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Abstract—Compared to wired networks, Delay/Disruption Tol-
erant Networks (DTN) are challenging to monitor due to their
lack of infrastructure and the absence of end-to-end paths. This
work studies the feasibility, limits and convergence of monitoring
such DTNs. More specifically, we focus on the efficient monitoring
of intercontact time distribution (ICT) between DTN participants.
Our contribution is two-fold. First we propose two schemes
to sample data using monitors deployed within the DTN. In
particular, we sample and estimate the ICT distribution. Second,
we evaluate this scheme over both simulated DTN networks and
real DTN traces. Our initial results show that (i) there is a high
correlation between the quality of sampling and the sampled
mobility type, and (ii) the number and placement of monitors
impact the estimation of the ICT distribution of the whole DTN.

Keywords—DTN, Monitoring, Temporal random walk, Measure-
ment.

I. INTRODUCTION

Monitoring is an important task in networking. Indeed,
knowing the state of the network allows one to apply decisions
for optimizing and adapting communication to the context.
Monitoring over a DTN network should allow a fair trade-
off between the complexity and the scalability of the network
characterization. The natural temporal sampling of monitoring
provides a method to reduce the significant amount of data that
is needed to characterize some network feature or parameter.
This may be useful to improve DTN algorithms.

DTN monitoring and particularly the deployment of a
monitoring infrastructure raises numerous challenging issues.
For instance the notion of end-to-end path cannot be applied.
Moreover, opportunistic communication coupled with potential
network partitioning makes very challenging the construction
by some nodes of a consistent view of the network “state”.
DTN monitoring raises also the issue of the choice of the
metrics to monitor in order to make it possible for each
node to get as lightly and as quickly as possible a consistent
and useful view of the network dynamics. In such dynamic
context several questions arise. In particular, how many and
which nodes to select to perform an efficient monitoring?
Furthermore, given the mobility of nodes, can we define where
to monitor and how the monitors should move conjointly with
other nodes? In summary monitoring a DTN network combines
issues about temporal, spatial and nodes sampling that make
difficult finding an efficient solution. Finally, monitoring can
help to understand how the network evolves and when phase
changes occur, providing a bigger resilience to changes.

The intercontact time distribution (ICT) is a global charac-
terization of the DTNs [1] that delivers an abstraction of the

network complexity (e.g. mobility model, number of nodes).
Routing protocols, such the Spray and Wait [2] protocol, can
leverage on this parameter to adapt their behavior for insuring
some performances. The problem of evaluating intercontact
time just by monitoring this parameter from some networks
nodes is not trivial. Today, the common way to perform such
evaluation is to drive a statistical analysis of collected inter-
contact time data during a certain period of time between all
the nodes [1], [3]. Usually, this process is cumbersome and not
scalable when the increasing number of nodes. Furthermore,
the resulting statistical analysis gives an averaged view of the
network during a given period.

In this work we study the feasibility and limits of DTN
monitoring. Our main contributions are the following:

1) DTN Monitoring: we introduce the DTN monitor-
ing problem. We explain why the common network
monitoring approach does not completely suit in the
DTN case. We provide some insights on the impact of
time dependence in the metrics we can monitor. We
propose two methods to study the impact of the DTN
connection dynamics for monitoring: static monitoring
and dynamic monitoring.

2) Limits and convergence of ICT monitoring: we study
the ICT monitoring and how it can be presented as
a sampling problem. We provide both simulations and
real human traces analysis to study the convergence of
the proposed sampling methods. We study those limits
in terms of the total cost of deployment (number of
nodes monitored, memory cost)

Our main contribution is to weight up the trade-off between
the complete statistical analysis and the approximation given
by the monitoring model for the ICT.

The paper is structured as follows: in section II we drive an
analysis on the feasibility of monitoring a DTN network. In
section III we present our ICT sampling method. In sections IV
and V we test our algorithms over simulated and real DTNs.
We determine how many nodes are needed to perform the
monitoring (section VI). Later in section VII we present some
related work and we conclude in VIII.

II. DTN MONITORING

This section presents the problem statement for DTN moni-
toring and provides some key insights to characterize possible
solutions.

A. Why monitoring?
Since there are several opportunistic routing algorithms,

deploying a DTN assumes an agreement between networks



nodes on the routing optimization strategy and resulting se-
lected protocols. A newcomer in the network needs some hints
about the network features and dynamics for applying wise
routing decisions. Previous studies [1] showed that routing
protocol selection and configuration can be done knowing the
intercontact law between them. Having this characterization
allows to select both the right algorithm and the right config-
uration parameters to diffuse the information on the network.
Nevertheless, considering that this information is dynamic this
type of information has to be continuously monitored and
updated among the nodes.

B. What is DTN monitoring?
DTN monitoring raises different challenges than infrastruc-

tured wired/wireless network. This is due to the fact that:
(i) in a DTN there is no notion of end to end path defined
as a sequence of contiguous and contemporary links, (ii)
nodes and links spatio-temporal evolution plunges monitoring
in a highly dynamic context and (iii) introducing new nodes
or modifying some nodes behavior for monitoring purposes
potentially changes contact patterns and the observed and
monitored parameter.

C. How to monitor?
Monitoring a DTN is a complex process. We have already

stated the necessity to be non obtrusive to monitor contacts in a
DTN. This raises the question of monitoring nodes’ placement
and movement. We can “attach” our monitors to a subset of
nodes and follow them. Hence we will capture any contact the
node has with other peers. This attachment can be formally
expressed by a time mapping function map that defines at any
time the set of monitoring nodes.

For instance, Figure 1 depicts the mapping function map =
{(M1, 1), (M2, 2), (M3, 7)}. This mapping function entails
two layers of interactions, respectively the nodes plane and
the monitors plane. In the nodes plane we see all the existing
spontaneous links between nodes, for instance the node 1 is
connected with nodes 2 and 3. Since node 1 is associated
with monitor M1 by the mapping function, the later in the
monitoring plane will capture both established connections.
We can see in red all the contacts that we are able to capture
with the current mapping. Notice that this mapping can be
a function of time in order to follow the evolution of the
network dynamic. Hence in a posterior time we might see M1

associated with another node than 1. This leads us to introduce
the following distinction:
• Static monitoring: when the association between nodes

and monitors is invariant over the observation time;
• Dynamic monitoring: when there is a time depending

process that associates nodes and monitors over the
observation time.

The idea behind this distinction is that in the first case
we keep a regular monitor strategy; while in the second
we introduce the connections dynamics to provide diversity.
Nevertheless, this diversity may have an associated cost. Given
a metric and a time depending process, we may need to engage
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Figure 1: Monitor architecture in DTN

the nodes in the node plane to keep extra information in
memory to perform the monitoring. Notice that the notion of
static and dynamic monitoring is related with the monitoring
process evolution and not with the movement of the nodes:
a static monitor does not imply its associated node does not
move in the space.

We can also leverage the fact that in the monitor plane we
can also have spontaneous contacts between monitor. Since
each monitor will potentially monitor disjoint areas of the
DTN, we need to define a way to exchange information
between monitor nodes contacts. Exchanging this information
between monitors may be resource consuming, therefore we
propose this exchange policy must be done taking into account
two key factors: (i) time relevance (exchange fresh information
if possible) (ii) summarized information (prefer summarized
metrics if possible).

Finally, defining the mapping function is not trivial. In
the following we will use these two strategies and assess
their capacity to deliver an accurate estimation of the ICT
distribution. We study their complexity and resource use.

D. Which metric to monitor?
Several parameters can potentially offer a monitoring inter-

est in a DTN in order to get an as complete as possible view of
the network state. One can cite, the number of active nodes,
the diameter of the network, the delivery ratio. We already
underlined the importance of the knowledge of ICT distribution
for applying wise routing decisions. Therefore in the rest of
this paper we will focus on ICT monitoring. However the
promoted monitoring approaches are generic enough to be used
for monitoring a wide range of parameters.

III. A SIMPLE MONITORING MODEL FOR ICT

This section presents the model basics to characterize the
intercontact time. We define some basic notation and then
we explain how to build the approximate characterization of
the intercontact time. Then we define what we understand as
intercontact time approximation.

A. Model basics
Given the set N = {1, 2, . . . , n} of nodes and a discretized

time set T = {t1, t2, . . . , tT }, we model a DTN as a finite
set of graphs snapshots G = {Gt1 , Gt2 , . . . , GtT }, where Gti
represents the connection graph at time ti. The time window
δ = ti+1−ti,∀i defines the granularity with which we observe
at a discrete level the evolution of the network.
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Figure 2: Evolution of the dynamic random walk process

We define the intercontact time for two distinct nodes (i, j)
as the time elapsed between two successive contacts between
them. The pairwise intercontact time distribution ICT(i,j)(t)
is the intercontact times we observe for a pair (i, j) along the
time T . The global intercontact time ICT (t) is the ecdf1 for
∪i,jICT(i,j)(t). The set of connections defined by (i, j) may
not necessarily be the same defined by (j, i). This is due to
the inherent behavior of some wireless protocols or because
measuring problems. In this work we assume that the pairwise
distribution for (i, j) and (j, i) are the same. By definition
we see that to characterize the global ICT (t) we need to
know all the pairwise ICT(i,j)(t) distributions. Due to the
difficulty to gather all the pairwise distributions, we propose to
select a subset of nodes that can approximate the global ICT
distribution2.

Finally, the mapping function is defined as map :M×T →
N , where M is the set of available monitors.

B. ICT monitoring: what do you mean?

Since ICT is defined as a probability distribution, the prob-
lem is reduced to construct an estimation of this distribution.
We define as 〈ICT 〉 the estimation of the ICT distribution
delivered by the monitoring process. In the following, we
propose to investigate methods providing representative 〈ICT 〉
sampling of the whole network. Notice that we can generalize
this method to |M| monitors. Each one will gather 〈ICT 〉k.
It follows that 〈ICT 〉 = ∪k 〈ICT 〉k.

1) Static monitoring: We define S as a random sample of
size |M| from the set N . The mapping is defined associating
each node from the random sample to an available monitor
for the whole duration of the monitoring process. Formally
map : Mi → i ∀i ∈ S . Notice that this relationship is not
time dependent, hence we say the monitor nodes are static.

2) Dynamic monitoring: In this case we use a temporal
random walk to define the mapping function map for each
step of the monitoring process (III-C, III-D). In the case of
multiple monitors we assume that we do not map more than
one monitor per node to maximize the sampling coverage of
the monitoring. Of course in this approach we do not know
where will finish each token. We do not deal with the tokens’
recollection problem in this paper.

1ECDF: empirical cumulative distribution function
2Notice the abuse of notation for the ICT dataset and its associated ICT (t)

function. We will treat them both indistinguishable.

C. Temporal random walks

Random walks are a simple and well known way to sample
static graphs [4], [5], [6]. Some extensions propose to either
run in parallel with multiple walkers [5] or to study the
temporal case [6]. Our proposed monitoring scheme is based
on a multi-temporal random walk which combines these two
approaches.

A random walk in a static graph starts from one node of
the network. Then the walk progresses choosing with uniform
probability among the edges that are connected. The process
of selecting randomly the edges will deliver both: a sample of
edges and a subset of nodes (the ending of the selected edges).

In the dynamic graphs or networks case, we define a random
walk process through the temporal graph. We select a starting
node n1. After γ time we randomly select one of its current
neighbors and walk towards this node. We repeat this process
at rate γ starting from the last selected node. Therefore a
temporal random walk is able to walk along dynamic path
that does not exist in any timed graph of the dynamic graph.
In the following we will consider that γ = δ.

For instance, in Fig. 2 we see that at time t1 we select A
as starting node. At this time, the A node is connected with
nodes {B,C,D}. Randomly C is selected. Then at time t2
the connections have changed. We can see that C is connected
with nodes {B,D}. In this case we select randomly the node
B. Finally at time t3 we can just jump into the node E. Here
we notice that in the temporal random walk we can profit
from temporal paths that are created with the evolution of the
communication: the path between A and E just exists in terms
of other nodes contacts.

D. Temporal random walks to sample ICT

To understand the monitoring selection process we can take
the image of a token that can be passed among the nodes
as a right to monitor. While a node holds the token it will
have associated a monitor and record the intercontacts in the
token. Then the token will be passed by the temporal random
walk and hence 〈ICT 〉 will be collected. In Fig. 2 we see that
the token is passed among nodes in the following sequence:
{A t1−→ C,C

t2−→ B,B
t3−→ E} and hence the mapping function

will be map = {((M1, t1), A), ((M1, t2), C), ((M1, t3), B)}.
Here 〈ICT 〉 is constructed as the union of the intercontact
time values sampled by the token at each connection (i, j).

Since the rate of the temporal random walk is the same
than the granularity of the network evolution (γ = δ), the
probability to sample an intercontact time among two nodes
is 0 (the token will walk out from the node before the two
nodes are in contact again). Instead we propose the following
extension: in the node plane we keep a memory of the contacts
we had in the past and we use the temporal random walk to
recollect the sampling data from that memory. We propose
three strategies to compare the impact of the associated mem-
ory and selection process. Given a node i holding the token at
time t the sampling is defined as:
• Last intercontact time: where we just consider the last

valid intercontact time between (i, j)∀j connected with



i at the current time t. This implies that each node must
keep a memory of the last contact with any node.

• All intercontact time: where we add the history of past
intercontact times that has not been already considered
between (i, j)∀j connected with i at current time t. In
this case the memory is extended to all the non recorded
contacts in the token, which is in the worst case all the
period of observation.

• Any intercontact time: where we add the history of past
intercontact times that has not been already considered
with any other node k. In this case we keep the same
memory than for the All method, but we add any non
recorded information in the token, even if there is not a
connection between (i, k) at the current time t.

E. ICT approximation: how to compare?
We use the two-sample Kolmogorov-Smirnov (KS) statis-

tical test to compare the sampled 〈ICT 〉 from the original
ICT. The KS test defines a distance D (Eq. 1) between these
distributions to determine if they are drawn from a similar
underlying distribution (i.e. the null hypothesis).

D = sup
t
|ICT (t)− 〈ICT 〉 (t)| (1)

We use the p-value to reject the null hypothesis with
significance level α = 5%. Rejecting the null hypothesis
means that both samples definitely do not come from the same
distribution. Failing to reject means that both distributions are
the same within an error associated to the significance level.

IV. SIMULATION EXPERIMENTS

In this section we perform a series of simulations with “The
ONE Simulator” [7] to test the intercontact time monitoring
strategies presented in Section III.

A. RWP simulation setup
For each simulation we setup a group of 100 nodes mov-

ing according to the random waypoint movement (RWP)
in a square of 100× 100m2. We gather the approximated
intercontact time distribution according to the four methods
presented in Section III-B: 〈ICT 〉static, 〈ICT 〉last, 〈ICT 〉all,
〈ICT 〉any . For the simulations we test with N = 100 nodes
and δ = 5 minutes for T = 500 time windows. Since we
want to study the limit of the monitoring methods, for each
one we increase the number of monitors/tokens from 1 to 100.
We repeat each simulation 10 times to reduce the randomness
effects.

B. Simulations analysis
We observe that in the RWP simulation each monitor has

an indistinguishable view of its surrounding: the monitor see
that all nodes move uniformly into space. In Fig. 3a, we graph
the average distance (Eq. 1) as a function of the number of
monitors. As expected, we observe that the more monitors
we add, the smaller the distance we obtain (hence the better
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Figure 3: KS Distance with increasing number of monitors
(RWP simulation and INFOCOM traces). Notice that in both
cases, the lower bound is obtained using dynamic monitoring
with the any strategy (full memory and interchanges)

the approximation). This is independent of the method used.
Since the homogeneous view in the RWP model, we can say
that increasing the number of monitors increases the contacts
and hence the quality of the approximation. Also, we see
that in the case of using just one monitor, it is better to
use the dynamic mode than the static one. This is due the
fact that we gather more contacts when we move. With the
same argument we see that the distance between the different
strategies in the dynamic mode is correlated with respect the
amount of information we add in the sample: D(〈ICT 〉any) <
D(〈ICT 〉all) < D(〈ICT 〉last). When calculating the KS
test, we always verify the null hypothesis for any number of
monitors. This is independently of the selected method (static
and dynamic) and sampling strategy selected (last, all, any).
In the case of RWP we know that the ICT [8] follows an
exponential law, we can fit an exponential model to 〈ICT 〉
and obtain the desired result. As overall conclusion: in the
random waypoint scenario, we can monitor a group of nodes
using a subset of monitors. The key parameter to take into
account is the number of contacts, that can be regulated either
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Figure 4: Up: Monitoring algorithms comparison for the
INFOCOM ICT sampling case. Down: Distance between ICT
and 〈ICT 〉. (Notice the log scale on the x-axis)

by increasing the time sampling or by increasing the number
of nodes in the space.

V. REAL TRACES EXPERIMENTS

In this section, we analyze the algorithms presented in
section III-B with real traces.

A. Traces setup
We use the INFOCOM traces [9] to study the 98 distributed

nodes in the conference. We aggregate the traces into snapshots
with δ = 5 minutes. We also impose the symmetry of the
connections.

B. Traces Analysis
We perform the same analysis than in IV-B. As expected,

in Fig. 3b we see that with both methods and with any
sampling strategy, we always decrease the distance while
adding monitors. However, we see that the dynamic method
with the last and all sampling strategies are lower bounded
by the static method. This is equivalent to say that randomly
selecting a number of monitors and staying statically attached
to them provides a better approximation than dynamically
changing nodes. In the dynamic case we observe we get a
bigger distance due the fact that passing the token at each time
can bias the data to smaller values of intercontact time (we will
have a higher probability of short intercontact times than the
real ICT as show in Fig. 4). In the static case we have a partial
local view of the network, but consistent within all the period
of observation. This will add longer intercontact times to the
sampling reducing the bias (we will add more information to
the tail of the distribution reducing the probability of shorter

Static Last All Any
Average case > 17% > 98% > 95% > 3%
Worst case > 78% > 98% > 95% > 15%

Memory O(1) O(N) O(NT ) O(NT )

Table I: Monitors coverage (in percentage of nodes in the
DTN) needed to be sure that 〈ICT 〉 is a good estimator for
ICT (i.e. stop rejecting the null hypothesis)

intercontact times). In other words, adding diversity is not
enough to improve the sampling because it add bias.

Finally, we can see that in all cases, the dynamic method
with the any sampling strategy draws the smaller approxima-
tion distance. This is due the fact that this method is a mix
between static and dynamic monitoring. Indeed, the holder of
the token at the last snapshot will add all its intercontact time
information. This information is equivalent to the information
that he would have added as a static monitor. However, we
have to remember that the cost of this strategy requires that
all the nodes in the plane node store theirs contacts. Here the
token becomes just a method of data recollection. An obvious
improvement is to leverage the monitors connections. When
they receive the token they may add their information as well
as their past connections information.

VI. DISCUSSION

Both, simulations and trace analysis confirm the possibility
to select a group of nodes and attach them monitors to
characterize the global behavior. These experiments lead us to
conclude that it is not possible to define the most representative
set of monitors: any non random selection will introduce
bias to the sampling (Fig. 4). Nevertheless we have not yet
explained the limits of the monitoring. In Table I, we show
the increasing percentage of nodes needed to stop rejecting the
null hypothesis (pval > α). Stop rejecting the null hypothesis
implies that 〈ICT 〉 is a good estimator for the real ICT .
Since we repeated the experience 10 times, we provide two
cases: (i) average case (average pval) (ii) worst case (minimum
pval). Notice that the worst case is more strict in the sense
that we had pval > α for all the repetitions. We also add
the memory cost for each node: (i) static: keeping no extra
information, (ii) last: keeping the list of the last intercontacts
and (ii) all/any: keeping the whole past history of intercontacts.
We see that in the static case we need to cover at least 75%.
This implies a huge cost for monitoring. On the other hand in
the dynamic case we need to cover 15% when we use the any
sampling strategy. Nevertheless this number hides the fact that
all nodes in the nodes plane must be storing in memory the
past connections. We thus obtain the trade-off sought: either
we add more memoryless monitors or we have less monitors
to recollect the data of nodes with higher memory capacity. If
we accept a non statistically accurate view this numbers drop
to 17% and 3% respectively.

Using this reasoning for the INFOCOM conference, and
assuming that the devices delivery was random, we conclude
that to get a statistically representative estimation of the ICT ,



the experience should have covered at least 75% of the people
in the conference.

Finally we see that the best case is the dynamic mode
with the any sampling strategy. This is indeed the limit of
the monitoring: when the monitors plane and the nodes plane
become just one, and all nodes are constantly monitoring
and storing their neighborhood and we use the random walk
process just to recollect data.

VII. RELATED WORK

On sampling static graph structures, we have that sampling
a scale free network is not scale free [10]. In this work they
present a simple selection that does not respect the inner
structure of the network. Sampling from large graphs [4] obtain
that more than the half of the nodes are needed to obtain
a good sample. This support our result than just performing
random sampling or basic variations of random walk is not
enough and the cost of the monitoring is high. Multiple random
walk [5] introduces the idea of variability in the starting point
in order to avoid some known bias of random walks. Finally
[6] present a complete characterization of random walk in
temporal networks. This work reviews several metrics that can
be obtained from temporal random walks. However there is
no comparison in terms of quality of the sampling w.r.t the
original temporal graph.

On the DTN monitoring side, in [11] there is an extension
off well known aggregation algorithms for connected networks.
Specifically the notion of pairwise averaging and populations
protocols to the DTN scenario. However this work does not
provides a mean to measure the error of the estimation. Instead
the estimation is just performed by a given amount of time or
by a given number of contacts desired, assuming that the more
contacts you have, the better the estimation will be. Most of
the works that characterize a DTN are based in the global
estimation of intercontact time. In [12] present an analytical
model which derives from pairwise intercontact time distribu-
tion the aggregated distribution of the group. Remarkably, this
study shows that there is no exact mirror between the pairwise
connection with the aggregated distribution. If we assume that
pairwise distributions follows an exponential law, then the
aggregated distribution will follow a power law. Finally [13]
present a vicinity study to characterize the behavior of the
DTN. In this work is present the concept of k-vicinity as all the
nodes that are at most at k hops from a given node and the k-
intercontact which is the time while a node left and come back
to a given k-vicinity. Trace analysis shows that k-vicinities
intercontact time follows power laws with exponential decay
after a given time. Moreover, the k-vicinity of size k={2,3}
gives already enough awareness to a node of its surrounding.
This assumption is supported in the existence of groups in the
node movements.

VIII. CONCLUSION

This paper presents our initial study on the feasibility and
limits of monitoring DTN. We first defined monitoring in
the DTN context, highlighted some of the challenges, and
discussed potential metrics to monitor. We then presented our

main contributions, namely a simple set of methods to monitor
ICT and their evaluations using both simulated and real trace
based DTNs. Our results show that it is possible to approximate
the ICT characteristic of a DTN with only collecting a subset
of that global information. However, this has a cost in terms
of number of monitor or states of past activity to track. This
tradeoff in monitor numbers and memory capabilities have
an impact on the quality of the estimated ICTs. We further
discussed this tradeoff and proposed some potential approach
to take (e.g. favoring monitor number or memory capacity)

In the future we plan to develop a reflective monitoring
system for DTNs. We showed evidence to support the idea
that a monitor system is not accurate enough to provide the
intercontact time approximation. We seek to study under which
conditions certain networks can converge to a uniform state
where all the nodes share a good approximation of the global
network. This can be exploited to improve algorithms over a
DTN from local information.
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