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Abstract
We study best-arm identification with fixed con-
fidence in bandit models with graph smoothness
constraint. We provide and analyze an effi-
cient gradient ascent algorithm to compute the
sample complexity of this problem as a solution
of a non-smooth max-min problem (providing in
passing a simplified analysis for the unconstrained
case). Building on this algorithm, we propose
an asymptotically optimal strategy. We further-
more illustrate by numerical experiments both the
strategy’s efficiency and the impact of the smooth-
ness constraint on the sample complexity. Best
Arm Identification (BAI) is an important challenge
in many applications ranging from parameter tun-
ing to clinical trials. It is now very well understood
in vanilla bandit models, but real-world problems
typically involve some dependency between arms
that requires more involved models. Assuming a
graph structure on the arms is an elegant practical
way to encompass this phenomenon, but this had
been done so far only for regret minimization. Add-
ressing BAI with graph constraints involves deli-
cate optimization problems for which the present
paper offers a solution.

1 Introduction
This work is devoted to the optimization of a stochastic func-
tion on a structured, discrete domainA = [K] , {1, . . . ,K}.
We consider the noisy black-box model: a call to the function
at point a ∈ A yields an independent draw of an unknown
distribution νa ∈ F with mean µa, where F is some family
of probability laws. At each time step t ∈ N, a point At ∈ A
can be chosen (based on past observations) and the corres-
ponding random outcome Yt of law νAt is observed.

The signal µ , (µ1, . . . , µK)T is assumed to be smooth in
the following sense: A is equipped with a fixed and weighted
graph structure G with adjacency matrix W = (wa,b)a,b∈A,
and µ satisfies the graph smoothness property:

SG(µ) ,
∑
a,b∈A

wa,b
(µa − µb)2

2
= µTLµ = ‖µ‖2L ≤ R

∗Contact Author

for some (known) smoothness parameter R, where L is the
graph Laplacian defined as: La, b = −wa, b for a 6= b and
La, a =

∑
b6=a wa, b. This enforces values of means (µa)a at

two points a, b ∈ A to be close to each another if the weight
wa,b is large.

Following a classical framework in statistical testing, a risk
parameter δ is fixed, and the goal is to design an algorithm
that successfully maximizes µ on A as fast as possible, with
failure probability at most δ. More specifically, the algorithm
consists of a sampling rule (ψt)t≥1 that chooses to observe
At = ψt(A1, Y1, . . . , At−1, Yt−1) at step t, and a stopping
rule τ such that whatever the distributions ν = (νa)a∈A ∈
FK , satisfies the constraint

Pν
(
Aτ+1 ∈ a∗(µ) , arg max

i∈[K]

µi

)
≥ 1− δ .

Among all such algorithms, the goal is to minimize the
sample complexity Eµ[τ ].

This problem is known in the multi-armed bandit literature
as best-arm identification with fixed confidence [Even-Dar et
al., 2006; Gabillon et al., 2012]. In that context, points of
the domain A are called arms and the set of distributions ν
is called a model. Bandit models have raised strong interest
in the past years, as multi-armed bandits were gaining pop-
ularity thanks to their ability to model a variety of real-world
scenarios while providing strong theoretical guarantees for
the proposed algorithms. For an introduction to the theory of
bandit models and a recent list of references, see [Lattimore
and Szepesvári, 2019] and references therein. Best-arm iden-
tification, in particular, has many implications in artificial in-
telligence and data science. For example, in pharmacology,
the optimal drug dosage depends on the drug formulation but
also on the targeted individuals (genetic characters, age, sex)
and environmental interactions. In the industrial context, the
shelf life and performance of a manufacturing device depend
on its design, but also on its environment and on uncertain-
ties during the manufacturing process. As for targeted re-
commender systems, their efficiency depends on the ability
to understand users’ preferences despite the high variability
of choices. Lastly, the performance of a deep neural net-
work depends on its (hyper-)parameters and on the quality of
the training set. This short list is of course not comprehens-
ive, but the automation of these representative optimization
tasks is one of the great challenges of modern artificial in-



telligence in the fields of personalized medicine, predictive
maintenance, online marketing, and autonomous learning.

The problem of best-arm identification has recently re-
ceived a precise solution for the vanilla version of the multi-
armed bandit problem, where the learner gains informa-
tion only about the arm played. [Garivier and Kaufmann,
2016a; 2019] (see also [Russo, 2016]) have described the
information-theoretic barriers of the sample complexity in
the form an instance-optimal lower bound on Eµ[τ ]; further-
more, they have proposed a strategy, called Track-and-Stop,
that asymptotically reaches this lower bound.

However, the vanilla bandit model is extremely limiting in
many applications, and some additional information has to be
incorporated into the learning process. Recently, several pa-
pers studied multi-armed bandit problems with the ability to
capture the rich structure of real-world problems. In particu-
lar, [Degenne and Koolen, 2019; Degenne et al., 2019] have
extended the results mentioned above to classes of possibly
structured bandits with possibly different goals. In parallel,
a fruitful approach to handle large and organized domains
is assume the existence of a graph structure on top of arms
which provides additional information. There are two most
dominant approaches to use this graph structure. The first
approach is to use graphs to encode additional information
about other arms; playing an arm reveals (fully or partially)
the rewards of all the neighbors [Mannor and Shamir, 2011;
Alon et al., 2013; Kocák et al., 2014; Alon et al., 2017; Kocák
et al., 2016b; 2016a]. The second approach is to encode the
similarities between arms by the weights of the edges; the
rewards of connected arms are similar [Valko et al., 2014;
Kocák et al., 2014; Kocák et al., 2019]. This second ap-
proach, which we adopt in this paper, easily permits to cap-
ture a lot of information about the problem by the creation
of a similarity graph, which explains its wide use in signal
processing, manifold, and semi-supervised learning. How-
ever, most of the work in multi-armed bandits with structure
has been done so far under the regret minimization objective,
while best arm identification (a practically crucial objective
in autoML, clinical trials, A/B testing, etc.) was mostly neg-
lected.

1.1 Our Contributions

In this paper, we aim to fill this gap by combining the best arm
identification work of [Garivier and Kaufmann, 2016a] with
the spectral setting of [Valko et al., 2014], resulting in spectral
best arm identification problem. This setting captures a rich
variety of real-world problems that have been neglected so
far. We also analyze this setting and provide instance-optimal
bounds on the sample complexity. Inspired by [Degenne and
Koolen, 2019], we use a game-theoretical point of view on the
problem which enables us to obtain two main contributions of
this paper:

Contribution 1: simplified and enlightening game-
theoretic analysis for the unconstrained case (case without
the spectral constraint) of [Garivier and Kaufmann, 2016a]
that brings new insights to the problem which enable us to
extend the analysis to the constrained case.

Contribution 2: building upon the unconstrained case, we
provide and analyze an algorithm that computes the sample
complexity as well as the optimal arm pulling proportions in
the constrained case. We use this algorithm to propose an
asymptotically optimal strategy for fixed-confidence best-arm
identification and we provide numerical experiments support-
ing the theoretical results and showing the interest of the
graph constraint for reducing the sample complexity.

1.2 Assumptions
A standard assumption on the family F of considered prob-
ability laws is that they form an exponential family of distri-
butions parametrized by theirs means so that a bandit prob-
lem is fully described by the vector µ , (µi, . . . , µK)T.
To avoid technicalities and to emphasize the methodological
contributions of this paper (ie. how to perform optimal best-
arm identification with graph regularity constraints), we fo-
cus here on the case of Gaussian distributions with variance
1. For the same reason, we assume here that the vector µ
has a unique maximum also denoted by a∗(µ). We fur-
thermore denote byMR = {λ ∈ RK : λTLλ ≤ R} the con-
strained set of considered signals (bandit problems), and by
µ∗ , maxi∈[K] µi = µa∗(µ) the maximum of the signal µ
(we identify the best arm with s singleton a∗(µ)).

1.3 Paper Structure
The paper is organized as follows: Section 2 discusses the
information-theoretic lower bound and a simple algorithm for
the unconstrained case, previously analyzed by [Garivier and
Kaufmann, 2016a], with focus on new techniques that consid-
erably simplify the analysis. The constrained case requires
more care: we propose in Section 3 a mirror gradient as-
cent algorithm to compute optimal arm allocation and show
non-asymptotic bounds of convergence for this algorithm.
Using this procedure permits us in Section 4 to present the
SpectralTaS algorithm as an extension of the Track-and-
Stop devoted to best-arm identification with graph regular-
ity constraint, that reaches the instance-optimal sample com-
plexity. We illustrate its performance and the impact of the
smoothness constraint on the sample complexity by reporting
some numerical experiments.

2 Sample Complexity
The general information-theoretical lower bound analysis
provided by [Garivier and Kaufmann, 2016b] applies to any
set of bandit problems, in particular to the set of all the prob-
lems with smoothness bounded from above by R.

Proposition 1. For any δ-correct strategy and any bandit
problem µ

Eµ[Tδ] ≥ T ∗R(µ)k(δ, 1− δ)
where

T ∗R(µ)−1 , sup
ω∈∆K

inf
λ∈AR(µ)

∑
a∈[K]

ωak(µa, λa) (1)

for ∆K being K-dimensional simplex, k(µa, λa) KL-
divergence between distributions parametrized by µa and λa,



and for the set AR(µ) of bandit problems with different best
arm than µ, defined as

AR,i(µ) ,
{
λ ∈MR : λi ≥ λa∗(µ)

}
AR(µ) , ∪i 6=a∗(µ)AR,i(µ).

Indeed, even if the constrained case is not explicitly
covered there, this result is easily shown by following the
lines of the proof of Theorem 1 in [Garivier and Kaufmann,
2016b], with AR(µ) as the set of alternatives to µ.

This lower bound proves to play an important role
in designing algorithms for the best arm identification
since, roughly speaking, the time needed to distinguish
between bandit problems µ and λ, if the number of pulls
of arm i is proportional to ωi, scales with inverse of∑
a∈[K] ωak(µa, λa). Therefore, the minimization part of

problem (1) selects the alternative problem which is the most
difficult to distinguish from µ while playing according to ω
while, on the other hand, the maximization part of problem
(1) choosesω such that the expected stopping time is as small
as possible, even in the worst case scenario chosen by the
minimization part of the problem.

Thus, a sampling strategy playing according to ω∗(µ) that
maximizes expression (1) is optimal in the worst case, and
having a procedure that computes optimal ω∗(µ) enables
to design a best arm identification algorithm with optimal
sample complexity.

In this section, we provide an algorithm to compute this
sample complexity T ∗R(µ) as well as the optimal proportion
ω∗(µ) of the arm allocation for the learner. We proceed in
three steps.
Step 1: we introduce the best response oracle that com-
putes the best response λ∗(ω) to fixed ω by solving the min-
imization part of problem (1) for chosen ω:

λ∗(ω) ∈ arg min
λ∈AR(µ)

∑
a∈[K]

ωak(µa, λa) .

Step 2: we show that substituting the minimization part of
problem (1) by λ∗(ω), the resulting maximization problem is
concave with respect to ω. Moreover, supergradient for this
problem is computable using the same best response oracle
we used for the minimization part of the problem.
Step 3: using supergradient we can apply any supergradi-
ent ascent algorithm to find optimal arm allocation ω∗. The
algorithm of our choice is mirror ascent with generalized neg-
ative entropy as a mirror map. We chose this algorithm due
to its strong guarantees on convergence rate in simplex setup
however, even basic gradient-based algorithms could be ap-
plied. The choice of mirror ascent algorithm will be apparent
later in Section 3, we show that this algorithm enjoys conver-
gence rate proportional to

√
logK instead of

√
K of the basic

supergradient ascent algorithm.

As briefly mentioned in the introduction, for the sake
of simplicity of presentation, we assume that the distribu-
tions νµa

are Gaussian. This simplifies some of the calcu-
lations while our bounds remain true even in the case of sub-
Gaussian random variables, including a wide class of distri-

butions among which any distributions with bounded support
or Bernoulli distribution.

Even though using a general exponential family of probab-
ility distributions uses similar techniques, all the proofs are
more technical and rather out of the scope of a conference
paper.

With assumption that the distributions associated with arms
are Gaussian with normalized variance, KL-divergence of
νµa and νλa can be expressed as

k(µa, λa) =
(µa − λa)2

2
.

2.1 Best Arm Identification without Spectral
Constraint

This section is dedicated to the vanilla setting of [Garivier and
Kaufmann, 2016a]. Even though this problem can be seen as
a special case of spectral setting either (for the edgeless graph
or for smoothness parameterR being∞), we have decided to
analyze it separately. The reason is that we can demonstrate
techniques later used in the constrained case while proving
the main result of [Garivier and Kaufmann, 2016a] with more
insightful arguments that are significantly more elegant. Also,
not having the spectral constraint allows us to have best re-
sponse oracle with a closed-form solution which implies a
simple way of finding optimal arm allocation ω∗. This is
very different from the spectral setting where best response
oracle does not have a closed-form solution and therefore, we
can not avoid a numerical procedure to find ω∗.
Theorem 2. Without loss of generality, assume that µ1 >
µ2 ≥ · · · ≥ µK and define {xa(c)}Ka=2, for some positive
constant c, recursively as

xK(c) = c

xa−1(c) = (1 + xa(c))

(
µ1 − µa−1

µ1 − µa

)2

− 1

for 2 < a ≤ K. Let f(c) be a function with parameter c
defined as

f(c) =

K∑
a=2

xa(c)2

Then there exist c∗ ∈ R+ s.t. f(c∗) = 1 and we obtainω∗(µ)
as

ω∗1(µ) =
1

1 +
∑K
a=2 xa(c∗)

ω∗a(µ) = xa(c∗)ω∗1(µ)

Remark. Since µ1 > µa−1 ≥ µa, we see that(
µ1 − µa−1

µ1 − µa

)2

≤ 1 ,

which in consequence means that. If xa(c) is negative,
xa−1(c) is negative as well. If xa(c) is positive, xa−1(c) ≤
xa(c). Thus, f(0) ≤ 0. Moreover, f is an increasing and
continuous function with limc→∞ f(c) = ∞. Therefore, the
existence of c∗ is guaranteed.

In the rest of this section, we build the necessary tools to
provide the proof of Theorem 2.



Best Response Oracle - Vanilla Setting
In the case of smoothness R = ∞, the spectral constraint
is always satisfied which provides a very simple closed form
solution for the best response oracle given by the following
lemma.
Lemma 3. Let ω be a fixed vector from ∆K . Then the best
response λi(ω) ∈ A∞,i(µ) with the best arm i is

λi(ω) = (t, µ2, . . . , µi−1, t, µi+1, . . . , µK)T

for t being a weighted average of µ1 and µi with weights ω1

and ωi
t =

µ1ω1 + µiωi
ω1 + ωi

.

The proof of this Lemma can be obtained by simple calculus.

Game-Theoretical Point of View
Our optimization problem (1) can be seen as a zero sum game
where Player 1 plays a vector from simplex ∆K and Player 2
plays point λ fromAR(µ). We would like to have guarantees
on the existence of Nash equilibrium however AR(µ) is not
a convex set which poses a problem. Also, we can not dir-
ectly convexify the problem since it would change the value
of T ∗R(µ)−1. To get around this obstacle, we define

DR,i(µ) , {(k(µ1, λ1), . . . , k(µK , λK))T : λ ∈ AR,i(µ)} ,
DR(µ) , ∪i 6=a∗(µ)DR,i(µ) .

This enables us to rewrite the optimization problem in the
following form

T ∗R(µ)−1 , sup
ω∈∆K

inf
d∈DR(µ)

ωTd (2)

where Player 2, instead of playing λ, plays vectors of diver-
gences (k(µ1, λ1), . . . , k(µK , λK))T where the element on
position i of the vector is divergence k(µi, λi) of the dis-
tributions corresponding to i-th elements of µ and λ. This
still haven’t solve our issue with non-convexity of setDR(µ),
however, now we can simply optimize over the convex hull
of DR(µ)

T ∗R(µ)−1 , sup
ω∈∆K

inf
d∈Conv(DR(µ))

ωTd (3)

and the following lemma guarantees that the values of optim-
ization problems (2) and (3) are the same.
Lemma 4. Let ω be a vector in RK and D be a compact
subset of RK then

inf
d∈D

ωTd = inf
d∈Conv(D)

ωTd

where Conv(D) is the convex hull of D.
Now we are left a zero sum game (3) with convex and com-

pact sets of actions for both players. This guarantees exist-
ence of Nash equilibrium with the best actions denoted by
ω∗(µ) and d∗(µ). Whole purpose of seeing (3) as a zero-
sum game is the following lemma
Lemma 5. Let ω∗(µ) and d∗(µ) are vectors for which Nash
equilibrium of game (3) is attained then there exist a constant
c such that

d∗i (µ) = c, for all i ∈ [K].

Proof of Theorem 2
Now we have all necessary tools to prove Theorem 2. Note
that we still assume that µ1 > µ2 ≥ · · · ≥ µK . Let ω∗ be the
Nash equilibrium strategy. As we showed in Lemma 3, the
best response λi(ω∗) ∈ A∞,i(µ) to ω∗ has a particular form

λi(ω∗) = (t, µ2, . . . , µi−1, t, µi+1, . . . , µK)T ,

where t =
µ1ω

∗
1 + µiω

∗
i

ω∗1 + ω∗i
. This λi(ω∗) corresponds to point

di(ω∗) from DR,i defined as

di(ω∗) = (yi, 0, . . . , 0, zi, 0, . . . , 0)T

for yi = (µ1 − ui)
2/2 and zi = (µi − ui)

2/2. It is im-
portant to notice that the only two non-zero elements are at
positions 1 and i. The Nash equilibrium strategy d∗ of Player
2 can be expressed as a convex combination of optimal points
fromDR(µ) as showed in Lemma 4. The only candidates are
points di(ω∗) for i ∈ {2, . . . ,K} since all the other points
from DR(µ) are sub-optimal. Moreover, using Lemma 5 we
know that all the elements of d∗ are equal which in particular
means that d∗ needs to be a convex combination of all K − 1
vectors di(ω∗) and all of them are equally good and from the
definition of di(ω∗) we have

(ω∗)Tdi(ω∗) = (ω∗)Tdj(ω∗)

for every i, j ≥ 2. This expression can be further modified to
obtain

ω∗i
ω∗1

=

(
1 +

ω∗j
ω∗1

)(
µ1 − µi
µ1 − µj

)2

− 1

Denoting ω∗
2

ω∗
1

by c∗ and using i = j − 1 we directly obtain

that the recurrence from the theorem holds for xi(c∗) =
ω∗

i

ω∗
1

.
Therefore, it is enough to know c∗ and ω∗1 to reconstruct ω∗.

Lemma 5 provides condition for d∗. We know that it can
be written as a convex combination of K − 1 vectors di(ω∗).
This is possible only if vector 1 of ones can be expressed as
their linear combination which gives us condition

K∑
i=2

di(ω∗)

zi
= 1 .

We know that all the elements of the resulting vector are equal
to 1 except for the first element which has a value

K∑
i=2

yi
zi

=

K∑
i=2

(
ω∗i
ω∗1

)2

=

K∑
i=2

xi(c
∗)2 = f(c∗).

Therefore, this value has to be 1 too, which gives us the
second part of the theorem. Now we can recover all the ratios
ω∗i /ω

∗
1 and we also know that the sum of all ωi is 1 which

provides all the necessary ingredients for the proof of the last
part of the theorem.

2.2 Best Response Oracle - Spectral Setting
As we showed in Section 2.1, Lemma 3, finding the best
response to ω, in the vanilla setting, is not a difficult prob-
lem since the optimization problem involves only linear con-
straints. The situation in the spectral setting is a little bit more
complicated.



In this part, we again assume that µ1 > µ2 · · · ≥ µK and
focus on the best response oracle

λ∗(ω) = arg min
λ∈AR(µ)

∑
a∈[K]

ωa
(µa − λa)2

2

in spectral setting, whereR is a finite upper bound on smooth-
ness of µ with respect to graph G given by its Laplacian L.
We first find best responses

λi(ω) = arg min
λ∈AR,i(µ)

∑
a∈[K]

ωa
(µa − λa)2

2

with respect to convex setsAR,i(µ) and then take the best out
of these K − 1 vectors.

First of all, notice that if the response of vanilla oracle
denoted by λi∞(ω) has smoothness smaller than R, the re-
sponse of spectral oracle should be the same. In the case
where SG(λi∞(ω)) ≥ R we can restrict our search and look
for λ with SG(λ) exactly R thanks to the following lemma.
Lemma 6. Let λi∞(ω) be the response of vanilla oracle such
that λi∞(ω)TLλi∞(ω) > R then the response of spectral or-
acle λi(ω) satisfies λi(ω)TLλi(ω) = R.

2.3 Best Response Oracle Implementation
Now lets consider the case where vanilla oracle produces a
vector that does not satisfy smoothness constraint. In this
case we know, using Lemma 6, that the best response λi(ω)
of spectral oracle has smoothness R. Therefore, we can use
standard Lagrange multiplier method to solve this problem.

F (λ, γ) ,
∑
a∈[K]

ωa
(µa − λa)2

2
+ γ (λTLλ−R)

We should not forget that we still need to ensure that λ1 = λi
since we want to find the solution inAR,i(µ) with best arm i.
Therefore, we can simplify the notation and later calculations
by the following definitions

• λ̃: created from λ by removing the first component
• ω̃: created from ω by removing the first component
• µ̃: created from µ by averaging components 1st and i-th

components w.r. to ω and removing the first component

µ̃i−1 =
ω1µ1 + ωiµi
ω1 + ωi

.

• L̃: created from L by adding the first row and column
to i-th row and column, adjusting diagonal element Li,i
so that the sum in the i-th row is zero, removing the first
row and column

Using previous definitions we can define

F̃ (λ̃, γ) ,
∑

a∈[K−1]

ω̃a
(µ̃a − λ̃a)2

2
+ γ(λ̃TL̃λ̃−R)

for which F̃ (λ̃, γ) = F (λ, γ) + c holds, assuming that
λ1 = λi. The identity can be checked by using previous
definitions. The main advantage of this transformation is that

now we don’t have any constraint on λ̃. Now we can take par-
tial derivatives with respect to λ̃j and γ and set them equal to
0 in order to find the best λ̃ and later reconstruct λ:

∇λ̃F̃ (λ̃, γ) = Ω̃(λ̃− µ̃) + 2γL̃λ̃ = 0 ,

∂F (λ̃, γ)

∂γ
= λ̃TL̃λ̃−R = 0 ,

where Ω̃ is a diagonal matrix with ω̃ on its diagonal. First
expression is just a system of K − 1 linear equations with
parameter γ with solution

λ̃(γ) = (Ω̃ + 2γL̃)−1Ω̃µ̃ .

To find the best γ so that also the second expression is true,
we can use for example bisection method.

The last step is choosing i > 1 that minimizes F (λ, γ).

Properties of Maximization Problem
Before we proceed to the algorithm computing optimal
ω∗(µ) we need the following two lemmas to be able to com-
pute supergradients and guarantee the convergence of the al-
gorithm.

Lemma 7. Let D ⊆ RK be a compact set. Then function
f : ∆K → R defined as f(ω) = infd∈D ω

Td Is a concave
function and d∗(ω) = arg mind∈D ω

Td is a supergradient of
f at ω.

Lemma 8. Let f : ∆K → R be a function such that

f(ω) = inf
λ∈AR(µ)

K∑
i=1

ωik(µi, λi) .

Then function f is L-Lipschitz with respect to ‖ · ‖1 for any

L ≥ max
i,j∈[K]

k(µi, µj) .

3 Best Arm Allocation Algorithm
Now that we are able to compute best response λ∗(ω)
and therefore, supergradient of concave function f(ω) =∑
a∈[K] ωak(µa, λ

∗
a(ω)) at ω, we have all the ingredients

needed for any supergradient-based algorithm to compute
best arm allocation ω∗ = arg maxω∈∆K

f(ω). The al-
gorithm of our choice is mirror ascent algorithm with gen-
eralized negative entropy as the mirror map:

Φ(ω) =
∑
a∈[K]

(ωi log(ωi)− ωi) .

Theorem 9. Let ω1 = ( 1
K , . . . ,

1
K )T and learning rate η =

1
L

√
2 logK

t . Then mirror ascent algorithm optimizing func-
tion f defined on ∆K with generalized negative entropy Φ as
the mirror map enjoys the following guarantees

f(ω∗)− f

(
1

t

t∑
s=1

ωs

)
≤ L

√
2 logK

t

for any L ≥ maxi,j∈[K] k(µi, µj).
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Figure 1: Theoretical vs empirical expected stopping time as a func-
tion of smoothness parameter R with optimal value of R being 0.01.

Proof. It is easy to show that Φ is 1-strongly convex w.r.t.
‖ · ‖1 and supω∈∆K

Φ(ω)− Φ(ω1) ≤ logK since∑
a∈[K]

[
ωa logωa −

1

K
log

1

K

]
≤
∑
a∈[K]

− 1

K
log

1

K
= logK

holds for any ω ∈ ∆K . Using Lemma 8 we have that f is L-
Lipschitz w.r.t. ‖ · ‖1 for any L ≥ maxi,j∈[K] k(µi, µj). This
gives us all the necessary ingredients mirror ascent guarantees
in Theorem 4.2 from [Bubeck, 2015].

3.1 Value of Spectral Constraint
Having an assumption that captures the problem might im-
prove the learning speed significantly. We demonstrate this
effect in a simplistic scenario where µ = (0.9, 0.5, 0.6)T,
graph has only one edge between nodes 2 and 3, and the range
of R is from 0.01 = µTLµ to 0.1. R = 0.1 is completely
non-restrictive and the best response to every ω is the same
as in the best arm identification problem without the spectral
constraint. This can be seen on Figure 1 where we plot the
value of T ∗R(µ) (red curve) as a function of R which is pro-
portional to the stopping time lower bound.

4 Spectral BAI Algorithm
The algorithm for the best arm identification with the spec-
tral constraint SpectralTaS (Algorithm 1) is a variant
of Track-and-Stop algorithm introduced in [Garivier and
Kaufmann, 2016b]. We discuss the main ingredients of the
algorithm in the next part of this section.
Sampling rule. As a by-product of the lower bound
analysis, Proposition 1 provides the existence of optimal
sampling weights ω∗(µ) that need to be respected in order
to reach the optimal sample complexity. SpectralTaS
simply tracks, at every timestep, some guess of these optimal
proportions that is obtained by solving the sample complex-
ity optimization problem associated with the current estim-
ates µ̂t of the means µ. In order to capture a possibility
of the initial underestimation of an arm, some level of ex-
ploration is needed and enforced by the algorithm: for every
ε ∈ (0, 1/K], letω∗,ε(µ) be anL∞ projection ofω∗(µ) onto
∆ε
K defined as

{
(w1, . . . , wK) ∈ [ε, 1]K : w1 + · · ·+wK =

1
}

. Then the sampling rule is

At+1 ∈ arg max
a∈[K]

t∑
s=0

ω∗,εsa

(
µ̂(s)

)
−Na(t) . (4)

Algorithm 1 SpectralTaS
1: Input and initialization:
2: L : graph Laplacian
3: δ : confidence parameter
4: R : upper bound on the smoothness of µ
5: Play each arm a once and observe rewards ra
6: µ̂1 = (r1, . . . , rK)T : empirical estimate of µ
7: while Stopping Rule (5) not satisfied do
8: Compute ω∗(µ̂t) by mirror ascent
9: Choose At according to Sampling Rule (4)

10: Obtain reward rt of arm At
11: Update µ̂t according to rt
12: end while
13: Output arm A∗ = arg maxa∈[K] µ̂a

As shown in [Garivier and Kaufmann, 2016a] (Lemma 7 and
Proposition 9), the choice εs = (K2 + s)−1/2/2 ensures that
the number Na(t) of draws of arm a converges almost-surely
to ω∗a(µ) as t goes to infinity.
Stopping rule. The algorithm should stop as soon as it
has gathered sufficient evidence on the superiority of one
of the arms with risk δ. The design of an optimal sequen-
tial testing procedure for the hypothesis µa > maxb6=a µb
can be traced back to [Chernoff, 1959], and is discussed in
detail in [Garivier and Kaufmann, 2019]. We simply re-
call its form here: for two arms a, b ∈ [K], denote by
µ̂a,b(t) = (Na(t)µ̂a(t) + Nb(t)µ̂b(t))/(Na(t) + Nb(t)) and
by Za,b = sign

(
µ̂a(t) − µ̂b(t)

)(
Na(t)(µ̂a(t) − µ̂a,b(t))2 +

Nb(t)(µ̂b(t) − µ̂a,b(t))2
)
/2 the generalized likelihood ratio

statistics for the test µa > µb. Then the stopping rule is given
by

τ = inf
{
t ∈ N : max

a∈[K]
min
b6=a

Za,b(t) > β(t, δ)
}
, (5)

where β(·, ·) is a threshold function to be chosen typic-
ally slightly larger than log(1/δ). Theorem 10 in [Garivier
and Kaufmann, 2016a] shows that the choice β(t, δ) =
log(2t(K − 1)/δ) and Aτ+1 = arg maxa∈[K] µ̂a(τ) yields
a probability of failure Pν (Aτ+1 /∈ a∗(µ)) ≤ δ.
Empirical evaluation. Using the same experiment setting
as in Section 3.1 we have evaluated SpectralTaS for 10
different values of R ranging from true R = µTLµ = 0.01
to R = 0.1 and we plotted theoretical stopping time (red
line) as well as average and standard deviation of 20 runs of
SpectralTaS algorithm (blue line). Figure 1 shows that
the algorithm can utilize the spectral constraint and improve
stopping time significantly whenever the value of R is close
to the real smoothness of the problem, as suggested by theory.
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dio Gentile, and Yishay Mansour. From bandits to experts:
A tale of domination and independence. In Neural Inform-
ation Processing Systems, 2013.

[Alon et al., 2017] Noga Alon, Nicolò Cesa-Bianchi, Clau-
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ilie Kaufmann. Optimal Best Arm Identification with
Fixed Confidence. 29th Annual Conference on Learning
Theory, 2016.

[Garivier and Kaufmann, 2019] Aurélien Garivier and Em-
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Munos, and Shipra Agrawal. Spectral Thompson
sampling. In Proceedings of the National Conference on
Artificial Intelligence, 2014.
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