of the 3D alignment and DeepID was trained on the
public datasets. Benefiting from a very complicated struc-
ture, DeepID series have reached the state-of-the-art perfor-
mance (99.15% on LFW).

FaceNet [16] is proposed by the Google’s researchers
which still keeps the state-of-the-art results for face veri-
fication and recognition on the benchmarks LFW and YTF.
It proposes to use the triplet loss on the sampled triplet face
images including a pair of images from the same person and



an image from the different person. A distance metric learn-
ing was employed in the triplet-loss, which aims to make the
images from the same person closer than the ones from the
different person in terms of the Euclidean distance. Since it
is impossible to check all possible triplets in the dataset, the
FaceNet uses some strategies to limit the samples which are
so-called “hard samples” or “semi-hard samples”. It means
only the samples most-violating or second-most-violating
the optimization goal have been selected to train the model.
The triplet loss function is applied to train several different
deep CNNs based on Inception structure aiming to adapt
the model to the different use cases. Even with the sam-
pling strategies to limit the training samples, the training
cost is impressive (hundreds of hours for training) based on
their private massive datasets which has about 200 million
images spanning 8 million identities. For face verification
task, FaceNet achieved 99.63% (overpassing human-level
97.5%) on LFW and 95.12% on YTF.

VGG face [18] implements the triplet loss on the VGG
networks and trains the model on the datasets collected by
their proposed protocol with about 2.6 million images span-
ning 2622 celebrities. VGG face also received a state-of-
the-art result for face recognition.

In [27], the center loss joint with the cross entropy loss
of softmax is proposed to use for face recognition. Un-
like the triplet loss, the center loss tries to decrease the dis-
tances of the samples to their within-class centers to make
the data more discriminative. It does not need the sam-
ple strategy as used in the triplet loss. The model uses
a combination of the public datasets including CASIA-
WebFace [29], CACD2000 [1], Celebrity+ [13] to train their
deep CNNs networks and also achieved the state-of-the-art
performance.

3. Proposed Simple Triplet Loss
Triplet loss is proven to be very effective for face veri-

fication/recognition and also in the related domain such as
person re-identification [3]. By enforcing a margin between
the pairs of faces of the same identity and the ones of the
different identities, the triplet loss tries to keep the faces
of the same identity closer than the faces from the differ-
ent identities in the embedding space. This allows the faces
for one identity to live on a manifold while still enforcing
the distance and thus discriminating to other identities [16].
However, in order to describe the entire distribution of the
dataset the classic triplet loss should implement on all pos-
sible triplet pairs denoted by <anchor, positive, negative>,
in which anchor is an input sample, positive is an image
sample belonging to the same identity while the negative is
a sample from the different identity. In this way the number
of the possible triplet pairs will grow exponentially when a
large-scale dataset is provided.

A problem for applying the triplet loss is how to sample
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Figure 1: The proposed class-wise triplet loss enforces the
input sample (i.e. anchor) closer to the intra-class center
and further to the inter-class centers.

the triplet pairs efficiently. Inspired by the center loss and
Linear Discriminant Analysis (LDA), we would employ a
triplet loss idea on the level of the class rather than the in-
dividual sample by employing the centers of the classes to
represent the overall distribution the classes. Specifically,
we let the input sample closer to their within-class centers
but further to the centers of the other classes in embedding
space (see Figure 1). Since we use the centers of the classes
to represent the global distribution of the classes rather than
the individual samples, we only have k − 1 triplets for
each sample, namely<anchor, intra-class center, inter-class
center>, where k is the number of the classes. Thus the pro-
posed class-center based triplet loss can largely decrease
the number of the possible triplets for each input sample
comparing to the classic triplet loss method. For instance,
assuming a dataset with k classes and n samples in each
class, there are n(n − 1)k possible triplets for each sample
for the classic triplet loss method, while for the proposed
class-center based triplet loss we have only k − 1 triplets
(see Figure 2). The significant decrease of the number of
the triplets can consequently reduce the computation cost
for training the model.

3.1. Preliminary study on MNIST

Before we elaborate the formulations of the proposed
approach, we present an intuitive example based on the
MNIST dataset [11] to illustrate how the proposed class-
wise triplet loss to effect the distribution of the features
learned by a simple CNNs networks. Figure 3 shows the
simple CNNs networks with only 4 hidden layers applied
in the toy experiment. The proposed class-wise triplet loss
is calculated based on the bottleneck layer which is the last
hidden fully connected layer fc2. The last layer of the net-
works is the softmax layer which can help the networks con-
verge fast to make the features discriminable preliminarily.
In order to provide a more intuitive visualization of the dis-
tribution of the learned features, the 2D features are given
in the bottleneck layer for calculating the proposed triplet
loss. Table 1 shows the details of the networks. Since the



C1
C2

C3

anchor

C1

C3

anchor anchor

C2
C1

….

anchor anchor

anchor

Class-wise
Triplets

Figure 2: The class-wise triplets of the proposed method
and the triplets of the classic triplet loss method. Unlikely
the classic triplet loss method, the number of the class-wise
triplets only depends on the centers of the classes but in-
dependent with the samples within the classes, which can
largely decrease the number of the possible triplets to be
learned.

experiment is based on the MNIST, the output of the soft-
max has 10 classes. In the following illustration, we will use
10 colors to represent the 10 classes. The Stochastic Gradi-
ent Descent (SGD) was employed to optimize the gradients
based on the mini-batch with the learning rate 1e-4.

Meanwhile, the center loss focusing on the intra-class
distance metric and the softmax loss measuring the prob-
ability similarity of the classes have been also carried out
to compare with the class-wise triplet loss. Thus actually
three different models were trained in the toy experiment.
The frameworks of the three models are the same except the
configurations of the loss functions: the cross entropy loss is
served as the total loss of the softmax, while the center loss
and the class-wise triplet loss are joint with the softmax loss
as the total loss respectively. Figure 4 has shown the distri-
butions of the 2D features extracted by the models learned
with the three different metrics. Note that the models used
for extracting the features are trained in advance based on
the training dataset of the MNIST, and then the features of
the test dataset of the MNIST were extracted and their dis-
tributions are shown in the figure. From the Figure 4 we
can see that the softmax can only partly separate the fea-
tures where 5 classes of 10 are separated apparently by the
model trained after 40000 iterations. Comparing to the pure
softmax, the center loss joint with the softmax is much bet-
ter. Benefiting from the optimization of the intra-class dis-
tances to their centers, the learned features of the center loss
are much more centralized and discriminative. The major-
ity part of the classes, i.e. 7 classes in 10, have been well
separated. However the center loss only optimizes the intra-
class distance disregarding of the inter-class distance in the
loss function, and 3 classes (in the color of gray, brown and
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Figure 3: The simple CNNs networks for the toy example
based on the MNIST. The proposed class-wise triplet loss
is computed based on the bottleneck layer, i.e. the last hid-
den full connect layer. The last layer of the networks is the
softmax layer.

layer conv1 pool1 conv2 pool2 fc1 fc2
kernel 5*5 2*2 5*5 2*2 7*7 1024
filters 32 1 64 1 1024 2

Table 1: The simple CNNs networks applied in the toy
example. The 2D features are given by the fc2 layer for
computing the class-wise triplet loss. The rectified linear
unit is employed as the nonlinear activation function in the
networks.

olive) are still gathering together. By adding the measure-
ment of the inter-class distance to the centers of the other
classes, the proposed class-wise triplet loss has further sepa-
rated the classes that 8 classes in 10 have been separated ef-
fectively. In addition, by enforcing the margin between the
intra- and inter-class distance, the class-wise loss enables
the margins of the separated classes are indeed greater than
the center loss which can help to discriminate the learned
features. This point is also demonstrated in the evaluation
of the three models in terms of the accuracy of the classi-
fication (see Figure 5), in which we can see that the model
trained with the proposed class-wise triplet loss can con-
verge faster and obtain a slightly better result.

3.2. Simple class-wise triplet loss metric

In this section, we describe the proposed simple class-
wise triplet loss in detail. The basic idea of the triplet loss is
enforcing the input sample as an anchor being closer to the
positive (the sample within the class) than the negative (the
sample belonging to the other classes). While in this work,
the proposed class-wise triplet loss using the centers of the
classes as the possible positives or negatives instead of the
individual samples in the classic triplet loss. Thus the class-
wise triplet loss for a triplet <anchor, positive, negative>
can be described as:
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Figure 4: The distributions of the 2D features learned by
the different metrics based on the dataset MNIST. The rows
from top to bottom are corresponding to the distributions of
the features learned by the metrics of the softmax, center
loss and proposed class-wise triplet loss respectively. The
columns from left to right corresponding to the distributions
of the features extracted by the models trained in different
stages from 1 to 40000 iterations. In particularly the sub-
figure corresponding to the iteration 0 means the distribu-
tion of the input data, and the input data for the three dif-
ferent models are the same. The 10 classes in MNIST are
represented by 10 colors in the figures.

dinter ≥ dintra + β0 (1)

Where, dintra is the intra-class distance of an anchor to
its center within the class, dinter is the inter-class distance
of an anchor to the center of the other class, β0 is the margin
between the intra- and inter-class distances. Thus the class-
wise triplet loss lc of a triplet is given by:

lc = max(dintra + β0 − dinter, 0) (2)

For a given anchor xi ∈ Rd with all possible class-wise
triplets corresponding to k classes, the class-wise triplet loss
of xi is given by:

Lic =

k∑
l=1,l 6=yi

max(dyi,i + β0 − dl,i, 0) (3)

where Lic is the class-wise triplet loss of anchor xi, k is the
number of the classes, dyi,i is the distance of the anchor
xi to the center of the yith class corresponding to the xi,
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Figure 5: The accuracies of the classification of the models
trained with the three metrics of the softmax (blue), center
loss (green) and proposed class-wise triplet loss (red) based
on the dataset MNIST. The horizontal axis is the number of
the iterations for training the models.

i.e. the intra-class distance of xi, and dl,i is the inter-class
distance of the anchor xi to the center of the lth class.

Since the training of the deep networks is normally based
on the mini-batch, the class-wise triplet loss Lc of the mini-
batch with m samples is given by:

Lc =

m∑
i=1

Lic

=

m∑
i=1

k∑
l=1,l 6=yi

max(dyi,i + β0 − dl,i, 0)

= max(k

m∑
i=1

dyi,i +m(k − 1)β0 −
m∑
i=1

k∑
l=1

dl,i, 0)

= max(kDintra + β −Dψ, 0)

(4)

Where, Dintra is the sum of the intra-class distances of all
the samples in the mini-batch and Dψ is the sum of the dis-
tances of all the samples to the centers of the classes. Dintra

is given by:

Dintra =
1

2

m∑
i=1

‖xi − cyi‖
2
2 , xi, cyi ∈ Rd (5)

where the cyi is the center of yith class corresponding to the
deep feature xi. Dψ is given by:

Dψ =
1

2

m∑
i=1

k∑
l=1

‖xi − cl‖22 , xi, cl ∈ Rd (6)



In practice, the Dψ is weighted by θ in the proposed
class-wise loss function. So the class-wise triplet loss can
be degraded to the center loss when the β = 0 and θ = 0 .

Lc = max(kDintra + β − θDψ, 0) (7)

The updating of the centers of the classes can be calcu-
lated simply by averaging the features of the corresponding
class of the mini-batch. Nonetheless, this is inclined to have
large perturbations caused by the mislabeled samples in the
dataset. As proposed in [27], we use a weight γ to control
the learning rate of the updating:

ct+1
l = ctl − γ∆ctl (8)

where t is the number of the iterations, and ∆ctl is the varia-
tion of the centers during the updating, γ is the learning rate
for updating. The variation of the center ∆cl is given by:

∆ctl =

∑m
i=1 1{yi = l} · (clt − xi

t+1)∑m
i=1 1{yi = l}

(9)

where 1{·} is the indicator function, i.e.1{a true statement}
= 1, and 1{a false statement} = 0. In order to separate the
features rapidly, the cross-entropy loss function of the soft-
max is also jointed with the proposed loss function. For
a mini-batch having m features, the cross-entropy loss of
softmax with k classes is given by:

Ls = −
m∑
i=1

k∑
j=1

1{yi = j}log eW
T
j xi + byi∑k

l=1 e
WT

l xi + bl
(10)

Finally, the total loss function of this work is given by:

L = Ls + αLc (11)

where α is the weight used to trade off the class-wise triplet
loss and the softmax loss in the total loss.

Algorithm 1 shows the main procedure of the training
algorithm.

4. Deep Inception-ResNet Networks
In this section, we describe the deep CNNs that we

have used in this work. Overall the deep CNNs based on
the Inception-RsNet architecture has 32 layers in terms the
depth and 4 branches of the width. As mentioned before,
in order to take advantage of the depth and width of the
networks, the inception structure has been adopted. Mean-
while using the residual networks RsNet to avoid the prob-
lem of gradient vanish. Although the deep CNNs has more
than thirty layers, several simplification techniques are in-
troduced by the Inception module, such as using the 1x1
convolution to reduce the dimension of the convolutions,
and also factorizing the standard nxn convolution into 1xn

Algorithm 1: The class-wise triplet loss training algo-
rithm

Input : Training samples {Ii}, i.e. the input images
Output: The networks parameters {w}

1 while t ≤ T do
2 t← t+1
3 Calculate the features xi by forward propagation
4 Calculate the total loss L = Ls + αLc
5 Update the centers of the classes in the mini-batch:

ct+1
l = ctl − γ∆ctl

6 Calculate the ∂Ls

∂xi
, ∂Lc

∂xi
by back propagation

7 Update the parameters of the softmax (the output
layer) Wt+1 = Wt − λt ∂Ls

∂Wt

8 Update the parameters of the networks
wt+1 = wt − λt(∂Ls∂xi

· ∂xi

∂wt + ∂Lc
∂xi
· ∂xi

∂wt )

9 end

and nx1 modules which reduce the grid-size of the networks
while expands the filter banks to keep the representation ca-
pability [25, 23]. The total number of the parameter of the
networks is about 10 millions, which is 14 times fewer than
[30] having 140 millions parameters of standard convolu-
tion with 22 layers deep or 6 times fewer than AlexNet [10]
having 60 millions parameters with total 9 layers by using
the standard convolution. In practice, it spends only about
12 hours to train the networks on dataset CASIA-WebFace
with only one GPU (Nvidia TitanX). The architecture of the
deep Inception-RsNet CNNs used in this work is shown in
Figure 6.

5. Datasets

5.1. Datasets for training

Two public datasets of different scales are used sepa-
rately to train the model in this work.

CASIA-WebFace dataset is a public dataset which has
almost 0.5 million images of about 10 thousands identities.
It was one of the largest public dataset when it was intro-
duced. However comparing to the datasets used in Facenet
(200 millions) or the one used in DeepFace (SFC, 4 mil-
lions), even comparing to the other public datasets proposed
recently e.g MS-Celeb-1M [6], it is a relative small dataset
now. We mainly trained our model on the CASIA-WebFace.

MS-Celeb-1M dataset is a public dataset established by
MSR. MS-Celeb-1M is much more larger than CASIA-
WebFace which includes almost 10 millions web images
covering about 1 million celebrities. The images are col-
lected automatically by the search engine providing the
most approximate images of the given celebrities. We also
trained the model on MS-Celeb-1M to see the effect of the



Figure 6: The deep CNNs networks based on the Inception-
RsNet used in this work. The proposed class-wise loss is
calculated based on the bottleneck layer and the high-level
features are extracted from the bottleneck layer.

different scale of dataset. In this work we only use a subset
of the MS-Celeb-1M to train the model.

5.2. Datasets for evaluation

LFW dataset [9] is the most wildly used dataset for
evaluating the face verification algorithms. LFW contains

13,233 web-collected images from 5749 different identities,
with large variations in pose, expression and illuminations.

YTF dataset [28] is the only dataset consisting of videos.
It includes 3,425 videos of 1,595 different people, with an
average of 2.15 videos per person. The clip durations vary
from 48 frames to 6,070 frames, with an average length of
181.3 frames.

6. Experiments and results
6.1. Training configuration

The model has been mainly trained on the dataset
CASIA-WebFace with a relative small scale. In order to
verify the effectiveness of the class-wise triplet loss, we pro-
pose three configurations for training the model.

Configuration A In this configuration, the softmax loss
has been only included in the total loss function.

Configuration B Using the joint loss function of the cen-
ter loss and the softmax loss as the total loss function to train
the model.

Configuration C Using the joint loss function of pro-
posed class-wise triplet loss and the softmax loss to train
the model. In this configuration, we also trained a model on
the dataset MS-Celeb-1M to see how the different scales of
datasets will affect the model.

The networks of the different configurations are the same
except the different loss function used in the model.

6.2. Evaluation protocol and details

For both evaluation and training procedure, the faces
have been detected by the method described in [31], in
which a cascade multi-task CNNs framework has been em-
ployed to detect and align the faces in the images. The de-
tected face images are aligned to the 180x180 pixels images
and used for training the deep CNNs networks. Before in-
putting the detected face images into the networks, the pro-
cessing of the data augmentation has been applied to the
detected face images:

• Data filtering Since the noise in the dataset is prone to
degrade the performance of model, it is crucial to filter
the data before feeding it to the model for the training.
In particularly, the samples in the dataset MS-Celeb-
1M are collected automatically by the search engine
without any manual checking, thus the data filtering for
the MS-Celeb-1M is essential for the training. In this
work, the data filtering is based on the L2 distances be-
tween the image features and their corresponding cen-
ters. The p% percents image samples corresponding
to the extreme large distance will be filtered out from
the training dataset. In this work, the 5% samples with
the largest distance will be filtered for both datasets
MS-Celeb-1M and CASIA-WebFace. Note that a pre-



liminary trained model is provided for producing the
deep features of the images.

• Random crop In random crop processing, a specific
size of patch has been cropped randomly from the orig-
inal image aiming to augment the variety of the train-
ing samples. In this work, the 160x160 pixels image
patch has been randomly cropped from the 180x180
pixels detected face image.

• Random left-to-right flip. In random left-to-right flip
processing, the image patch has been randomly (i.e.
with 1/2 chance) flipped horizontally from left. This
can make the model more robust for the flipping im-
ages.

After the preprocessings for the data augmentation, the im-
age patches are fed to the model for training. Since the last
layer of the network is the softmax layer, the high-level fea-
tures learned from the deep networks have been extracted
from the second last full connection (FC) layer, i.e. the bot-
tleneck layer. Then the learned features follow a L2 nor-
malization to make ‖·‖ = 1, which maps the learned fea-
tures into the embedding space for the later face verifica-
tion or recognition tasks. For face verification, the distance
between the two embeddings has been compared. If the dis-
tance is larger than a known threshold we classify the two
face images as a negative pair which means the identities
of the two face images are different and vice versa. The
threshold is searched during the evaluation by the 10-folds
cross validation in this work.

The SGD and the mini-batches of 90 samples with stan-
dard back propagation [15] are used to train the deep CNNs
in this work. The momentum coefficient is set to 0.99 [11].
The learning rate is started from 0.1, and divided by 10 at
the 60K, 80K iterations respectively. The model is regular-
ized by using the dropout with the probability of 0.8 and
the weight decay of 5e-5. The weights of the filters in the
CNNs were initialized by Xavier [5]. Biases were initial-
ized to zero. The weight of the class-wise triplet loss α is
set to 1e-4, the margin β is set to 10, and the weight of the
inter-class distance θ in the class-wise triplet loss function
is set to 0.5.

6.3. Results

Table 2 shows the evaluation results on datasets LFW
and YTF. This evaluation aims to verify the effectiveness of
the proposed class-wise loss and also to compare with the
state-of-the-art performance.

Firstly, the results shown in the Table 2 prove the effec-
tiveness of our proposed class-wise loss function. Either on
LFW or YTF dataset, the performances of the configuration
A are inferior to the configuration B. It means the class-
wise loss function essentially works. Secondly, it shows

Method Images Nets LFW YTF.
Fisher Faces [17] - - 93.10 83.8
DeepFace [26] 4M 3 97.35 91.4
DeepID-2,3 [20, 22] - 200 99.47 93.2
FaceNet [16] 200M 1 99.63 95.1
VGGFace [18] 2.6M 1 98.95 91.6
Centerloss [27] 0.7M 1 99.28 94.9
A(softmax) 0.46M 1 96.00 89.20
B(softmax+centerloss) 0.46M 1 98.40 93.10
C(softmax+Lc) 0.46M 1 98.89 94.80
C*(softmax+Lc) 1.1M 1 99.40 95.00

Table 2: Evaluation results on the LFW and YTF datasets.
C* is the model of configuration C trained on the dataset
MS-Celeb-1M.

that even the model trained on a relative small dataset, it
can obtain a comparable state-of-art result, and when we en-
large the scale of the training dataset, the model can achieve
the state-of-art performance. Although the class-wise loss
function only evaluated for the face verification, it can be
also applied for the face recognition. Moreover, it can be
seen that enlarging the scale of the training dataset can help
to improve the performance.

7. Conclusion
In this work we have proposed a simple class-wise triplet

loss function aiming to decrease the distances between the
anchors and the intra-classes centers and enlarge the dis-
tances of the anchors to the inter-class centers. By using
the centers to instead of the individual samples as the pos-
itives and negatives, the number of the possible triplets to
be learned can be largely decreased which can effectively
simplify the training process. However the simplification
of the classic triplet loss hasn’t degraded the performance
of the proposed approach. Thanks to the optimization of
the intra/inter-class distance simultaneously, the class-wise
triplet loss can better separate the classes to make the fea-
tures more discriminative in compare with the state-of-art
center loss function. The preliminary experiment on the
MNIST and the evaluations on the widely used benchmarks
LFW and YTF prove the effectiveness of the proposed loss
function. Indeed, the center loss can be treated as a special
case of the class-wise triplet loss based on the intra/inter-
class metric learning, which has been proved in the formu-
lations of the class-wise triplet loss. In this work, the eval-
uation of the model only employed for the face verification
task, while the model can be also used for the face recogni-
tion task or even more general classification problems.
Acknowledgments: The authors gratefully acknowledge
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