
HAL Id: hal-02552673
https://hal.science/hal-02552673v1

Submitted on 23 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High performance SIMD modular arithmetic for
polynomial evaluation

Pierre Fortin, Ambroise Fleury, François Lemaire, Michael Monagan

To cite this version:
Pierre Fortin, Ambroise Fleury, François Lemaire, Michael Monagan. High performance SIMD mod-
ular arithmetic for polynomial evaluation. Concurrency and Computation: Practice and Experience,
2021, 33 (16), pp.e6270. �10.1002/cpe.6270�. �hal-02552673�

https://hal.science/hal-02552673v1
https://hal.archives-ouvertes.fr

High performance SIMD modular arithmetic

for polynomial evaluation

Pierre Fortinab, Ambroise Fleuryb, François Lemaireb, and Michael Monaganc

aSorbonne Université, CNRS, LIP6, Paris, France
bUniversité de Lille, CNRS, Centrale Lille, CRIStAL, Lille, France

cDepartment of Mathematics, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada

Emails: pierre.fortin@sorbonne-universite.fr, ambroise.fleury.etu@univ-lille.fr,
francois.lemaire@univ-lille.fr, mmonagan@cecm.sfu.ca

April 23, 2020

Abstract

Two essential problems in Computer Algebra, namely polynomial factorization and poly-
nomial greatest common divisor computation, can be efficiently solved thanks to multiple
polynomial evaluations in two variables using modular arithmetic. In this article, we focus
on the efficient computation of such polynomial evaluations on one single CPU core. We
first show how to leverage SIMD computing for modular arithmetic on AVX2 and AVX-512
units, using both intrinsics and OpenMP compiler directives. Then we manage to increase
the operational intensity and to exploit instruction-level parallelism in order to increase the
compute efficiency of these polynomial evaluations. All this results in the end to performance
gains up to about 5x on AVX2 and 10x on AVX-512.

Keywords: modular arithmetic; SIMD; polynomial evaluation; operational intensity;
instruction-level parallelism

1 Introduction

Computer Algebra, also called symbolic computation, consists of developing algorithms and data
structures for manipulating mathematical objects in an exact way. Multivariate polynomials
with rational coefficients are essential objects in Computer Algebra, and they naturally arise
in many applications (Mechanics, Biology, . . .), especially in non-linear problems. Among
the classical operations on multivariate polynomials (sum, product, quotient, . . .), two non
trivial operations are essential: polynomial factorization and polynomial gcd (greatest common
divisor) computation[1, 2, 3]. Those operations are necessary for solving polynomial systems
and simplifying quotients of multivariate polynomials.

Modern algorithms[4, 5] for factorization and gcd computation rely on many polynomial
evaluations, which dominate the overall computation cost. These polynomial evaluations have
two main features. First, these are partial evaluations in the sense that not all variables are
evaluated: given a polynomial with n variables, we evaluate n − 2 variables which results in a
polynomial with 2 variables. Second, the variables are evaluated at integers modulo a prime
p thus all integer arithmetic operations are performed modulo p. Computing modulo a 64

1

bit prime p makes it possible to use machine integers and native CPU operations, instead of
arbitrary-precision integers. Since these partial modular polynomial evaluations are currently
a performance bottleneck for polynomial factorizations and gcd computations, we aim in this
article to speed-up their computation on modern CPUs.

We focus here on one compute server since most symbolic computations are usually per-
formed on personal workstations. We distinguish three main techniques to obtain performance
gain on current CPU compute servers[6]:

• increasing the compute efficiency. This can be achieved by increasing the operational
intensity, i.e. the number of operations per byte of memory (DRAM) traffic, which helps
exploit modern HPC architectures whose off-chip memory bandwidth is often the most
performance constraining resource [7]. The compute efficiency can also be increased by
better filling the pipelined floating-point units with instruction-level parallelism;

• exploiting data-level parallelism on vector (or SIMD - single instruction, multiple data)
units. Such parallelism is increasingly important in the overall CPU performance since the
SIMD vector width has been constantly increasing from 64 bits (MMX[8] and 3DNow![9])
to 128 bits (SSE[10], AltiVec[11]), then to 256 bits (AVX and AVX2[12]), and recently to
512 bits (AVX-512[13]). For 64-bit integers, such AVX-512 SIMD units can now offer a 8x
speedup with respect to a scalar computation. But efficiently exploiting such parallelism
requires “regular” algorithms where the memory accesses and the computations are similar
among the lanes of the SIMD vector unit. Moreover, multiple programming paradigms can
be used for SIMD programming: intrinsics, compiler directives, automatic vectorization,
to name a few. For key applications, it is important to determine which programming
paradigm can offer the highest programming level (ease of programming and portability)
without sacrificing (too much) performance.

• exploiting thread-level parallelism on the multiple cores and on the multiple processors
available in a compute server. This can be achieved thanks to multi-process, multi-thread
or multi-task programming.

Thread-level parallelism has already been introduced for the partial modular polynomial
evaluation (see e.g. Hu and Monagan[5]). We will therefore focus here on single-core optimiza-
tions, namely increasing the compute efficiency and SIMD parallelism, and we present in this
article the following contributions.

• Multiple algorithms have been designed to efficiently compute modular multiplications
in a scalar mode. We first justify why the floating-point (FP) based algorithm with
FMA (fused multiply-add) of van der Hoeven et al.[14] is best suited for current HPC
architectures, especially regarding SIMD computing. We show that the optimized AVX
version implementation of van der Hoeven et al.[14] can safely be used in our polynomial
evaluation, and we then propose the first (to our knowledge) implementation of such
modular multiplication algorithm on AVX-512, as well as the corresponding FP-based
modular addition. With respect to the reference polynomial evaluation implementation of
Monagan and coworkers[4, 5], which relies on scalar integer-based algorithms for modular
operations, we detail the performance gains of our SIMD FP-based modular arithmetic
for modular operation microbenchmarks and for the polynomial evaluation.

• We carefully compare intrinsics and OpenMP compiler directives for programming SIMD
modular arithmetic and for their integration within the polynomial evaluation. We detail
the relevance, the advantages, the issues and the performance results of both programming
paradigms.

2

• We show how to significantly improve the performance of the modular polynomial evalua-
tion by increasing the operational intensity via data reuse, and by filling the pipelines of the
floating-point units. This is achieved thanks to the introduction of multiple “dependent”
and “independent” evaluations and loop unrolling. We also show that close-to-optimal
performance can be obtained without extra memory requirements.

In the rest of this article, we first introduce in Sect. 2 our partial polynomial evaluation.
Then we detail in Sect. 3 our integration of SIMD computing first in modular arithmetic, then
in the polynomial evaluation. Finally, we show how we can increase the compute efficiency of
our polynomial evaluation in Sect. 4.

2 Modular polynomial evaluation in two variables

2.1 Presentation

We are given a multivariate polynomial f ∈ Z[x1, . . . , xn] and we want to evaluate the variables
x3, . . . , xn in f at integers modulo a prime p. Let Fp denotes the finite field of integers modulo
a prime p. The prime p is chosen so that all integer arithmetic in Fp can be done with the
hardware arithmetic logic units of the underlying machine. For example, with a machine which
supports a 64 bit by 64 bit integer multiply, the application would use p < 264. We will pick
non-zero integers β3, β4, . . . , βn uniformly at random from Fp and compute a sequence of T
evaluations

bt(x1, x2) = f(x1, x2, β
t
3, β

t
4, . . . , β

t
n) for 1 ≤ t ≤ T.

The values bt are polynomials in Fp[x1, x2]. We call them bivariate images of f . For convenience
we will use the notation

β = (β3, β4, . . . , βn) ∈ Fn−2
p , and βt = (βt3, β

t
4, . . . , β

t
n) ∈ Fn−2

p ,

so that we may write bt(x1, x2) = f(x1, x2, β
t).

Before presenting two application examples of such computation, we first emphasize that
we evaluate here at powers of β, not at T different random points in Fn−2

p , since this enables
one to save computations. Indeed, when Zippel[15] introduced the first sparse polynomial
interpolation algorithm and used his algorithm to compute a gcd of two polynomials f and h in
Z[x1, . . . , xn], he used random evaluation points. To interpolate a polynomial with s terms his
method solves one or more s× s linear systems modulo p. Using Gaussian elimination this does
O(s3) arithmetic operations in Fp and requires space for O(s2) elements of Fp. Then Zippel[16]
showed that if powers βt are used for the evaluation points, the linear systems are transposed
Vandermonde systems which can be solved using only O(s2) operations in Fp and O(s) space.
In Sect. 2.3, we will see that using powers of β also reduces the polynomial evaluation cost.

Second, we also emphasize that we evaluate at βt for 1 ≤ t ≤ T , and not for 0 ≤ t < T , since
the evaluation point β0 = (1, 1, . . . , 1) may not be usable. For example, consider the following
gcd problem in Z[x1, x2, x3, x4]. Let

f = gc and h = gc+ gd where c = x1x2 + x3x4, d = x3 − x4 and g ∈ Z[x1, x2, x3, x4].

Since gcd(c, d) = 1 we have

gcd(f, h) = gcd(gc, gc+ gd) = gcd(gc, gd) = g gcd(c, d) = g.

3

But suppose we use β0 = (1, 1). Then since d(x1, x2, 1, 1) = 0 we have

gcd(f(x1, x2, β
0), h(x1, x2, β

0)) = g(x1, x2, 1, 1)c(x1, x2, 1, 1) = g(x1, x2, 1, 1)(x1x2 + 1).

We cannot interpolate g using this image. We say (1, 1) is an unlucky evaluation point. Such
unlucky evaluation points are avoided with high probability by picking β at random from Fn−2

p

and evaluating at βt for t starting at 1.

2.2 Application examples

Such bivariate images of f are needed in modern algorithms of Computer Algebra for factor-
ing polynomials with integer coefficients and for computing gcd of polynomials with integer
coefficients. Two examples are presented below.

2.2.1 Polynomial factorization

Regarding polynomial factorization[1, 2], Monagan and Tuncer[17, 4] reduce factorization of a
multivariate polynomial f in Z[x1, x2, . . . , xn] to (i) evaluating f(x1, x2, β

t) for 1 ≤ t ≤ T , (ii)
doing a computation with the bivariate images, and (iii) recovering the factors of f using sparse
interpolation techniques[15, 16, 18]. See Roche[19] for a recent discussion on sparse polynomial
interpolation methods and an extensive bibliography. If f =

∏r
i=1 fi is the factorization of f

over Z then usually the factors fi have a lot fewer terms than their product f . Furthermore,
because the method interpolates the coefficients of the factors fi from bivariate images in x1
and x2, the largest coefficient is likely to have a lot fewer terms than the factor fi. Because of
this, the evaluation step dominates the cost. The interpolation step, though more complicated,
is cheaper because the coefficients of the factors fi being interpolated have far fewer terms than
f which is being evaluated.

We wish to give an example to illustrate the numbers involved. We consider the factorization
of determinants of symmetric Toeplitz matrices[4]. The m’th symmetric Toeplitz matrix Tm is
an m×m matrix in m variables x0, x1, . . . , xm−1 where Tij = x|i−j|. For example

T4 =

x0 x1 x2 x3
x1 x0 x1 x2
x2 x1 x0 x1
x3 x2 x1 x0

 .
The problem is to factor the polynomial detTm. For m = 14, detTm has s = 5, 165, 957 terms.
It factors into two factors each with 34, 937 terms. The largest coefficient has u = 9, 705 terms.
Thus u, the size of the interpolation problem, is 532 times smaller than s, the size of the
evaluation problem.

2.2.2 Polynomial gcd

Given two polynomials f, h ∈ Z[x1, x2, . . . , xn], to compute g = gcd(f, h), the parallel algorithm
of Hu and Monagan[5, 20] works by computing bivariate images of g modulo a prime p, namely,

gt(x1, x2) = gcd(f(x1, x2, β
t), h(x1, x2, β

t)) for 1 ≤ t ≤ T.

It then uses sparse interpolation techniques to interpolate g from the images gt(x1, x2). Since g
is a factor of f and h, the number of terms in g is typically much fewer than the number in f
and h. Let us use the notation #f for the number of terms of a polynomial f . So for the gcd
problem, typically #g � max(#f,#h). Hu and Monagan[20] present a “benchmark” problem

4

where #f = 106, #h = 106, and #g = 104. If one interpolates g from univariate images then
the largest coefficient of g in x1 has 1108 terms. If instead, as the authors recommend, one
interpolates g from bivariate images, then the largest coefficient of g in x1 and x2 has only
u = 122 terms. So for this problem, u is almost 10,000 times smaller than max(#f,#h), the
size of the evaluation problem. Again, because of this, the authors found that the evaluations of
the input polynomials f and h completely dominate the cost of polynomial gcd computations.

Thus two very central problems in Computer Algebra, namely, polynomial factorization
and polynomial gcd computation are usually dominated by evaluations when there are many
variables.

2.3 The matrix method

Let p be a prime and let f ∈ Fp[x1, x2, . . . , xn]. We may write f as

f =
s∑

i=1

aix
di
1 x

ei
2 Mi(x3, . . . , xn) (1)

where ai ∈ Fp are non-zero, di and ei are non-negative integers and Mi is a monomial in
x3, . . . , xn. For β = (β3, β4, . . . , βn) ∈ Fn−2

p , we want to compute T partial evaluations

bt(x1, x2) = f(x1, x2, β
t) =

s∑
i=1

aix
di
1 x

ei
2 Mi(β

t) for 1 ≤ t ≤ T.

If we let mi = Mi(β3, . . . , βn) ∈ Fp and Mi(x3, . . . , xn) =
∏n

k=3 x
dik
k then we observe that

Mi(β
t) =

n∏
k=3

(βtk)dik =
∏
k=3

(βdikk)t = Mi(β)t = mt
i.

Thus

bt(x1, x2) = f(x1, x2, β
t) =

s∑
i=1

aix
di
1 x

ei
2 m

t
i.

Now we can present the “matrix method”[5] which relies on the powers of β to efficiently
compute the T bivariate images. First we compute the monomial evaluation mi by evaluating
Mi(β3, . . . , βn). To do this, let dk = deg(f, xk) and let d = maxn

k=3 dk. We pre-compute tables
of powers [

βik for 0 ≤ i ≤ dk
]

for 3 ≤ k ≤ n.

This takes at most (n− 2)(d− 1) multiplications. Then, for 1 ≤ i ≤ s we compute mi = Mi(β),
using n− 3 multiplications for each mi thanks to the tables of powers, and thus using (n− 3)s
multiplications in total. Therefore we can compute the mi with O(nd + ns) multiplications.
Computing

b1(x1, x2) = f(x1, x2, β) =

s∑
i=1

aimix
di
1 x

ei
2

needs 1 multiplication for each aimi ∈ Fp, hence s multiplications in total. We can compute
the next evaluation

b2(x1, x2) = f(x1, x2, β
2) =

s∑
i=1

aim
2
ix

di
1 x

ei
2

5

Algorithm 1 Compute kernel of the matrix method for T bivariate images of a polynomial f ∈
Fp[x1, x2, . . . , xn], using notations of Eq. (1). Inputs are the vector m = [M1(β), . . . ,Ms(β)] ∈
Fs
p of monomial evaluations and the coefficient vector a = [a1, . . . , as] ∈ Fs

p.

1: for each evaluation 1 ≤ t ≤ T do
2: i← 1; bt ← 0
3: while i ≤ s do
4: c← 0
5: J ← #monomials with same (di, ei)
6: for i ≤ j < i+ J do
7: a[j]← a[j] ⊗p m[j] . Hadamard product
8: c← c ⊕p a[j] . coefficient reduction
9: end for

10: if c 6= 0 then add cxdi1 x
ei
2 to bivariate image bt

11: i← i+ J
12: end while
13: end for

using another s multiplications if we save aimi ∈ Fp for 1 ≤ i ≤ s and multiply them by mi.
This leads to an algorithm that computes the T evaluations using O(nd+ns) multiplications to
compute the mi, plus a further sT multiplications to compute the aim

t
i for 1 ≤ t ≤ T, 1 ≤ i ≤ s,

hence O(nd + ns + sT) multiplications in total. With random points instead of powers of β,
the T evaluations would have required a larger operation count of O(nT (d+ s)) multiplications
in total[5].

One way to see the matrix method is to think of evaluating f at βt as the following t × s
matrix-vector multiplication.

m1 m2 . . . ms

m2
1 m2

2 . . . m2
s

...
...

...
...

mT
1 mT

2 . . . mT
s

a1x

d1
1 x

e1
2

a2x
d2
1 x

e2
2

...

asx
ds
1 x

es
2

 =

b1
b2
...
bT

In practice, the complete matrix is not explicitly built and we take advantage of the connection
between successive rows of the matrix. Let a = [a1, a2, . . . , as], m = [m1,m2, . . . ,ms] and
X = [xd11 x

e1
2 , x

d2
1 x

e2
2 , . . . , x

ds
1 x

es
2]. Let u◦v denote the Hadamard product of two vectors u, v ∈ Fs

p,
that is u ◦ v = [u1v1, u2v2, . . . , usvs] ∈ Fs

p. Then, viewing b1(x1, x2) and b2(x1, x2) as vectors of
terms, we have

b1(x1, x2) = (a ◦m) ◦X and b2(x1, x2) = ((a ◦m) ◦m) ◦X.

Finally, for a given t we will have to compute the sum ci,t of aim
t
i for all aim

t
ix

di
1 x

ei
2 sharing

the same di and ei values. This sum ci,t is indeed the coefficient of xdi1 x
ei
2 in bt(x1, x2). These

“coefficient reductions” are required since in Eq. (1), multiple Mi(x3, . . . , xn) can potentially
share the same di and ei values. If the monomials xdi1 x

ei
2 Mi(x3, . . . , xn) in the input polynomial

f are sorted in lexicographical order with x1 > x2 > x3 > · · · > xn then the monomials
xdi1 x

ei
2 will be sorted in X which makes adding up ci,t coefficients of like monomials in bt(x1, x2)

straightforward (with O(s) additions for each evaluation). Doing so, we compute f(x1, x2, β
t)

for 1 ≤ t ≤ T with O(nd+ ns+ sT) multiplications and O(sT) additions.
The resulting algorithm for the compute kernel of the matrix method is detailed in Algorithm

1, where we save the successive aim
t
i values in the a vector, and where ⊕p and ⊗p denote the

6

arithmetic operators modulo p (c = a⊗pb denoting c ≡ a× b (mod p), and d = a⊕pb denoting
d ≡ a+ b (mod p) with (a, b, c, d) ∈ F4

p).
In this article, we will use by default the following parameters when measuring the time

or performance of our partial modular polynomial evaluation with 64-bit integers: s = 5× 105

terms; n = 6 variables, hence 4 evaluated variables; a maximum degree of d = 10 in each variable;
and the number of evaluations T chosen here as 10000 to have a measurable computation time,
but T can be much lower in actual use. These parameters have been chosen to be realistic and
to lead to stable and reproducible performance results.

2.3.1 Multi-core parallel evaluation

Hu and Monagan[5] parallelized the matrix method for partial modular polynomial evalua-
tions on a multi-core architecture with N cores by doing N evaluations at a time. They
first compute Γ = [mN

1 ,m
N
2 , . . . ,m

N
s] using exponentiations by squaring, requiring O(s log2N)

multiplications. Then they compute Λk = a ◦ [mk
1,m

k
2, . . . ,m

k
s] for 1 ≤ k ≤ N using Ns

multiplications. Then, in parallel, the k’th core successively computes f(x1, x2, β
k+N) =

Λk ◦ Γ ◦X; f(x1, x2, β
k+2N) = Λk ◦ Γ ◦ Γ ◦X; f(x1, x2, β

k+3N) = Λk ◦ Γ ◦ Γ ◦ Γ ◦X; . . . using
Algorithm 1 (with each Λk as the a vector, and Γ as the m vector). This was implemented
with multi-task programming in Cilk[5]. This method significantly increases the space needed
as N vectors C1, C2, . . . , CN of length s are required where s can be very large. Monagan and
Tuncer[17] introduced an alternative parallelization strategy by using a 1D block decomposition
of the a and m vectors for each evaluation.

Finally, we mention the asymptotically fast method[21] for computing f(x1, x2, β
t). If p is

chosen of the form p − 1 = 2kq with 2k > T so that an FFT of order 2k can be done in the
finite field Fp, after computing the monomial evaluations m = [m1,m2, . . . ,ms], this method
computes f(x1, x2, β

t) for 1 ≤ t ≤ T in O(s log2 T) multiplications. Monagan and Wong[22]
found that a serial implementation of this fast method first beat the matrix method at T = 504
but that it was much more difficult to parallelize than the matrix method – the fast method
required s� 106 to deliver good parallel speedups. Moreover, the simplicity and data locality of
the matrix method makes it very suitable for vectorization and other single-core optimizations
targeted in this article.

3 SIMD modular arithmetic for partial polynomial evaluation

3.1 Selection of the modular arithmetic algorithm

Given a fixed1 integer p > 1, we focus on the efficient computation of c = a⊗pb and d =
a⊕pb . We target the algorithm that will offer the best performance: such an algorithm must
thus be efficient in scalar mode (i.e. non-SIMD), while being also suitable for vectorization.
While ⊕p can be implemented with a compare instruction, ⊗p requires integer divisions which
are expensive operations on current processors[23], and for which no SIMD integer division
instruction is available in SSE, AVX or AVX-512. Hence, various alternate algorithms have
been designed in order to efficiently compute ⊗p. We briefly recall the most important ones.

In order to compute c = a⊗pb, one can first rely on floating-point arithmetic to compute
q = ba×bp c and then deduce c = a × b − q × p (see for example Alverson[24], Baker[25]). This
requires conversions to/from floating-point numbers, and the number of bits of the floating-
point number mantissa has to be twice as large as the number of bits of p (to hold the product).

1The value of p is fixed in this article, but is not a constant (from the programming point of view) in our
implementation. Our implementation will indeed be used for multiple p values, which are unknown at compile
time. The compiler cannot therefore optimize the code for a specific p value.

7

Algorithm 2 Modular multiplication of 64-bit integers x and y with a 50-bit prime p. x and
y are considered to be already reduced modulo p, and converted to double along with p prior
to the beginning of the algorithm. u stores: 1/(double) p

1: double h← x ∗ y ;
2: double `← fma(x, y, −h) ;
3: double b← h ∗ u ;
4: double c← floor(b) ; . c is the quotient ±1
5: double d← fma(−c, p, h) ;
6: double g ← d+ ` ; . g is the remainder ±p
7: if g ≥ p then return g − p ;
8: if g < 0.0 then return g + p ;
9: return g ;

Algorithm 3 Modular addition of 64-bit integers x and y with a 50-bit prime p. x and y are
considered to be already reduced modulo p, and converted to double along with p prior to the
beginning of the algorithm.

1: double s← x+ y ;
2: return s ≥ p ? s− p : s ;

In order to avoid the conversions between floating point numbers and integers, the floating-
point reciprocal p−1 can be rescaled and truncated into an integer. The quotient q is hence
approximated, and some adjustments enable one to obtain the remainder c. This integer-
based method is known as the Barrett’s product[26, 27]. Another integer-based approach relies
on Montgomery’s reduction[28]: a comparison between the two methods has been done for
example by van der Hoeven et al.[14]. An improved version of Barrett’s product with integer only
operations has been proposed by Möller and Granlund[29]: Monagan and coworkers[5, 17] use an
implementation (written by Roman Pearce) of this latter[29] method (with p−1 precomputed) in
their original code for polynomial evaluation with 64-bit integers. This offers a 11x performance
gain[30] for ⊗p with respect to one integer division. However, this implementation relies on
128-bit intermediate results: for SIMD processing on 64-bit elements, this implies that only
half of the SIMD lanes will be used, hence leading to twice lower SIMD speedups. One can
replace these 128-bit variables with two 64-bit variables (hence using only one 64-bit lane per
operation), but this requires extra arithmetic and bit shifting. Moreover, to our knowledge
there is no SSE/AVX2/AVX-512 intrinsic which performs multiplications on 64-bit integers
and provides either the 128-bit results (similarly to the mm{,256,512} mul epu32 intrinsics
on 32-bit integers) or their upper and lower 64-bit parts. This greatly complicates the SIMD
programming of the Möller and Granlund[29] algorithm for 64-bit integers.

We therefore focus in this article on the use of floating-point (FP) FMA (fused multiply-add)
instructions for floating-point based modular arithmetic. Since the FMA instruction performs
two operations (a ∗ b + c) with one single final rounding, it can indeed be used to design a
fast error-free transformation of the product of two floating-point numbers[31]. Such error-free
transformation computes the accurate floating-point result of the product. As described and
proved by van der Hoeven et al.[14], this makes it possible to design a modular multiplication
with double-precision floating-point numbers, provided that p has at most 50 bits: see Algorithm
2. Intuitively, an error-free transformation (Lines 1 and 2 in Algorithm 2) enables one to
compute in twice working precision[31], and hence to precisely handle the multiplication result
before reduction modulo p. More precisely, ` stores the rounding error of the product x ∗ y
(i.e. h+ ` exactly equals x ∗ y). The approximate real quotient (x ∗ y)/p is then computed in b

8

using the pre-computed u = 1/(double)p, and rounded to an (approximate) integer quotient c.
A first approximate remainder d is computed using c ∗ p, and added to ` in g in order to take
into account the initial rounding error. g is finally corrected so that we exactly have: g ≡ x× y
(mod p). We emphasize that all this is achieved with 64-bit floating-point numbers only: no
larger variables are required and we can thus benefit from the full SIMD speedup (up to 8x on
AVX-512). The corresponding FP-based modular addition algorithm is presented in Algorithm
3.

We also emphasize that the limit on the size of p (at most 50 bits) is not problematic
regarding our targeted applications (presented in Sect. 2.2). Indeed, let f(x1, x2, . . . , xn) =∑s

i=1 aiMi(x1, x2, . . . , xn) be a polynomial we wish to interpolate. Ben-Or/Tiwari [18] and
Zippel [16] both pick β ∈ Fn

p at random and interpolate f from f(β), f(β2), f(β3), Both
methods require the monomial evaluations to be distinct, that is, Mi(β) 6= Mj(β) for 1 ≤ i <
j ≤ s. For this to hold with reasonable probability we require p > 100s2. For a large value of
s, say 104 < s < 106, the requirement p > 100s2 means 32-bit primes are too small but 50-bit
primes are sufficient.

Finally, we stress that relying on FMAs is relevant regarding HPC architectures. Current
high-end HPC-oriented Intel CPUs with AVX2 or AVX-512 indeed offer two FMA SIMD units.
HPC-oriented GPUs from NVIDIA or AMD (not studied in this article), whose performance
strongly depends on SIMD computing, also fully support FMA instructions.

3.2 SIMD programming paradigms

We plan to integrate the SIMD implementations of the FMA-based ⊕p and ⊗p modular oper-
ations in the polynomial evaluation algorithm (see Algorithm 1) on AVX2 or AVX-512 CPUs.
For this purpose, there are multiple programming paradigms regarding SIMD computing.

A first possibility is to rely on intrinsics programming. Such low-level programming enables
the programmer to reach high performance, but at a non-negligible development cost. This will
be our primary programming paradigm, and we will detail the corresponding implementations
in Sect. 3.3.

A second possibility is to rely on the compiler to benefit from a higher programming level.
Compilers can detect parallel and vectorizable loops and automatically vectorize these loops.
But, as further detailed in Sect. 3.5, such automatic vectorization will fail in our polynomial
evaluation. Therefore, we consider here a third programming paradigm: compiler directives for
SIMD programming. In C/C++ programming, these are pragmas which enable the programmer
to indicate (and ensure) that a given loop is parallel: no dependency analysis is then required
by the compiler. Such compiler directives are available in the Intel C/C++ Compiler ICC
(#pragma simd), and have been standardized in the last versions of OpenMP2 (starting from
OpenMP 4.0). We will rely here on OpenMP due to its sustainability, its wide usage in HPC,
and its availability in both ICC and GCC (the GNU Compiler Collection). Such high level
programming with OpenMP will enable us to avoid writing intrinsics, to have one scalar C code
for both AVX2 and AVX512, and to avoid array padding or loop splitting when the iteration
number is not a multiple of the SIMD vector size. OpenMP directives will also enable us to
overcome the limits of the automatic vectorization for our polynomial evaluation. However, the
SIMD code generated by the compiler may differ from the intrinsic code and hence lead to lower
performance.

In the rest of Sect. 3, we will thus investigate these two SIMD programming paradigms:
SIMD intrinsics and OpenMP SIMD directives. Their performance results will also be detailed
and compared.

2https://www.openmp.org/

9

3.3 SIMD intrinsics and the AVX-512 version

Using AVX intrinsics: Van der Hoeven et al.[14] have presented a SSE/AVX version of
Algorithm 2 to implement ⊗p. They use two SSE/AVX blendv pd intrinsics to efficiently
implement the two final tests (Lines 7-8 in Algorithm 2), hence removing divergence in the SIMD
computation. This blendv pd intrinsic blend double elements from two vectors depending on
the most significant bit of elements from a third vector. For floating-point elements this most
significant bit corresponds to the sign bit, which enables one to implement in SIMD without
branching the two final tests using comparisons to 0.0. We will rely on this AVX version
on AVX2 CPUs. However, we recall that IEEE standard 754 for floating-point arithmetic[32]
includes signed zeros which may lead to incorrect results regarding the use of blendv pd. Indeed
if for example g equals −0.0 at Line 8 in Algorithm 2, using the blendv pd instruction directly
on g would return p, which is incorrect for modulo p arithmetic. We show below that −0.0
cannot appear in our specific context: we can thus safely use this implementation with AVX
intrinsics.

Van der Hoeven et al. also present an AVX ⊕p implementation (see function 3.9[14]) of the
scalar FP-based ⊕p algorithm (presented in Algorithm 3). Similarly, as shown below, we can
safely ignore signed zeros for the the blendv pd instruction used in this AVX version.

Regarding the issue with signed zeros and the AVX blendv pd intrinsic: For ⊗p,
we consider the tests at Lines 7 (g ≥ p here rewritten as g − p ≥ 0) and 8 (g > 0) in Algorithm
2. We aim at showing here that no −0.0 value will occur in these two tests, so that one can
safely use the blendv pd intrinsics to implement in AVX the conditional affectation resulting
from these tests. For completeness, we recall beforehand the paragraphs 3 and 4 of §6.3, The
sign bit, from the IEEE 754 standard[32].

Paragraph 3: When the sum of two operands with opposite signs (or the difference of two
operands with like signs) is exactly zero, the sign of that sum (or difference) shall be +0 in all
rounding-direction attributes except roundTowardNegative; under that attribute, the sign of an
exact zero sum (or difference) shall be −0. However, x + x = x − (−x) retains the same sign
as x even when x is zero.

Paragraph 4: When (a * b) + c is exactly zero, the sign of fusedMultiplyAdd(a, b, c) shall
be determined by the rules above for a sum of operands. When the exact result of (a * b) + c
is non-zero yet the result of fusedMultiplyAdd is zero because of rounding, the zero result takes
the sign of the exact result.

Now, let us first consider the case where x or y is zero (possibly both). Then h computed at
Line 1 is either +0.0 or −0.0. According to the paragraph 4 quoted just above, the ` computed at
Line 2 is obtained from the computation h−h which cannot result in −0.0 thanks to paragraph
3 and since we rely on the default rounding mode (Round to nearest). Thus ` = +0.0. Using
again paragraph 3, the g computed at Line 6 by g = d + ` cannot be equal to −0.0 since
` = +0.0. Therefore g at Line 6 equals +0.0 (since the expected result of the modular product
is zero here): thus no −0.0 is evaluated in the two tests at Lines 7 and 8.

Second, consider the case were both x and y are nonzero. Since p is a prime number, and
since x < p and y < p, the product x×y cannot be zero modulo p: this is due to the uniqueness
of the prime factorization of x × y. Thus the function returns a nonzero value that is not a
multiple of p. Consequently g cannot hold −0.0, and neither can g − p evaluate to −0.0.

For ⊕p, the blendv pd intrinsic evaluates the result of a subtraction by p since the test s ≥ p
at Line 2 in Algorithm 3 is rewritten as s−p ≥ 0 (see function 3.9[14]). According to paragraph
3, this subtraction cannot lead to −0.0 since p 6= −0.0.

10

Algorithm 4 AVX-512 modular multiplication of AVX-512 vectors x̄ and ȳ with a 50-bit prime
p replicated in the AVX-512 vector p̄. Elements of x̄ and ȳ are considered to be already reduced
modulo p, and converted (like p̄) to double elements (x̄, ȳ, p̄ and ū being m512d vectors) prior
to the beginning of the algorithm. ū stores replicates of: 1/(double) p

1: m512d h̄← mm512 mul pd(x̄, ȳ) ;
2: m512d ¯̀← mm512 fmsub pd(x̄, ȳ, h̄) ;
3: m512d b̄← mm512 mul pd(h̄, ū) ;
4: m512d c̄← mm512 floor pd(b̄) ;
5: m512d d̄← mm512 fnmadd pd(c̄, p̄, h̄) ;
6: m512d ḡ ← mm512 add pd(d̄, ¯̀) ;
7: mmask8 m← mm512 cmplt pd mask(ḡ, mm512 setzero pd()) ;
8: mmask8 mm← mm512 cmple pd mask(p̄, ḡ) ;
9: ḡ ← mm512 mask add pd(ḡ, m, ḡ, p̄) ;

10: ḡ ← mm512 mask sub pd(ḡ, mm, ḡ, p̄) ;
11: return ḡ ;

Algorithm 5 AVX-512 modular addition of AVX-512 vectors x̄ and ȳ with a 50-bit prime p
replicated in the AVX-512 vector p̄. Elements of x̄ and ȳ are considered to be already reduced
modulo p, and converted (like p̄) to double elements (x̄, ȳ and p̄ being m512d vectors) prior
to the beginning of the algorithm.

1: m512d s̄← mm512 add pd(x̄, ȳ) ;
2: mmask8 m← mm512 cmple pd mask(p̄, s̄) ;
3: return mm512 mask sub pd(s̄, m, s̄, p̄) ;

Using AVX-512 intrinsics: Regarding AVX-512, the blendv pd intrinsic is not available: we
therefore explicitly build 8-bit masks to conditionally perform (without branching) the addition
and the subtraction at the end of the algorithm, as presented in Algorithm 4. Hence the SIMD
divergence is efficiently handled within the AVX-512 arithmetic instructions. To our knowledge
this is the first AVX-512 floating-point based modular arithmetic. Orisaka et al.[33] have also
accelerated modular arithmetic with AVX-512 but using Montgomery reduction and targeting
very large primes for cryptography.

Regarding ⊕p, we also adapt the SSE/AVX implementation for floating-point numbers pre-
sented by Van der Hoeven et al.[14] to AVX-512. As detailed in Algorithm 5, we use 1 addition,
1 comparison and 1 masked subtraction in AVX-512 instead of 1 addition, 1 subtraction and 1
blendv pd in AVX.

3.4 Microbenchmarks

We start with microbenchmarks, presented in Fig. 1, of the two modular arithmetic operations
⊗p and ⊕p . Like all following performance tests, these microbenchmarks have been performed
on the two compute servers AVX2 server and AVX-512 server presented in Table 1. We first
notice that, regarding the original implementation of the modular multiplication (integer based,
by R. Pearce), our microbenchmark results are consistent with the 6.016 cycles obtained with
GCC by Monagan and coworkers[30] on older CPUs.

Regarding ⊗p (see Figs. 1(a) and 1(b)), and with respect to the original integer based
implementation, the scalar floating-point (FP) based implementation offers lower performance
when including back and forth conversions between integers and floating-points numbers, and
similar performance when not considering these conversions. The SIMD FP based implementa-

11

 0

 2

 4

 6

 8

 10

Integer FP FP conv. Intr.
 FP

Intr.
 FP conv.

OpenMP
 FP

OpenMP
 FP conv.

N
b
 o

f
cy

cl
e
s

GCC
ICC

(a) ⊗p on AVX2 server.

 0

 2

 4

 6

 8

 10

Integer FP FP conv. Intr.
 FP

Intr.
 FP conv.

OpenMP
 FP

OpenMP
 FP conv.

N
b
 o

f
cy

cl
e
s

GCC
ICC

(b) ⊗p on AVX-512 server.

 0

 2

 4

 6

 8

 10

 12

 14

Integer FP FP conv. Intr.
 FP

Intr.
 FP conv.

OpenMP
 FP

OpenMP
 FP conv.

N
b
 o

f
cy

cl
e
s

GCC
ICC

(c) ⊕p on AVX2 server.

 0

 2

 4

 6

 8

 10

 12

 14

Integer FP FP conv. Intr.
 FP

Intr.
 FP conv.

OpenMP
 FP

OpenMP
 FP conv.

N
b
 o

f
cy

cl
e
s

GCC
ICC

(d) ⊕p on AVX-512 server.

Figure 1: Performance comparison of various implementations for ⊗p and ⊕p. Integer denotes
the original integer-based implementation as used by Monagan and coworkers for ⊗p[5, 17]
and ⊕p[34]. FP denotes the scalar floating-point based implementation without considering the
conversions between integers and floating-points numbers, whereas FP conv. includes these
conversions. Intr. FP (respectively OpenMP FP) denotes the SIMD version of the floating-
point based implementation using intrinsics (resp. using OpenMP). These performance results
have been obtained on element-wise operations over vectors of 2048 elements.

tion offer (with intrinsics, and without considering the conversions) a 3.2x (resp. 3.7x) speedup
with GCC (resp. ICC) over the scalar FP-based implementation on AVX2 server. On AVX-512
server, the speedup is 5.9x (resp. 7.2x) speedup with GCC (resp. ICC). This shows that the
performance gain of our new AVX-512 ⊗p implementations is indeed twice greater than the
AVX2 one.

Regarding ⊕p (see Figs. 1(c) and 1(d)), the scalar FP-based implementation leads to much
greater cycle numbers than the integer-based one: this is due to the branching of the compare
instruction required in the FP implementation (see Algorithm 3). The comparison in the integer-
based ⊕p implementation can indeed be replaced by shifting[34, 14], which avoids the branching
performance impact on the pipeline filling. Thanks to the use of the AVX2 blendv pd intrinsic
and of AVX-512 masks, there is also no branching in the SIMD FP-based implementations (with
intrinsics) which implies a strong performance gain (around one order of magnitude), in addition
to the SIMD speedup. With respect to the scalar integer-based one, the SIMD speedups of the
FP-based implementations with intrinsics (without considering the conversions) are 4.0x (resp.
3.6x) with GCC (resp. ICC) on AVX2 server, and 8.7x (resp. 8.5x) with GCC (resp. ICC)
on AVX-512 server. This shows that our AVX-512 ⊕p implementation is twice faster than the
AVX2 one of Van der Hoeven et al.[14].

12

Table 1: Test platforms.

Servers Name: Hardware features:
AVX2 server 2× Intel Xeon CPU E5-2695 v4 CPUs: 2×18 2-way SMT

cores - 2.10 GHz (base) / 3.30 GHz (turbo) - AVX2
AVX-512 server 2× Intel Xeon Gold 6152 CPUs: 2×22 2-way SMT

cores - 2.10 GHz (base) / 3.70 GHz (turbo) - AVX512

Compilers Name: Performance-related options:
GCC 8.2.0 -O3 -mfma -fno-trapping-math -march=native -mtune=native

ICC 19.0.3.199 -O3 -fma -xhost

When considering the conversions, the overhead of these conversions can annihilate the
SIMD performance gain on AVX2 server. This is due to the lack of AVX2 conversion instruction
between 64-bit integers and 64-bit floating-point numbers: the conversions are thus performed
in scalar mode which has a strong performance impact. In comparison, such a SIMD instruction
is available in AVX-5123, where conversions can be performed in SIMD mode. Their overheard
is therefore much lower on AVX-512 server.

Finally, we also consider using OpenMP to vectorize the code. The first issue lies in having
the compiler generate SIMD FMA instructions from the fma() function call in the C+OpenMP
code for ⊗p. This is effective with GCC thanks to the -fno-trapping-math option which
allows us to assume that floating-point operations cannot generate traps, such as division by
zero, overflow, underflow, inexact result and invalid operation. Unfortunately, using all possible
floating-point model variations (-fp-model options) did not enable us to generate SIMD FMA
instructions with ICC. The ICC OpenMP code hence relies on scalar FMA instructions, which
explains its important performance overhead over the GCC OpenMP code for ⊗p. Secondly,
on AVX-512 server we had to force the AVX-512 vectorization using -qopt-zmm-usage=high

with ICC and -mprefer-vector-width=512 with GCC, otherwise only AVX2 instructions are
generated.

As far as ⊗p is concerned, the OpenMP code (with GCC) has the same performance than the
SIMD code written in intrinsics on AVX-512 server, but is slower by 18% on AVX2 server. This
is because of one additional compare instruction added by the compiler before each blendv pd

instruction. This comparison to zero (either g > 0, or g − p ≥ 0) is here to prevent any issue
with IEEE 754 signed zeros and the blendv pd instruction. The compiler is indeed unaware of
our specific context which enables us not to consider −0.0, as shown in Sect. 3.3.

For ⊕p, the compiler similarly adds one unnecessary compare instruction which results in
a 45% performance penalty on AVX2 server for the OpenMP code (with GCC). However no
branching instruction is generated in the SIMD code for ⊕p with OpenMP, which makes this
OpenMP still rather efficient with respect to the scalar integer-based implementation: 2.8x
faster on AVX2 server, and 7.4x on AVX-512 server (with GCC).

3.5 Integration in polynomial evaluation

We can now consider the integration of SIMD modular arithmetic in our partial polynomial
evaluation. Due to the cost of the conversions between integers and floating-points numbers (see
Sect. 3.4), we choose to perform the first conversion (from integers to floating-point numbers) for
each value of the a and m vectors once before the evaluation (i.e. just before Line 1 in Algorithm

3More precisely, the 64-bit conversions belong to the AVX-512DQ instruction set which is available on our
Intel Xeon Gold 6152 CPUs, but not on the prior Intel Knights Landing (Xeon Phi) processors.

13

Algorithm 6 SIMD compute kernel of the matrix method (see Algorithm 1 for notations and
inputs). x̄ denotes the SIMD vector corresponding to variable x. V is the size of the SIMD
vector.

1: In-place conversions for vectors a and m (64-bit integers → doubles)
2: for each evaluation 1 ≤ t ≤ T do
3: i← 1; bt ← 0
4: while i ≤ s do
5: c̄← 0.0
6: J ← #monomials with same (di, ei)
7: for i ≤ j < i+ J with step V do
8: ā← a[j .. j + V − 1] . SIMD load
9: m̄← m[j .. j + V − 1] . SIMD load

10: ā← ā ⊗p m̄ . SIMD Hadamard product
11: c̄← c̄ ⊕p ā . SIMD coefficient reduction
12: a[j .. j + V − 1]← ā . SIMD store
13: end for
14: c← reduce(c̄, ⊕p) . c̄ final reduction

15: if c 6= 0.0 then convert c to 64-bit integer and add cxdi1 x
ei
2 to bivariate image bt

16: i← i+ J
17: end while
18: end for

1). These conversions are performed in-place to save memory. The reverse conversion (from
floating-point numbers to integers) is only performed once for each reduction result (i.e. the c
value at Line 10 in Algorithm 1).

Figure 2 presents performance results for our polynomial evaluation using various modular
arithmetic implementations. One can see that the scalar floating-point based modular arith-
metic makes our polynomial evaluation about 2.5 times slower than the original implementation
by Monagan and coworkers[5] (using integer-based modular arithmetic). This is due to the slow
FP-based ⊕p implementation (because of its branch instruction: see Sect. 3.4).

We now consider SIMD intrinsics to integrate SIMD FP-based modular arithmetic in our
originally scalar polynomial evaluation (see Algorithm 1). The resulting SIMD algorithm is
written in Algorithm 6. First, a reduction has to be computed within the SIMD vector at the
end of the inner loop (Line 14 in Algorithm 6), in order to obtain the final scalar c value. Instead
of performing a sequential reduction with the scalar ⊕p and its branch instruction, we use SIMD
shuffle instructions to write a parallel tree-shaped reduction using only SIMD ⊕p operations.
Second, we also have to consider memory alignement which can be important for efficient vector
loads and stores. However, the j indices used in the inner loop (Line 7 in Algorithm 6) do not
lead to aligned memory accesses since the successive J values are not necessarily multiples of
the SIMD width. One could choose to make a copy of the vectors a and m with relevant zero
padding to ensure aligned memory accesses, but this would require twice the memory. In order
to obtain good SIMD speedups without padding, we explicitly decompose this inner loop into
three successive loops L1, L2 and L3 (not shown in Algorithm 6). L1 and L3 have an iteration
count lower than the SIMD width and are vectorized thanks to explicit masks. These two loops
ensure that the vectorized L2 loop perform aligned memory accesses (i.e. its first j index is a
multiple of the SIMD width). We noticed that the use of such a vectorized reduction and of such
vectorized L1 and L3 loops offer additionnal performance gains when processing a lower number
of terms: e.g. up to 29% for s = 5 × 104 terms. With respect to the original implementation

14

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Integer FP Intr.
 FP

OpenMP
 FP

Ti
m

e
 (

m
s)

GCC
ICC

(a) On AVX2 server.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Integer FP Intr.
 FP

OpenMP
 FP

Ti
m

e
 (

m
s)

GCC
ICC

(b) On AVX-512 server.

Figure 2: Performance comparison of scalar and SIMD polynomial evaluations. Integer de-
notes the original polynomial evaluation by Monagan and coworkers[5] with scalar integer-based
modular arithmetic. FP denotes the use of scalar floating-point modular arithmetic for the
polynomial evaluation. Intr. FP (respectively OpenMP FP) denotes the SIMD version of the
floating-point based modular arithmetic using intrinsics (resp. using OpenMP).

using integer-based arithmetic, the resulting polynomial evaluation with SIMD intrinsics offers
performance gains ranging from 3.13x (resp. 3.89x) with GCC (resp. ICC) on AVX2 server to
4.18x (resp. 4.74x) with GCC (resp. ICC) on AVX-512 server (see Fig. 2).

Finally, we also consider using OpenMP vectorization for the SIMD FP-based modular arith-
metic in our polynomial evaluation. We rely on the new declare reduction directive (available
since OpenMP 4.0) to instruct the compiler that the final reduction (Line 14 in Algorithm 6)
has to be performed using our modular arithmetic. We emphasize that the vectorization is
achieved here thanks to this OpenMP directive (along with the directive which instructs the
compiler to vectorize the loop with a reduction). Without such directives given by the program-
mer, the GCC and ICC compilers both manage to vectorize the microbenchmarks presented
in Sect. 3.4 (with the same performance as the OpenMP version), but both fail to vectorize
the polynomial evaluation code (because of the required specific reductions). As shown in Fig.
2, the ICC OpenMP vectorization is inefficient due to the FMA issue (see Sect. 3.4), whereas
the GCC OpenMP vectorization offers computation times somewhat slower than the intrinsic
vectorization: 22% slower on AVX2 server, and 8% on AVX-512 server. It can also be noticed
that GCC currently fails to generate align memory accesses (despite the use of the aligned

OpenMP clause) and SIMD ⊕p reductions, as we do with intrinsics.

In conclusion, while the use of scalar FP-based modular arithmetic lowers the performance
of the polynomial evaluation, the SIMD FP-based modular arithmetic clearly improves its
performance (up to 4.74x). In the rest of the article, we will rely on the SIMD implementation
with intrinsics, and not on the OpenMP one. This is due to the OpenMP performance issue
with ICC and to the somewhat lower performance of the SIMD code generated with OpenMP,
especially on AVX2 which still equips the vast majority of available CPUs at the time of writing.
We however emphasize that the performance results of OpenMP with GCC on AVX-512 are
very promising for the future and show the relevance of this approach.

As a last remark, we recall that regarding the microbenchmarks presented in Sect. 3.3 the
AVX-512 ⊗p and ⊕p implementations are twice as fast than the AVX2 ones. Here however for
the polynomial evaluation, the AVX-512 performance is only 1.57x (resp. 1.47x) faster than the
AVX2 one with GCC (resp. ICC). We believe that this is due to the difference in operational in-
tensities. Indeed, the microbenchmarks performed in Sect. 3.3 have been intentionally designed

15

to be compute-bound in order to measure the number of cycles of the arithmetic operations,
and not of the memory accesses. But the operational intensity of our polynomial evaluation is
much lower: the Hadamard product and the coefficient reduction correspond to a dot product
which is a memory-bound operation in classic floating-point arithmetic. More precisely, the
floating-point based modular arithmetic requires 9 flop (floating-point operation) for ⊗p (see
Algorithm 2) and 2 flop for ⊕p (see Algorithm 3), versus 3 memory accesses for each (2 loads
and 1 store, without considering u and p). This makes our compute kernel (i.e. our polynomial
evaluation) less memory-bound than a floating-point dot-product, but the operational intensity
of our kernel is not high enough to make it compute-bound: memory accesses are still important
in the kernel performance. These memory accesses also tend to lower the performance gain due
to the increased compute power of the AVX-512 SIMD units, with respect to the AVX2 units,
since there is more stress on memory bandwidth with AVX-512 instructions than with AVX2
ones. We will show how to increase this operational intensity and the polynomial evaluation
performance in the next section.

4 Increasing the compute efficiency

We now focus on the compute efficiency of our SIMD polynomial evaluation. More precisely, we
aim to fill at best the pipelined floating-point units and to minimize the time lost in memory
accesses.

4.1 Multiple dependent evaluations

We first rely on the consecutive powers of β used for the successive evaluations in the matrix
method (see Sect. 2.3). Hence in Algorithm 6, if we consider two consecutive polynomial
evaluations t and t+ 1, the values computed in the a vector for the evaluation t are re-used as
input for evaluation t+1. But for large s values (s denoting the number of terms, see Sect. 2.3),
the a elements may have been moved out of the CPU caches. We hence consider computing
multiple evaluations at a time, and we denote by Td the number of such (dependent) evaluations.
Td is an algorithmic constant, known at compile time. We can then explicitly avoid storing and
reloading data from the vector a to/from memory between these Td evaluations. We can also
load only once m data from memory for these Td evaluations. Such data reuse increases the
operational intensity of our kernel by reducing the number of memory accesses.

However each evaluation depends on the output of the previous one. Even if some operations
can be performed concurrently (such as the ⊕p operation of the t evaluation and the ⊗p of the
t + 1 evaluation), this dependency limits the instruction-level parallelism, and hence prevents
us from filling the pipelines of the floating-point units.

4.2 Multiple independent evaluations

Therefore, we rewrite the loop over the T evaluations (Line 1 in Algorithm 1) in order to have
fully independent polynomial evaluations. For this purpose, we adapt the algorithm used by Hu
and Monagan[5] to introduce thread-level parallelism on multi-core CPUs (see Sect. 2.3.1) in
order to introduce here instruction-level parallelism in our compute kernel. Namely, denoting
by Ti the desired number of independent evaluations (like Td, Ti is an algorithmic constant,
known at compile time), we first precompute Γ = [mTi

1 ,m
Ti
2 , . . . ,m

Ti
s] using O(s log2 Ti) SIMD

multiplications. We also precompute Λk = a ◦ [mk+1
1 ,mk+1

2 , . . . ,mk+1
s] for 0 ≤ k < Ti using

O(sTi) SIMD multiplications. Then, for the computation of the T evaluations we will first
perform the coefficient reductions for the first Ti evaluations (i.e. on (Λk)0≤k<Ti

), then the

16

Λ0 = a1m1 . . . aimi . . . asms

Λ1 = a1m
2
1 . . . aim

2
i . . . asm

2
s

Λ2 = a1m
3
1 . . . aim

3
i . . . asm

3
s

Γ = m3
1 . . . m3

i . . . m3
s

(a) Precomputations

Λ0 = a1m
4
1 . . . aVm

4
V . . . asm

4
s

Λ1 = a1m
5
1 . . . aVm

5
V . . . asm

5
s

Λ2 = a1m
6
1 . . . aVm

6
V . . . asm

6
s

Λ0 = a1m
7
1 . . . aVm

7
V . . . asm

7
s

Λ1 = a1m
8
1 . . . aVm

8
V . . . asm

8
s

Λ2 = a1m
9
1 . . . aVm

9
V . . . asm

9
s

(b) First V products of first evaluations

Λ0 = a1m
4
1 . . . aV+1m

4
V+1 . . . a2Vm

4
2V . . . asm

4
s

Λ1 = a1m
5
1 . . . aV+1m

5
V+1 . . . a2Vm

5
2V . . . asm

5
s

Λ2 = a1m
6
1 . . . aV+1m

6
V+1 . . . a2Vm

6
2V . . . asm

6
s

Λ0 = a1m
7
1 . . . aV+1m

7
V+1 . . . a2Vm

7
2V . . . asm

7
s

Λ1 = a1m
8
1 . . . aV+1m

8
V+1 . . . a2Vm

8
2V . . . asm

8
s

Λ2 = a1m
9
1 . . . aV+1m

9
V+1 . . . a2Vm

9
2V . . . asm

9
s

(c) Next V products of first evaluations

Λ0 = a1m
10
1 . . . aVm

10
V . . . asm

10
s

Λ1 = a1m
11
1 . . . aVm

11
V . . . asm

11
s

Λ2 = a1m
12
1 . . . aVm

12
V . . . asm

12
s

Λ0 = a1m
13
1 . . . aVm

13
V . . . asm

13
s

Λ1 = a1m
14
1 . . . aVm

14
V . . . asm

14
s

Λ2 = a1m
15
1 . . . aVm

15
V . . . asm

15
s

(d) First V products of next evaluations

Figure 3: Illustration of the execution of Algorithm 7 with Ti = 3, Td = 2 and using notations
of Sect. 2.3. V is the size of the SIMD vector. For the ease of reading we only represent here
the Hadamard products, but the SIMD coefficient reductions are performed alongside, and the
c̄ki,kd final reductions when required. First (Fig. 3(a)), we precompute Γ and (Λk)0≤k<Ti=3.
Then (Fig. 3(b)), using Γ we compute in SIMD the first V products of the first Ti× Td = 3× 2
evaluations in (Λk)0≤k<3. The next V products are performed in SIMD for the same evaluations
(Fig. 3(c)), and so on for the remainings of vectors (Λk)0≤k<3 and Γ. Once these first evaluations
have been fully computed, we start again with the next 3× 2 evaluations (Fig. 3(d)), until all
evaluations have been fully processed.

Hadamard product Λk ← Λk ◦Γ (with 0 ≤ k < Ti) for the second chunk of Ti evaluations. This
will be repeated (coefficient reductions on the previous Ti evaluations, then Hadamard product
for the next Ti evaluations) until all T evaluations have been processed.

This instruction-level parallelism helps fill the instruction pipelines. Moreover the ⊕p and ⊗p

operations are now inverted. Contrary to Algorithm 1 (Lines 7-8) where the second operation
depends on the output of the first one, the second operation now only depends on the input of
the first one. The two operations can thus be more overlapped, hence easing the pipeline filling.

The main drawback of using Ti independent evaluations is the extra memory requirements.
For each independent evaluation k we have to store an extra copy Λk of the complete a vector.
Moreover, for each independent evaluation k we have to load the Λk vector from memory and
store its update in memory. The operational intensity is thus only improved for the Γ memory
accesses. Therefore, introducing an extra independent evaluation increases less the operational
intensity than introducing an extra dependent evaluation.

There is hence a trade-off between pipeline filling and operational intensity regarding the
numbers of dependent (Td) and independent (Ti) evaluations. We will thus consider an algorithm
where we introduce Td dependent evaluations for each of the Ti evaluations, hence computing
together Ti×Td evaluations at a time. The loop over Td is chosen as the outer one, and the loop
over Ti as the inner one: this results in better performance than the opposite loop ordering,
which indicates that pipeline filling is here more important than increasing the operational
intensity. The optimal values for Td and Ti depend on the compiler and on the CPU hardware
features, and these will have to be determined in practice using parameter testing and tuning.
Since the total number of evaluations T is not necessarily a multiple of Ti × Td, the remaining
evaluations are processed first by blocks of Ti × N ′d evaluations (with 1 ≤ N ′d < Td) and then
with N ′′d dependent evaluations (with N ′′d < Ti), where T mod (Ti × Td) = Ti ×N ′d +N ′′d .

The final version is presented in Algorithm 7, along with the SIMD programming. Once

17

Algorithm 7 SIMD compute kernel of the matrix method with independent and dependent
evaluations (see Algorithm 1 for notations and inputs). x̄ denotes the SIMD vector correspond-
ing to variable x, and x̄i the ith SIMD vector. V is the size of the SIMD vector.

1: Pre-compute Γ = [mTi
1 , . . . ,m

Ti
s] and Λki = a ◦ [mki+1

1 , . . . ,mki+1
s] for 0 ≤ ki < Ti

(with in-place conversions: 64-bit integers → doubles)
2: for each evaluation 1 ≤ t ≤ T with step Ti × Td do
3: i← 1; bt+ki+kdTi

← 0, for (0 ≤ ki < Ti ; 0 ≤ kd < Td)
4: while i ≤ s do
5: c̄ki,kd ← 0.0, for (0 ≤ ki < Ti ; 0 ≤ kd < Td)
6: J ← #monomials with same (di, ei)
7: for i ≤ j < i+ J with step V do
8: Λ̄ki ← Λki [j .. j + V − 1], for 0 ≤ ki < Ti . SIMD loads
9: Γ̄← Γ[j .. j + V − 1] . SIMD load

10: for 0 ≤ kd < Td do
11: for 0 ≤ ki < Ti do
12: c̄ki,kd ← c̄ki,kd ⊕p Λ̄ki . SIMD coefficient reduction
13: Λ̄ki ← Λ̄ki ⊗p Γ̄ . SIMD Hadamard product
14: end for
15: end for
16: Λki [j .. j + V − 1]← Λ̄ki , for 0 ≤ ki < Ti . SIMD stores
17: end for
18: for 0 ≤ kd < Td do
19: for 0 ≤ ki < Ti do
20: cki,kd ← reduce(c̄ki,kd , ⊕p) . c̄ki,kd final reduction
21: if cki,kd 6= 0.0 then convert cki,kd to 64-bit integer and

add cki,kdx
di
1 x

ei
2 to bivariate image bt+ki+kdTi

22: end for
23: end for
24: i← i+ J
25: end while
26: end for

Ti × Td evaluations have been computed together for some monomials, we could choose to
iterate over the next Ti×Td evaluations or to iterate over the next monomials with same (di, ei)
values. If we had iterated over the next Ti×Td evaluations, we would have had to store Ti×Td
SIMD vectors (all (c̄ki,kd)0≤ki<Ti, 0≤kd<Td

) for the coefficient reductions. By iterating on the
next monomials (as done in Algorithm 7), Ti +1 SIMD loads (all (Λ̄ki)0≤ki<Ti

and for Γ̄) and Ti
SIMD stores (all (Λ̄ki)0≤ki<Ti

) are required. As Td > 2 in practice (as confirmed for the optimal
configurations in Sect. 4.4), it is indeed preferable to iterate over the next monomials in order
to minimize the number of memory accesses and hence increase the operational intensity. This
results in the end in an algorithm where we browse all the monomials with same (di, ei) values
to compute Ti × Td evaluations at a time. An illustration of the execution of Algorithm 7 is
given in Fig. 3.

4.3 Loop unrolling

Loop unrolling[6] enables us to remove the exit test at the end of the loop body and to interleave
instructions from successive loop iterations in order to better fill the pipelines. The two nested

18

 0

 2

 4

 6

 8

 10

 12

 14

 16

M=1 M=2 M=4 M=8 M=16

(Ti,Td) =
G
fl
o
p
/s

(1,1)
(1,2)
(1,4)
(1,8)

(1,16)
(2,1)
(2,2)
(2,4)

(2,8)
(2,16)
(4,1)
(4,2)

(4,4)
(4,8)

(4,16)
(8,1)

(8,2)
(8,4)
(8,8)

(8,16)

(16,1)
(16,2)
(16,4)
(16,8)

(16,16)
Base

(a) With GCC on AVX2 server.

 0

 2

 4

 6

 8

 10

 12

 14

 16

M=1 M=2 M=4 M=8 M=16

G
fl
o
p
/s

(b) With ICC on AVX2 server.

 0

 5

 10

 15

 20

 25

 30

 35

 40

M=1 M=2 M=4 M=8 M=16

G
fl
o
p
/s

(c) With GCC on AVX-512 server.

 0

 5

 10

 15

 20

 25

 30

 35

 40

M=1 M=2 M=4 M=8 M=16

G
fl
o
p
/s

(d) With ICC on AVX-512 server.

Figure 4: Performance results for all possible (Ti, Td, M) configurations.

loops over the Td and Ti evaluations (Lines 10 and 11 in Algorithm 7) are hence completely
unrolled thanks to the “unroll(F)” pragma of ICC and to the “GCC unroll F” pragma of GCC
(recently introduced in GCC 8) to impose an unroll factor of F (F being respectively equal to
Td and Ti). Similarly, we unroll the third loop over the monomials with same (di, ei) values
(Line 7 in Algorithm 7) by a factor M . We could also have let the compiler choose which loops
to unroll (or not) and determine the best unroll factors. This leads to similar performance with
GCC, but to lower performance with ICC (up to 8.5% performance loss). We thus impose our
unrollings on the three loops with the corresponding pragmas.

Once the three nested loops have been unrolled, we rely on the compiler and on the out-of-
order execution of the processor to schedule at best the instructions to fill the pipelines and to
overlap the memory accesses. Other loops over Td and/or Ti evaluations (Lines 8, 16, 18, 19, in
Algorithm 7) are also similarly unrolled.

4.4 Performance results

Using the test platforms (server and compiler) described in Table 1, we present in Figure 4
the performance results for all possible configurations for (Ti, Td, M), each value ranging in
1,2,4,8,16. We also indicate the performance of the Base SIMD code corresponding to the
version obtained with the SIMD intrinsics only (as presented in Sect. 3). The performance
varies significantly depending on the (Ti, Td, M) values, especially on Ti and Td, which shows
the relevance of these parameters. The performance impact of M is lower but can still reach
11% for some (Ti, Td) configurations. The best configurations are the following.

• (Ti = 8, Td = 16, M = 1) with GCC on AVX2 server: 15.65 Gflop/s, and 42% of

19

Table 2: Performance comparison between our best version and the reference implementation
using integer-based arithmetic.

Server Compiler
Reference scalar

integer-based version
(time in ms)

SIMD FP-based version with
improved compute efficiency

(time in ms)
Gain

AVX2 server GCC 15262 3482 4.4x
AVX2 server ICC 17704 3671 4.8x

AVX-512 server GCC 12984 1411 9.2x
AVX-512 server ICC 14638 1476 9.9x

performance gain over the Base SIMD code.

• (Ti = 8, Td = 8, M = 8) with ICC on AVX2 server: 15.21 Gflop/s, and 29% of performance
gain over the Base SIMD code.

• (Ti = 8, Td = 8, M = 4) with GCC on AVX-512 server: 39.11 Gflop/s, and 121% of
performance gain over the Base SIMD code.

• (Ti = 8, Td = 8, M = 1) with ICC on AVX-512 server: 37.31 Gflop/s, and 109% of
performance gain over the Base SIMD code.

As determining the theoretical peak performance of modern CPUs becomes more and more
complicated[35], we use the BLAS DGEMM routine of the Intel MKL4 to estimate the single-
core double-precision peak performance at 45 Gflop/s on AVX2 server and 101 Gflop/s on
AVX-512 server. Moreover, we can only reach 61% of the peak performance since there are
only 2 FMAs out of the 9 floating-point instructions required for ⊗p and ⊕p. We manage hence
to reach 57% and 63% of the attainable single-core peak performance, respectively on AVX2
server and on AVX-512 server.

In the end, as shown in Table 2, we manage to reach speedups of almost 5x and 10x
(respectively on AVX2 server and on AVX-512 server) on one CPU core over the reference
original polynomial evaluation with scalar integer-based modular arithmetic. It can be noticed
that Monagan and coworkers already used to process two (dependent) evaluations at a time to
increase the operational intensity for some variants of the polynomial evaluation. However for
the variant studied in this article (see Algorithm 1), which is the fastest one, no performance
gain is obtained by processing two evaluations at a time with the original scalar code. Such
divergence with respect to the gains obtained in Fig. 4 can be explained by the lack of other
optimizations (multiple independent evaluations, loop unrollings) as well as by the differences in
the modular arithmetic implementation between the original integer-based version by Monagan
and coworkers and the floating-point based version of this article.

4.5 Without extra memory requirements

One drawback of using multiple independent evaluations is the significant memory overhead:
the complete a vector has to be duplicated for each extra independent evaluation. We therefore
investigate here the best attainable performance without any extra independent evalution.

We first implement a code without multiple independent evaluation, and tune the Td and
M parameters for this code via extensive benchmarks (as in Sect. 4.4). Figure 5 shows for each

4See: https://software.intel.com/en-us/mkl

20

 0

 5

 10

 15

 20

 25

 30

 35

 40

GCC/AVX2 ICC/AVX2 GCC/AVX-512 ICC/AVX-512

G
fl
o
p
/s

With Ti
Without Ti
Without Ti, manual unrolling

Figure 5: Performance comparison between best configuration with extra memory for multiple
independent evaluations (with Ti) and best configurations without extra memory for multiple
independent evaluations (without Ti), with and without manual loop unrolling.

test platform the performance drop obtained for this code (referred to as Without Ti) with
respect to the best version obtained in Sect. 4.4 (referred to as With Ti). The performance
drop is important here (up to 36%), due to the lower number of independent instructions to fill
the pipelines.

We then introduced manual loop unrolling, using preprocessor macros to ease and automate
the tedious code writing. We also manually group all arithmetic instructions. This way, we
provide all arithmetic instructions for the computation of Td dependent evaluations and M ×V
monomials to the compiler and to the out-of-order execution of the processor, so that these can
be scheduled at best to fill the pipelines. One can see that this new version (referred to as:
Without Ti, manual unrolling; and after tuning of its Td and M parameters) greatly reduces
the performance drop with respect to the best version obtained in Sect. 4.4 (With Ti). This way,
we can reach 95% (GCC) and 94% (ICC) on AVX2 server and 93% (GCC) and 98% (ICC) on
AVX-512 server of the best attainable performance (With Ti). At the price of non-negligeable
development efforts, we can thus obtain, without introducing extra memory, almost the same
performance of our best versions with multiple independent evaluations.

It can also be noticed that the performance impact of M is here much more important than in
Sect. 4.4 (detailed tests not shown). Such manual loop unrolling and instruction grouping have
also been tried on the best version obtained in Sect. 4.4 (with multiple independent evaluations):
this however only offers up to 5.1% performance gain for such code. In our opinion, this does not
justify the manual unrolling development effort when using multiple independent evaluations.

5 Conclusion

In this article, we have first justified the choice of a modular multiplication algorithm relevant
for HPC and SIMD computing. We have ensured the correct use of an optimized AVX2 im-
plementation (regarding a potential issue with signed zeros and the blendv pd intrinsic) and
we have presented its AVX-512 version. This floating-point (FP) based algorithm with FMAs
(fused multiply-adds) enables us to obtain SIMD speedups of up to 3.7x on AVX2, and up to
7.2x on AVX-512, which validates its efficiency. With respect to a reference (scalar) integer-

21

based modular arithmetic, the performance gains are similar for our SIMD FP-based modular
multiplication and for the corresponding SIMD FP-based modular addition. As all current
desktop and HPC processors have SIMD units, we believe that such SIMD FP-based modular
arithmetic should from now on be used instead of the scalar ones. Using OpenMP for their
SIMD programming turned out to be a very promising approach on the new AVX-512 units
(with GCC), due to its very relevant performance-programmability trade-off. Currently, we
still rely on intrinsics programming for best performance and performance portability among
compilers.

In a second part, we have focused on the partial polynomial evaluation which is a key
computation in Computer Algebra. We have rewritten this algorithm in order to introduce
multiple independent and dependent evaluations. These enable us, along with loop unrolling,
to fill at best the pipelined floating-point units of the CPU and to minimize the time lost in
memory accesses. Combined with SIMD computing, we achieve speedups up to almost 5x on
AVX2 and up to almost 10x on AVX-512 with respect to the reference implementation of the
polynomial evaluation. Moreover, using manual loop unrolling we manage to closely reach such
performance gains without extra memory requirements.

In the future, we plan to integrate our efficient polynomial evaluation on one CPU core
in the multi-core parallel implementation of Monagan and coworkers[5, 17], and to study the
performance impact on polynomial factorizations and polynomial greatest common divisor com-
putations. We also believe that GPUs may be well suited to further accelerate our polynomial
evaluation thanks to their higher compute power and memory bandwidth. We emphasize that
our FP-based modular arithmetic will be very relevant for the GPU FMA SIMD units, and
will offer a direct and efficient implementation of modular arithmetic on GPUs. We may also
investigate using a few less bits for our prime p in order to decrease the number of reductions
as done for example with error-free transformations in linear algebra[36].

Acknowledgments

The authors would like to thank the master in computer science at Sorbonne Université, espe-
cially N. Picot and P. Cadinot, for administering and providing access to the compute servers.
They also thank Professor S. Graillat (Sorbonne Université) for helpful discussions on error-free
transformations.

References

[1] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley, Boston, MA, USA, 1997.

[2] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer
Algebra. Springer, 1992.

[3] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge
University Press, USA, 2 edition, 2003.

[4] Michael Monagan and Baris Tuncer. The complexity of sparse Hensel lifting and sparse
polynomial factorization. Journal of Symbolic Computation, 99:189 – 230, 2020.

[5] Jiaxiong Hu and Michael Monagan. A Fast Parallel Sparse Polynomial GCD Algorithm.
Proceedings of the ACM on International Symposium on Symbolic and Algebraic Compu-
tation, pages 271–278, New York, NY, USA, 2016. ACM.

22

[6] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach, Sixth
Edition. The Morgan Kaufmann Series in Computer Architecture and Design, 2017.

[7] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

[8] Intel Developer Services. MMX Technology Technical Overview, 1996.

[9] AMD. 3DNow! Technology Manual, 2000.

[10] Intel. Intel SSE4 Programming Reference, Reference number: D91561-003, 2007.

[11] K. Diefendorf. Altivec extension to Power PC accelerates media processing, 2001.

[12] Intel. Intel Architecture Instruction Set Extensions Programming Reference, Number:
319433-012A, 2012.

[13] Intel. Intel Architecture Instruction Set Extensions Programming Reference, Number:
319433-024, 2016.

[14] Joris Van Der Hoeven, Grégoire Lecerf, and Guillaume Quintin. Modular SIMD arithmetic
in Mathemagix. ACM Trans. Math. Softw., 43(1):5:1–5:37, August 2016.

[15] Richard E. Zippel. Probabilistic algorithms for sparse polynomials. Symbolic and Algebraic
Computation, EUROSAM ’79, pages 72:216–226, Berlin, Heidelberg, 1979. Springer.

[16] Richard E. Zippel. Interpolating polynomials from their values. Journal of Symbolic Com-
putation, 9(3):375 – 403, 1990.

[17] Michael Monagan and Baris Tuncer. Sparse multivariate polynomial factorization: a high-
performance design and implementation. Mathematical Software – ICMS 2018, pages 359–
368, Cham, 2018. Springer International Publishing.

[18] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, STOC ’88, pages 301–309, New York, NY, USA, 1988. Association
for Computing Machinery.

[19] Daniel S. Roche. What can (and can’t) we do with sparse polynomials? In Proceedings of
the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC
’18, pages 25–30, New York, NY, USA, 2018. ACM.

[20] Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial GCD algorithm.
Journal of Symbolic Computation, 2019 (submitted).

[21] Joris Van Der Hoeven and GréGoire Lecerf. On the Bit-complexity of Sparse Polynomial
and Series Multiplication. Journal of Symbolic Computation, 50:227–254, March 2013.

[22] Michael Monagan and Alan Wong. Fast Parallel Multi-point Evaluation of Sparse Poly-
nomials. Proceedings of the International Workshop on Parallel Symbolic Computation,
pages 4:1–4:7, New York, NY, USA, July 2017. ACM.

[23] Agner Fog. Optimizing software in c++. an optimization guide for windows, linux and
mac platforms. Technical report, Technical University of Denmark, 2018. https://www.

agner.org/optimize/.

23

[24] R. Alverson. Integer division using reciprocals. Proceedings 10th IEEE Symposium on
Computer Arithmetic, pages 186–190, June 1991.

[25] Henry G. Baker. Computing a*b (mod n) efficiently in ansi c. SIGPLAN Not., 27(1):95–98,
January 1992.

[26] Paul Barrett. Implementing the rivest shamir and adleman public key encryption algorithm
on a standard digital signal processor. Advances in Cryptology — CRYPTO’ 86, pages
311–323, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[27] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers using multi-
plication. Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, pages 61–72, New York, NY, USA, 1994. ACM.

[28] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, 1985.

[29] N. Moller and T. Granlund. Improved division by invariant integers. IEEE Transactions
on Computers, 60(2):165–175, Feb 2011.

[30] Matthew Gibson and Michael Monagan. Optimizing and Parallelizing the Modular GCD
Algorithm. In Proceedings of the 2015 International Workshop on Parallel Symbolic Com-
putation, PASCO ’15, pages 44–52, New York, NY, USA, 2015. ACM.

[31] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6):1955–1988, June 2005.

[32] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.

[33] Gabriell Orisaka, Julio López, and Diego F. Aranha. Finite field arithmetic using avx-512
for isogeny-based cryptography. XVIII Simpósio Brasileiro de Segurança da Informação e
Sistemas Computacionais (SBSeg 2018), pages 49–56, 2018.

[34] Marshall Law and Michael Monagan. A parallel implementation for polynomial multiplica-
tion modulo a prime. Proceedings of the 2015 International Workshop on Parallel Symbolic
Computation, pages 78–86, New York, NY, USA, 2015. ACM.

[35] Romain Dolbeau. Theoretical peak FLOPS per instruction set: a tutorial. The Journal of
Supercomputing, 74(3):1341–1377, Mar 2018.

[36] J. Jean and S. Graillat. A parallel algorithm for dot product over word-size finite field
using floating-point arithmetic. 12th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 80–87, 2010.

24

