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Robust hierarchic control for a population

dynamics model with missing birth rate

G. MOPHOU ∗ M. KÉRÉ † L. L. DJOMEGNE NJOUKOUE ‡

August 24, 2019

Abstract

In this paper we study the hierarchic control problem for a linear sys-
tem of a population dynamics model with unknown birth rate. Using the
notion of low regret control and an observability inequality of Carleman
type, we show that there exist two controls such that, the first control
called follower solves an optimal control problem which consist in bring-
ing the state of the linear system to desired state, and the second one
named leader is supposed to lead the population to extinction at final
time.

Mathematics Subject Classification. 49J20,92D25,93B05; 93C41.
Key-words : Population dynamics, Carleman inequality, incomplete data, op-
timal control, low-regret control, controllability, Euler-Lagrange formula.

1 Introduction

We consider a population with age dependence and spatial structure, and we
assume that the population lives in a bounded domain Ω ⊂ Rn, n ∈ N∗ , with
boundary Γ of class C2. Let ỹ = ỹ(t, a, x) be the distribution of individuals
of age a ≥ 0, at time t ≥ 0 and location x ∈ Ω. Let also A > 0, be the life
expectancy of an individual and the final time T, be a positive constant. Let
ω and O be nonempty subsets of Ω with ω  O. Set U = (0, T ) × (0, A),
Q = U × Ω, Σ = U × Γ, QA = (0, A) × Ω, QT = (0, T ) × Ω, Qω = U × ω
and QO = U × O. We denote by µ̃ = µ̃ (t, a, x) ≥ 0, the natural death rate of
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individuals of age a at time t and location x. We consider the following linear
system of population dynamics model:

∂ỹ

∂t
+
∂ỹ

∂a
−∆ỹ + µ̃ỹ = k̃χω + ṽχO in Q,

ỹ = 0 on Σ,
ỹ(0, ., .) = 0 in QA,
ỹ(., 0, .) = g̃ in QT ,

(1)

where the controls ṽ and k̃ belong to L2(Q), χω and χO denote the character-
istic functions of the control sets ω and O respectively, g̃ belongs to L2(QT ) is
unknown and represents the distribution of newborn individuals at time t and
location x. We make the following assumptions:

(H) :


µ̃ (t, a, x) = µ̃0 (a) + µ̃1 (t, a, x) in Q,

µ̃1 ∈ L∞ (Q) ; µ̃1 (t, a, x) ≥ 0 for (t, a, x) ∈ Q,
µ̃ (t, a, x) ≥ 0 for (t, a, x) ∈ Q,

µ̃0 ≥ 0, µ̃0 ∈ L1
loc (0, A) , lim

a→A

∫ a
0
µ̃0 (s) ds = +∞.

The fourth assumption in (H) means that all individual dies before the age
A. For more literature on the signification of assumption (H) as well as on the
population dynamics equations, we refer to [1, 2, 3] and the reference therein.

The Stackelberg leadership model is a multiple-objective optimization ap-
proach proposed by H. Von Stackelberg in [6]. This model involves two com-
panies (controls) which compete on the market of the same product. The
first(leader) to act must integrate the reaction of the other firm (followers) in the
choices it makes in the amount of product that it decides to put on the market.
There are several works in the literature dealing with Stackelberg strategy for
distributed systems. J. L. Lions [7] used the Stackelberg strategy on a system
governed by a parabolic equation subjected to two controls. The follower acts
on the system in order to bring the state not far from a desired state while the
leader has to steer the state at final time to a small neighborhood of a given
state. O. Nakoulima [8] used this concept control for a backward heat equation
involving two controls to determine: one of null controllability type with con-
straint on the control, called follower, and the other of optimal control type,
called leader. The results were achieved by means of a Carleman inequality
adapted to the constraint. In [9, 10], M. Mercan revisited the notion of control-
lability in the sense of Stackelberg given by O. Nakoulima [8] by choosing the
follower of minimal norm. This new notion is then applied by O. Nakoulima
et al. in [11] on the controllability of a two-stroke problem with constraint on
the states. The results were obtained by means of Carleman inequality adapted
to the constraints. Recently G. Mophou et al. [12] considered the Stackelberg
problem for coupled parabolic equations with a finite number of constraints on
one of the states. The first control was supposed to bring the solution of the
coupled system subjected to a finite number of constraints at rest at time T
while the second expresses that the states do not move too far from a given
state.
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In this paper we are interesting in the Robust hierarchic control for the
population dynamics equation with missing birth rate:

∂y

∂t
+
∂y

∂a
−∆y + µy = kχω + vχO in Q,

y = 0 on Σ,
y(0, ., .) = 0 in QA,
y(., 0, .) = g in QT ,

(2)

where
y(t, a, x) = ℘(t, a)ỹ(t, a, x), k(t, a, x) = ℘(t, a)k̃(t, a, x),

v(t, a, x) = ℘(t, a)ṽ(t, a, x), g(t, x) = ℘(t, 0)g̃(t, x),
(3)

with

℘(t, a) = exp

(
−r0t+

∫ a

0

µ̃0(s)ds

)
,

and µ = µ̃1 + r0. The nonnegative constant r0 ≥ 1/2 .
In view of this change of variables, assumptions (H), and the fact that

kχω, vχO ∈ L2(Q) and g ∈ L2(QT ), we know that problem (1) has a unique

solution y = y(k; v, g) in L2(U,H1
0 (Ω)) and

∂y

∂t
+
∂y

∂a
∈ L2(U ;H−1(Ω)). (See

[4, 5]). Moreover the following estimation holds:

‖y(T, ., .)‖2L2(QA) + ‖y(., A, .)‖2L2(QT ) ≤ 4
(
‖g‖2L2(QT ) + ‖k‖2L2(Qω) + ‖v‖2L2(QO)

)
,

(4a)

‖y‖2L2(U,H1
0 (Ω)) ≤ 4

(
‖g‖2L2(QT ) + ‖k‖2L2(Qω) + ‖v‖2L2(QO)

)
.

(4b)

One comes across model (1) while describing the dynamic of some invasive
species( fish) in a lake for instance. This kind of species can come from ev-
erywhere including pollution. In this paper, we assume that we have some
measures, some information but we don’t have at our disposal the distribution
of newborns, which is here expressed by the unknown variable g. So, we want
to drive the distribution of the species to zero with appropriate control acting
on a sub-domain of the lake, trying meanwhile to keep the distribution of the
species to the desired state with another control acting in another sub-domain
of the lake. We thus consider the following problems.

Problem 1 Let k ∈ L2(Qω). For any γ > 0, find the best control v̂γ = v̂γ(k) ∈
L2(QO) solution of

inf
v∈L2(QO)

sup
g∈L2(QT )

[
J(k; v, g)− J(0; 0, g)− γ‖g‖2L2(QT )

]
, (5)

where
J (k; v, g) = ‖y(k; v, g)− zd‖2L2(Q) +N ‖v‖2L2(QO) , (6)

with zd ∈ L2(Q) and N > 0.
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Problem 2 Let v̂γ(k) be the control obtain in the first objective and ŷγ =
y(t, a, x; k; v̂γ(k)) be the associated state. Find the control k ∈ L2(Qω) such
that

ŷγ(T ) = y(T, a, x; k; v̂γ) = 0, (0, A)× Ω. (7)

The problem consider in the first problem is an optimization associated to
the problem with missing birth rate. Such problem has been study by B. Jacob
et al. in [13] for a linear population dynamic equation involving with missing
initial distribution of individuals of age a ∈ (0, A). To solve this problem the
author used the notion of No-regret and Low-regret control introduced by J. L.
Lions [14] and obtained a singular optimality conditions which characterize the
No-regret control. More precisely, they consider for any γ > 0 the optimization
problem:

inf
v∈L2(QO)

sup
g∈L2(QT )

[
J(v, g)− J(0, g)− γ‖g‖2L2(QT )

]
,

called Low-regret problem. Then, they proved that the Low regret control uγ
converges towards the solution of the No-regret control problem:

inf
v∈L2(QO)

sup
g∈L2(QT )

[J(v, g)− J(0, g)] ,

that they characterized assuming that the control acts on the whole domain
(O = Ω). The second problem is a null controllability problem associate to a
population dynamics equations. Actually, after solving the first problem, the
second consists in solving a null controllability problem associated to a cascade of
two stroke equations. Controllability problems for an age and space structured
population dynamics model have been studied by several authors. B. Ainseba
proved in [15] the exact and approximate controllability for linear population
dynamics problem structured in age and space. In [16], S. Anita et al. showed
that if the initial distribution is small enough, one can find a control which
leads to extinction of the population. Using Kakutani fixed point theorem, B.
M. Iannelli et al. established a null controllability result for nonlinear population
dynamics model in [25]. In [17] S. Sawadogo et al. gave a null controllability
result for population dynamics model with constraints on the state when the
age of the population belongs to (γ,A) for any γ > 0. In [18] M. Langlais et
al. studied a population dynamics control problem with age dependence and
spatial structure. In [19], Echarroudi et al. study the null controllability of a
linear model with degenerate diffusion in population dynamics. The results is
achieved by means of an appropriate observability inequality and a fixed point
technique. In [20] M. Tucsnak et al studied the null controllability of a linear
population dynamics model with a control localized in the space variable as
well as with respect to the ages. They proved in the one hand that the age
interval in which the control needs to be active can be arbitrarily small , and
on the other hand that, that the whole population can be steered into zero in
an uniform time. In [29], N. Hegoburu et al. considered a non linear model
system describing age structured population dynamics, where the birth and the
mortality rates are nonlinear functions of the population size. They gave sharp
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conditions subject to the age range and the control time horizon to get the
null controllability of the nonlinear controlled population dynamics when the
control is active on some age range. For more literature on the controllability fo
population dynamics equation we refer to [21, 22, 23, 24, ?, 25] and the reference
therein.

In this paper, we propose the Stackelberg control problem with missing
data using the notion of Low-regret control for the follower, and appropriate
Carleman for the leader. More precisely, we prove the following results.

Theorem 1 Let Ω be a bounded subset of Rn, n ≥ 1 with boundary Γ of class
C2. Let ω and O be nonempty subsets of Ω with ω  O. Let also k ∈ L2(QO)
and γ > 0. Then there exists (Sγ , pγ , qγ) such that the optimization problem
(5) has a unique solution vγ = vγ(k) ∈ L2(QO) which is characterized by the
following optimality system:

Lyγ = vγχO + kχω in Q,
yγ = 0 on Σ,

yγ(0, ., .) = 0 in QA,
yγ(., 0, .) = 0 in QT ,

(8)


L∗Sγ = yγ in Q,
Sγ = 0 on Σ,

Sγ(T, ., .) = 0 in QA,
Sγ(., A, .) = 0 in QT ,

(9)


Lpγ = 0 in Q,
pγ = 0 on Σ,

pγ(0, ., .) = 0 in QA,

pγ(., 0, .) =
1
√
γ
Sγ (., 0, .) in QT ,

(10)


L∗qγ = yγ − zd +

1
√
γ
pγ in Q,

qγ = 0 on Σ,
qγ(T, ., .) = 0 in QA,
qγ(., A, .) = 0 in QT ,

(11)

and

vγ = −q
γ

N
in QO, (12)

with the operators L and L∗ defined as

L =
∂

∂t
+

∂

∂a
−∆ + µI,

L∗ = − ∂

∂t
− ∂

∂a
−∆ + µI

(13)

and I the operator identity.
Moreover there exists a constant C > 0 independent of γ such that

‖vγ‖L2(QO) ≤ C
(
‖zd‖L2(Q) + ‖k‖L2(Qω)

)
.

5



Theorem 2 Assume that the assumptions of Theorem 1 hold. Then there exists
a positive real weight function κ (a precise definition of κ will be given later on)

such that, for any function zd ∈ L2(Q) with
1

κ
zd ∈ L2(Q), then there exists a

unique control k̂γ ∈ L2(Qω) such that (k̂γ , ŷγ , Ŝγ , p̂γ , q̂γ) is the solution of the
null controllability problem (8)-(7). Moreover

k̂γ = ρ̂γχω, (14)

where ρ̂γ , φ̂γ , φ̂γ and ζ̂γ are solutions of L∗ρ̂γ = ψ̂γ + φ̂γ in Q,
ρ̂γ = 0 on Σ,

ρ̂γ(., A, .) = 0 in QT ,
(15)


Lψ̂γ = 0 in Q,

ψ̂γ = 0 on Σ,

ψ̂γ(0, ., .) = 0 in QA,

ψ̂γ(., 0, .) =
1
√
γ
ζ̂γ (., 0, .) in QT ,

(16)


Lφ̂γ =

−1

N
ρ̂γχO in Q,

φ̂γ = 0 on Σ,

φ̂γ(0, ., .) = 0 in QA,

φ̂γ(., 0, .) = 0 in QT

(17)

and 
L∗ζ̂γ =

1
√
γ
φ̂γ in Q,

ζ̂γ = 0 on Σ,

ζ̂γ(T, ., .) = 0 in QA,

ζ̂γ(., A, .) = 0 in QT .

(18)

In addition, there exists a constant C > 0 independent of γ such that

‖k̂γ‖L2(Qω) ≤ C
∥∥∥∥ 1

κ
%zd

∥∥∥∥
L2(Q)

.

The rest of this paper is organized as follows. Section 2 is devoted to the
proof of Theorem 1. In Section 3, we establish an appropriate inequality of
Carleman type and give the proof of the Theorem 2. Concluding remarks are
given in Section 4.

2 Study of optimization problem

In this section, k is fixed and we are concerned with optimization (5):

inf
v∈L2(QO)

sup
g∈L2(QT )

[
J(v, g)− J(0, g)− γ‖g‖2L2(QT )

]
,
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where J is given by (6).
Let y = y (k; v, g) = y (t, a, x; k; v, g) be the solution of (2). Then

y (k; v, g) = y (k; v, 0) + y (0; 0, g) ,

where y(k; v, 0) and y (0; 0, g) are respectively solutions of
Ly (k; v, 0) = vχO + kχω in Q,
y (k; v, 0) = 0 on Σ,

y(0, ., .; k; v, 0) = 0 in QA,
y(., 0, .; k; v, 0) = 0 in QT ,

(19)

and 
Ly (0; 0, g) = 0 in Q,
y (0; 0, g) = 0 on Σ,

y(0, ., .; 0; 0, g) = 0 in QA,
y(., 0, .; 0; 0, g) = g in QT .

(20)

Since g ∈ L2(QT ), v ∈ L2(Q) and k ∈ L2(Q), we know (see e.g. [4])
that the functions y (k; v, 0) and y (0; 0, g) belong to L2(U ;H1

0 (Ω)). Using this
decomposition of the state equation, we have after some calculations

J (k; v, g) = J (k; v, 0) + J (0; 0, g)− ‖zd‖2L2(Q)

+2

∫
Q

y (k; v, 0) y (0; 0, g) dt da dx,

where
J (k; v, 0) = ‖y (k; v, 0)− zd‖2L2(Q) +N‖v‖2L2(QO),

J (0; 0, g) = ‖y (0; 0, g)− zd‖2L2(Q).
(21)

Therefore

J (k; v, g)− J (0; 0, g) = J (k; v, 0)− ‖zd‖2L2(Q)

+ 2

∫
Q

y (k; v, 0) y (0; 0, g) dt da dx.
(22)

Consider now the adjoint state S(k; v) = S (t, a, x; k; v) ∈ L2(U ;H1
0 (Ω)),

solution of 
L∗S(k; v) = y (k; v, 0) in Q,
S(k; v) = 0 on Σ,
S(T, ., .) = 0 in QA,
S(., A, .) = 0 in QT .

(23)

Multiplying the first equation in (23) by y(0; 0, g) and integrating by parts
over Q, we obtain that∫

Q

y (k; v, 0) y (0; 0, g) dt da dx =

∫
QT

S (t, 0, x; k; v) g dt dx. (24)
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Combining (22) and (24), we deduce that

J (k; v, g)− J (0; 0, g) = J (k; v, 0)− ‖zd‖2L2(Q) + 2

∫
QT

S (t, 0, x; k; v) g dt dx.

(25)
On the other hand, for any γ > 0 we have

sup
g∈L2(QT )

{
J (k; v, g)− J (0; 0, g)− γ ‖g‖2L2(QT )

}
= J (k; v, 0)− ‖zd‖2L2(Q)+

2 sup
g∈L2(QT )

{∫
QT

S (t, 0, x; k; v) g dt dx− γ

2
‖g‖2L2(QT )

}
,

which by Legendre-Fenchel transform gives

sup
g∈L2(QT )

{
J (k; v, g)− J (0; 0, g)− γ ‖g‖2L2(QT )

}
= Jγ (k; v) , (26)

where

Jγ (k; v) = J (k; v, 0)− ‖zd‖2L2(Q) +
1

γ
‖S (., 0, .; k; v)‖2L2(QT ) . (27)

Hence the Low-regret control problem (5) is equivalent to the following optimal
control problem: Let k ∈ L2 (Qω) . For any γ > 0, find vγ = vγ(k) ∈ L2(QO)
such that

Jγ (k; vγ) = inf
v∈L2(QO)

Jγ (k; v) . (28)

Remark 3 If we consider in problem (5), with γ = 0:

inf
v∈L2(QO)

sup
g∈L2(QT )

[J(k; v, g)− J(0; 0, g)] , (29)

then we deal with the No-regret control problem. Therefore in view of (25), the
No-regret control v̂ belongs to the set

U = {v ∈ L2(QO)such that

∫
QT

S (t, 0, x; k; v) g dt dx = 0 ∀g ∈ L2(QT )}.

(30)

2.1 Proof of Theorem 1

Since Jγ(k; v) ≥ −‖zd‖2L2(Q), we can prove using minimizing sequence and stan-
dard arguments that there exists a unique Low-regret control vγ solution to
problem (28).
To characterize the optimal control vγ , we make use of the Euler-Lagrange op-
timality conditions:

lim
λ→0

Jγ (k; vγ + λv)− Jγ (k; vγ)

λ
= 0, ∀v ∈ L2(QO). (31)
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After a short calculation, (31) gives,

0 =

∫
Q

y {y (k; vγ , 0)− zd} dt da dx+N (vγ , v)L2(QO)

+
1

γ

∫
QT

S (t, 0, x; k; v)S (t, 0, x; k; vγ) dt dx, ∀v ∈ L2 (QO) ,
(32)

where y = y(t, a, x; 0; v, 0) and S(0; v) = S(t, a, x; 0; v) are respectively solution
of 

Ly = vχO in Q,
y = 0 on Σ,

y(0, ., .; v, k) = 0 in QA,
y(., 0, .; v, k) = 0 in QT

(33)

and 
L∗S = y in Q,
S = 0 on Σ,

S(T, ., .; v) = 0 in QA,
S(., A, .; v) = 0 in QT .

(34)

To interpret (32), we use pγ and qγ respectively solutions of (10) and (11).

So if we multiply (33)1 by qγ and (34)1 by
1
√
γ
pγ and integrate by parts over

Q we respectively obtain that∫
Q

y

(
y (k; vγ , 0)− zd +

1
√
γ
pγ
)
dt da dx =

∫
QO

v qγ dt da dx (35)

and
1

γ

∫
QT

S (t, 0, x; v) S (t, 0, x; vγ) dt dx =
1
√
γ

∫
Q

y pγ dt da dx. (36)

Combining (32), (35) and (36) we obtain that∫
QO

(Nvγ + qγ) v dt da dx = 0,∀v ∈ L2(QO).

Therefore

vγ = −q
γ

N
in QO.

Proposition 4 Let vγ = vγ (k) ∈ L2(QO) be the solution of (28). Let also
(yγ , Sγ , pγ , qγ) be the unique solution of (8)-(11). Then there exists a constant
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C = C(N) > 0 independent of γ such that

‖vγ‖L2(QO) ≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω)), (37)

‖yγ‖L2(U ;H1
0 (Ω)) ≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω)), (38)

‖Sγ‖L2(U ;H1
0 (Ω)) ≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω)), (39)

‖pγ‖L2(U ;H1
0 (Ω)) ≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω)), (40)

1
√
γ
‖S (., 0, .; vγ)‖L2(QT ) ≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω)), (41)

‖S (., 0, .; vγ)‖L2(QT ) ≤ √
γC(‖zd‖L2(Q) + ‖k‖L2(Qω)). (42)

Proof. It is clear that from (41), we have (42). Since vγ = vγ (k) ∈ L2(QO) is
the solution of (28), we have that

Jγ(vγ) ≤ Jγ(v), ∀v ∈ L2(QO).

Hence we take v = −kχω and since ω ⊂ O, we obtain

Jγ(vγ) ≤ Jγ(−k) = N‖k‖2L2(Qω).

It then follows from the definition of Jγ given by (27) that

J(k; vγ , 0) +
1

γ
‖S (., 0, .; v)‖2L2(QT ) ≤ ‖zd‖

2
L2(Q) +N‖k‖2L2(Qω),

which in view of (21) implies that

‖y(k; vγ , 0)‖L2(Q) ≤ ‖zd‖L2(Q) +
√
N‖k‖L2(Qω), (43a)

‖vγ‖L2(QO) ≤
1√
N
‖zd‖L2(Q) + ‖k‖L2(Qω), (43b)

1
√
γ
‖S (., 0, .; vγ)‖L2(QT ) ≤ ‖zd‖L2(Q) +

√
N‖k‖L2(Qω). (43c)

Hence, we obtain from (43b) and (43c), the relations (37) and (41). In view of
(37) and (8), we deduce (38). Using (43a) and (9) we obtain (39). From (41)
and (10), we deduce (40).

Actually, we can have an estimation of
1
√
γ
pγ in a an appropriate space.

Indeed, , combining (32) and (36), we have that

0 =

∫
Q

y {y (k; vγ , 0)− zd} dt da dx+N (vγ , v)L2(QO)

+
1
√
γ

∫
Q

y pγ dt da dx, ∀v ∈ L2(QO).
(44)

Consider the following set

E =
{
y(v), v ∈ L2(QO)

}
. (45)
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Then E ⊂ L2(Q). Define on E × E the inner product:

〈y(v), y(w)〉E =

∫
QO

vw dt da dx+

∫
Q

y(v)y(w)dt da dx,

∀ y(v), y(w) ∈ E .
(46)

Then E endowed with the norm

‖y(v)‖2E = ‖v‖2L2(QO) + ‖y(v)‖2L2(Q),∀y(v) ∈ E (47)

is an Hilbert space.

We set Tγ(vγ) =
1
√
γ
pγ . Then in view of (44), we have for any v ∈ L2(QO),∫

Q

Tγ(vγ)y(v) dt da dx = −
∫
Q

y {y (k; vγ , 0)− zd} dt da dx−N (vγ , v)L2(QO) .

(48)
In view of (37) and (43a), there exists a constant C = C(N) > 0 independent

of γ such that∣∣∣∣−∫
Q

y {y (k; vγ , 0)− zd} dt da dx−N (vγ , v)L2(QO)

∣∣∣∣ ≤
C(‖zd‖L2(Q) + ‖k‖L2(Qω))‖y(v)‖E .

(49)

Hence, we then deduce from (48) and (49) that∣∣∣∣∫
Q

Tγ(vγ)y(v) dt da dx

∣∣∣∣ ≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω))‖y(v)‖E .

This means that

‖Tγ(vγ)‖E′ =

∥∥∥∥ 1
√
γ
pγ
∥∥∥∥
E′
≤ C(‖zd‖L2(Q) + ‖k‖L2(Qω)). (50)

Remark 5 Note that with estimate obtained in Proposition 4 and (50), we
prove the convergence when γ → 0 of the optimality system of Theorem 1,
and that, the Low-regret control converges towards the No-regret control which
belongs to set U defined in Remark 3. But No-regret control does not depend
linearly on the second control k. That is why we study the null controllability of
the state equation associated to the Low-regret control vγ .

3 Resolution of the problem of controllability

In this section we are concerned with the Problem 2. More precisely, we
consider the null controllability of the state equations associated to the Low-
regret control: find k̂γ ∈ L2(Qω) such that if ŷγ = y(t, a, x; k̂γ ; v̂γ , 0), Sγ =

S(t, a, x; k̂γ ; v̂γ), p̂γ and q̂γ are solutions of (8)-(12) then

ŷ(T, ., .; k̂γ ; v̂γ(k̂), 0) = 0 in QA. (51)
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To this end we need appropriate Carleman inequalities.

Let us recall that for any nonempty open set ω0 ⊂ ω′ ⊂ ω ⊂⊂ Ω there exists
a function denote Ψ ∈ C2

(
Ω
)

such that{
Ψ (x) = 0, ∀x ∈ Γ; ∇Ψ (x) 6= 0, ∀x ∈ Ω− ω0

Ψ (x) > 0, ∀x ∈ Ω.
(52)

We refer to [26] for the existence of such a function Ψ. For any (t, a, x) ∈ Q, we
set

η (t, a, x) =
e2λ‖Ψ‖∞ − eλΨ(x)

t (T − t) a (A− a)
, (53)

ϕ (t, a, x) =
eλΨ(x)

t (T − t) a (A− a)
. (54)

Let f ∈ L2(Q) and z be the solution of{
Lz = f in Q,
z = 0 on Σ.

(55)

Then we have the following result

Proposition 6 (see [27])Let ω0 ⊂ ω′ ⊂ ω ⊂⊂ Ω. Let also Ψ, η and ϕ be defined
as in (52), (53) and (54) respectively. There exist positive constants λ0 > 1 and
C = C (Ψ) > 0 such that for λ > λ0 and s > s0 (λ) such that for all solution of
(55) the following inequality holds:

K (z) ≤ C
∫
Q

e−2sη |Lz|2 dt da dx+ C

∫ T

0

∫ A

0

∫
ω′
s3λ4ϕ3e−2sη |z|2 dt da dx,

(56)

where s0 (λ) = C (Ψ) TA4 e2λ‖Ψ‖∞
(
T 2A2

4 + T 2A3 + T 3A2 + T +A
)

and

K (z) =

∫
Q

e−2sη
(
sλϕ |∇z|+ s3λ4ϕ3 |z|2

)
dt da dx, (57)

for a suitable function z.

Remark 7 By the change of variable t 7→ T − t and a 7→ A−a, inequality (56)
holds also if we replace Lz by L∗z.

We consider the following systems
L∗ργ = ψγ + φγ in Q,
ργ = 0 on Σ,

ργ(T, ., .) = ρT in QA,
ργ(., A, .) = 0 in QT ,

(58)
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
Lψγ = 0 in Q,
ψγ = 0 on Σ,

ψγ(0, ., .) = 0 in QA,

ψγ(., 0, .) =
1
√
γ
ζγ (., 0, .) in QT ,

(59)


Lφγ =

−1

N
ργχO in Q,

φγ = 0 on Σ,
φγ(0, ., .) = 0 in QA,
φγ(., 0, .) = 0 in QT

(60)

and 
L∗ζγ =

1
√
γ
φγ in Q,

ζγ = 0 on Σ,
ζγ(T, ., .) = 0 in QA,
ζγ(., A, .) = 0 in QT .

(61)

Proposition 8 Under the assumptions of Proposition 6, There exist positive
constants λ1 and s1 such that for λ > λ1 and s > s1 there exist a constant
C = C (Ψ, N, T,A, s, λ) > 0 and a positive weight κ such that the following
holds true ∫

Q

κ2|φγ |2 dt da dx+

∫
Q

ϕ̃3e−2sη̃|ργ |2 dt da dx ≤

C(Ψ, N, T,A, s, λ)

∫
Qω

|ργ |2 dt da dx,
(62)

for all solutions of (58)-(61).

Proof. We proceed in two steps.
Step 1. We prove that there exists a positive constant C such that∫

Q

ϕ3e−2sη|ργ |2 dt da dx ≤ C
∫
Qω

s4λ6ϕ7e−2sη |ργ |2 dt da dx. (63)

We consider as in [28], the function θ ∈ C∞0 (Ω) and such that

0 ≤ θ ≤ 1 on ω, θ = 1 on ω′, θ = 0 on Ωr ω
∆θ√
θ
∈ L∞ (ω) ,

∇θ√
θ
∈ {L∞ (ω)}N .

We set u = s3λ4ϕ3e−2sη. Then it follows from the definition of the functions η
and ϕ given by (53) and (54) that{

u (t, 0, x) = u (t, A, x) = 0,
u (0, a, x) = u (T, a, x) = 0

and

∇u = u(3λ+ 2sλϕ)∇Ψ, (64)
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∂u

∂t
+
∂u

∂a
= u

[
3ϕ−1

(
∂ϕ

∂t
+
∂ϕ

∂a

)
− 2s

(
∂η

∂t
+
∂η

∂a

)]
, (65)

∆ (uθ) = uθ
(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2 + u∆θ

+uθ (3λ+ 2sλϕ) ∆Ψ + u (6λ+ 4sλϕ)∇Ψ.∇θ. (66)

If we multiply the first equation in (58) by θu(φγ + ψγ), where φγ and ψγ

are respectively solution of (60) and (59) and integrate by parts over Q, we have∫
Q

uθ (φγ + ψγ)
2
dt da dx =

∫
Q

uθ (φγ + ψγ)L∗ργ dt da dx

= − 1

N

∫
Q

θu(ργ)2χO dt da dx

+

∫
Q

θ (φγ + ψγ) ργ
(
∂u

∂t
+
∂u

∂a

)
dt da dx

−
∫
Q

(φγ + ψγ) ργ∆ (θu) dt da dx

− 2

∫
Q

ργ∇ (θu) .∇ (φγ + ψγ) dt da dx

= K1 +K2 +K3 +K4,

where

K1 = − 1

N

∫
Q

θu(ργ)2χO dt da dx,

K2 =

∫
Q

θ (φγ + ψγ) ργ
(
∂u

∂t
+
∂u

∂a

)
dt da dx,

K3 = −
∫
Q

(φγ + ψγ) ργ∆ (θu) dt da dx,

K4 = −2

∫
Q

ργ∇ (θu) .∇ (φγ + ψγ) dt da dx.

So, ∫ T

0

∫ A

0

∫
ω

u(φγ + ψγ)2 dt da dx = K1 +K2 +K3 +K4. (67)

K1 ≤ 1

N

∫
Qω

u(ργ)2 dt da dx

≤ C(N)

∫
Qω

s3λ4ϕ3e−2sη|ργ |2 dt da dx.

Using (65), (66) and Young inequality, we obtain that

K2 ≤ δ1
2

∫ T

0

∫ A

0

∫
ω

u |φγ + ψγ |2 dt da dx+ C(Ψ, A, T )

∫
Qω

s5λ4ϕ7e−2sη |ργ |2 dt da dx.
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K3 = −
∫
Q

(φγ + ψγ)ργ∆ (θu) dt da dx

= −
∫
Q

θu(φγ + ψγ)ργ
(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2 dt da dx

−
∫
Q

u(φγ + ψγ)ργ∆θ dt da dx

−
∫
Q

θu(φγ + ψγ)ργ (3λ+ 2sλϕ) ∆Ψ dt da dx

− 2

∫
Q

u(φγ + ψγ)ργ (3λ+ 2sλϕ)∇Ψ.∇θ dt da dx

= K31 +K32 +K33 +K34,

where

K31 = −
∫
Q

θu(φγ + ψγ)ργ
(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2 dt da dx

=

∫
Q

{
θ1/2u1/2(φγ + ψγ)

}{
−θ1/2u1/2ργ

(
14sλ2ϕ+ 4s2λ2ϕ2 + 9λ2

)
|∇Ψ|2

}
≤ δ2

2

∫ T

0

∫ A

0

∫
ω

u|φγ + ψγ |2 dt da dx+ C(Ψ)

∫
Qω

s7λ8ϕ7e−2sη|ργ |2 dt da dx,

K32 = −
∫
Q

u(φγ + ψγ)ργ∆θ dt da dx

=

∫
Q

{
θ1/2u1/2(φγ + ψγ)

}{
−u1/2ργ

∆θ

θ1/2

}
dt da dx

≤ δ3
2

∫ T

0

∫ A

0

∫
ω

u|φγ + ψγ |2 dt da dx

+ C

∫
Qω

s3λ4ϕ3e−2sη |ργ |2 dt da dx,

K33 = −
∫
Q

θu(φγ + ψγ)ργ (3λ+ 2sλϕ) ∆Ψ dt da dx

=

∫
Q

{
θ1/2u1/2(φγ + ψγ)

}{
−θ1/2u1/2ργ (3λ+ 2sλϕ) ∆Ψ

}
dt da dx

≤ δ4
2

∫ T

0

∫ A

0

∫
ω

u |φγ + ψγ |2 dt da dx

+ C(Ψ)

∫
Qω

s5λ6ϕ5e−2sη |ργ |2 dt da dx,
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K34 = −2

∫
Q

u(φγ + ψγ)ργ (3λ+ 2sλϕ)∇Ψ.∇θ dt da dx

=

∫
Q

{
θ1/2u1/2(φγ + ψγ)

}{
−2u1/2ργ (3λ+ 2sλϕ)∇Ψ.

∇θ
θ1/2

}
dt da dx

≤ δ5
2

∫ T

0

∫ A

0

∫
ω

u |φγ + ψγ |2 dt da dx

+ C(Ψ)

∫
Qω

s5λ6ϕ5e−2sη |ργ |2 dt da dx.

Therefore

K3 ≤
5∑
i=2

δi
2

∫ T

0

∫ A

0

∫
ω

u|φγ+ψγ |2 dt da dx+C(Ψ)

∫
Qω

s7λ8ϕ7e−2sη |ργ |2 dt da dx.

Now we compute the term K4. Using (64) and Young inequality, we have

K4 = −2

∫
Q

ργ∇ (θu) .∇(φγ + ψγ) dt da dx

= −2

∫
Q

θuργ (3λ+ 2sλϕ)∇Ψ.∇(φγ + ψγ) dt da dx− 2

∫
Q

uργ∇θ.∇(φγ + ψγ) dt da dx

= K41 +K42,

where

K41 = −2

∫
Q

θuργ (3λ+ 2sλϕ)∇Ψ.∇(φγ + ψγ) dt da dx

=

∫
Q

{
s1/2ϕ1/2θ1/2e−sη∇(φγ + ψγ)

}{
−2s5/2λ4ϕ5/2θ1/2e−sηργ (3λ+ 2sλϕ)∇Ψ

}
dt da dx

≤ 1

4

∫
Qω

sϕe−2sη |∇(φγ + ψγ)|2 dt da dx

+ C(Ψ)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx

and

K42 = −2

∫
Q

uργ∇θ.∇(φγ + ψγ) dt da dx

=

∫
Q

{
s1/2ϕ1/2θ1/2e−sη∇(φγ + ψγ)

}
.

{
−2s5/2λ4ϕ5/2e−sηργ

∇θ
θ1/2

}
dt da dx

≤ 1

4

∫
Qω

sϕe−2sη |∇(φγ + ψγ)|2 dt da dx

+ C

∫
Qω

s5λ8ϕ5e−2sη |ργ |2 dt da dx.
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Thus,

K4 ≤ 1

2

∫
Qω

sϕe−2sη |∇(φγ + ψγ)|2 dt da dx

+ C(Ψ)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx.

Finally, in view of (67), we have that∫ T

0

∫ A

0

∫
ω

u|φγ + ψγ |2 dt da dx ≤
5∑
i=1

δi
2

∫ T

0

∫ A

0

∫
ω

u|φγ + ψγ |2 dt da dx

+
1

2

∫
Qω

sϕe−2sη |∇(φγ + ψγ)|2 dt da dx

+ C(Ψ, N, T,A)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx.

Choose in this latter identity δi, 1 ≤ i ≤ 5 such that

5∑
i=1

δi
2

=
1

2
, then using the

fact that ω′ ⊂ ω, we obtain that∫ T

0

∫ A

0

∫
ω′
u|φγ + ψγ |2 dt da dx ≤

∫
Qω

sϕe−2sη |∇(φγ + ψγ)|2 dt da dx+

C(Ψ, N, T,A)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx.

(68)
Now, applying (56) to φγ + ψγ where φγ and ψγ are respectively solution of
(60) and (59),∫
Q

e−2sη
(
sλϕ |∇(φγ + ψγ)|+ s3λ4ϕ3 |φγ + ψγ |2

)
dt da dx ≤

C(Ψ)
1

N2

∫
QO

e−2sη |ργ |2 dt da dx+ C(Ψ)

∫ T

0

∫ A

0

∫
ω′
s3λ4ϕ3e−2sη |φγ + ψγ |2 dt da dx,

which in view of (68) and the fact that ϕ−1 ∈ L∞(Q) gives∫
Q

e−2sη
(
sλϕ |∇(φγ + ψγ)|+ s3λ4ϕ3 |φγ + ψγ |2

)
dt da dx ≤

C(Ψ)

∫
Qω

sϕe−2sη |∇(φγ + ψγ)|2 dt da dx+ C(Ψ, N)

∫
Q

s2λ4e−2sηϕ3 |ργ |2 dt da dx+

C(Ψ, N, T,A)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx.

(69)
Choosing λ ≥ λ1 = max{λ0, 2C(Ψ)} in (69), we obtain that∫

Q

e−2sη
(
sλϕ |∇(φγ + ψγ)|+ s3λ4ϕ3 |φγ + ψγ |2

)
dt da dx ≤

+C(Ψ, N)

∫
Q

s2λ4ϕ3e−2sη |ργ |2 dt da dx+

C(Ψ, N, T,A)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx.

(70)
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Taking into account the Remark 7 and applying (56) to ργ solution of (58),∫
Q

e−2sη
(
sλϕ |∇ργ |+ s3λ4ϕ3 |ργ |2

)
dt da dx ≤

C(Ψ)

∫
Q

e−2sη |φγ + ψγ |2 dt da dx+ C(Ψ)

∫
Qω

s3λ4ϕ3e−2sη |ργ |2 dt da dx.

Using the fact that ϕ−1 ∈ L∞(Q), we deduce that∫
Q

e−2sη
(
sλϕ |∇ργ |+ s3λ4ϕ3 |ργ |2

)
dt da dx ≤

C(Ψ, T, A)s2λ4

∫
Q

ϕ3e−2sη |φγ + ψγ |2 dt da dx+

C(Ψ)

∫
Qω

s3λ4ϕ3e−2sη |ργ |2 dt da dx.

(71)

Combining (70) and (71), then choosing s ≥ s1 = max{s0, 2C(Ψ, T, A), 2C(Ψ, N, T,A)},
we deduce that

K(φγ + ψγ) +K(ργ) ≤

C(Ψ, N, T,A)

∫
Qω

s7λ10ϕ7e−2sη |ργ |2 dt da dx,

which in view of (57) implies that there exists a constant C = C(Ψ, N, T,A) > 0
such that (63) holds true.
Step 2. We prove that (62).
We set

D = {(t, a) ∈ (0, T )× (0, A) such that t ≥ T/2 and a ≥ A/2}.

Let η and ϕ be respectively defined by (53) and (54). For any x ∈ Ω, we define
the functions η̃ and ϕ̃ by:

η̃ (t, a, x) =

 η

(
T

2
,
A

2
, x

)
if (t, a) ∈ [(0, T )× (0, A)] \D,

η(t, a, x) if (t, a) ∈ D
(72)

and

ϕ̃ (t, a, x) =

 ϕ

(
T

2
,
A

2
, x

)
if (t, a) ∈ [(0, T )× (0, A)] \D,

ϕ(t, a, x) if (t, a) ∈ D.
(73)

Therefore, replacing respectively η and ϕ by η̃ and ϕ̃ in (63), we also have∫
Q

ϕ̃3e−2sη̃|ργ |2 dt da dx ≤ C(Ψ, N, T,A)

∫
Qω

s4λ6ϕ7e−2sη̃ |ργ |2 dt da dx.

(74)
We introduce the function

η̂(t, a) = max
x∈Ω

η̃(t, a, x) (75)

18



and we set
κ(t, a) = e−sη̂(t,a). (76)

Then κ is a positive function of class C1 on [0, T [×[0, A[. Moreover,
∂

∂t
η̂(t, a)

and
∂

∂a
η̂(t, a) are positive functions.

So, if we multiply the first equation in (60) by κ2φγ and integrate by part over
Ω, we have

1

2

∂

∂t
‖κφγ‖2L2(Ω) +

1

2

∂

∂a
‖κφγ‖2L2(Ω) + ‖κ∇φγ‖2L2(Ω) + r0‖κφγ‖2L2(Ω) =

−
∫

Ω

µ̃1κ
2|φγ |2dx− s

∫
Ω

∂

∂t
η̂κ2|φγ |2dx− s

∫
Ω

∂

∂a
η̂κ2|φγ |2dx− 1

N

∫
O
κ2ργφγdx,

from which we deduce for r0 ≥
1

2
that,

∂

∂t
‖κφγ‖2L2(Ω) +

∂

∂a
‖κφγ‖2L2(Ω) ≤

1

N2

∫
Ω

κ2ργdx.

Integrating this latter inequality over (0, T ), we obtain

‖κ(T, a)φγ(T, a)‖2L2(Ω) +
d

da
‖κφγ‖2L2(QT ) ≤

1

N2
‖κργ‖2L2(QT )

because φγ(0, a) = 0 in QA. Hence,

d

da
‖κφγ‖2L2(QT ) ≤

1

N2
‖κργ‖2L2(QT ).

This implies that

‖κφγ(., a, .)‖2L2(QT ) ≤
1

N2
‖κργ‖2L2(Q)∀a ∈ (0, A), (77)

because φγ(t, 0) = 0 in QT . It then follows from (77) that

‖κφγ‖2L2(Q) ≤
A

N2
‖κργ‖2L2(Q). (78)

In view of the definition of η̂ and κ given respectively by (75) and (76), we have
from (78) that∫

Q

κ2|φγ |2 dt da dx ≤ A

N2

∫
Q

ϕ̃3e−2sη̃|ργ |2 dt da dx

because ϕ̃−1 ∈ L∞(Q). Combining this latter inequality with (74), we obtain
that∫

Q

κ2|φγ |2 dt da dx ≤ C(Ψ, N, T,A)

∫
Qω

s4λ6ϕ7e−2sη̃ |ργ |2 dt da dx, (79)
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Adding (74) to (79), then using the fact that ϕ7e−2sη̃ ∈ L∞(Q), we have (62).

We set
1

%2
= ϕ̃3e−2sη̃. (80)

Then it follows from (62) that there exists C = C(Ψ, N, T,A, s, λ) > 0, such
that for (ργ , ψγ , φγ , ζγ) verifying systems (58)-(61),

‖κφγ‖2L2(Q) +

∥∥∥∥1

%
ργ
∥∥∥∥2

L2(Q)

≤ C
∫
Qω

|ργ |2 dt da dx, (81)

with κ defined as in (76).
Multiplying (8)1 by ργ , (9)1 by ψγ , (11)1 by φγ and (10)1 by ζγ and integrating
by parts over Q, then adding the results, we obtain that

0 =

∫
QA

yγ(T, a, x)ρT (a, x) da dx−
∫
Qω

kργ dt da dx+

∫
Q

zdφ
γ dt da dx.

(82)
Thus, null controllability property is equivalent to the problem: find a control
k ∈ L2(Qω) such that for any ρT ∈ L2(QA), we have

0 =

∫
Qω

kργ dt da dx−
∫
Q

zdφ
γ dt da dx.

So, to solve this problem we consider for every ε > 0, the functional

Fε
(
ρT
)

=
1

2

∫
Qω

|ργ |2 dt da dx−
∫
Q

zdφ
γ dt da dx+ ε

∥∥ρT∥∥
L2(QA) (83)

where ργ and φγ verify (58), (59), (60) and (61).

Proposition 9 Let % and κ be respectively defined by (80) and (76). Assume

that zd ∈ L2(Q) such that
1

κ
zd ∈ L2(Q). Then for all ε > 0 there exists a unique

ρTε,γ ∈ L2(QA) such that

Fε
(
ρTε,γ

)
= inf
ρT∈L2(QA)

Fε
(
ρT
)
. (84)

Moreover, there exists a positive constant C = C(Ψ, N, T,A, s, λ) such that,
if ργε , ψγε , φγε and ζγε are respectively solutions of (58), (59), (60) and (61)
associated to ρTε,γ then

‖ργε‖L2(Qω) ≤ C
∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

. (85)
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Proof. It is clear Fε is strictly convex on L2(QA). Using inequalities of energy
associated to ργε , ψγε , φγε and ζγε , we prove that the functional Fε is continuous
on L2(QA). On another hand using Young inequalities, we have

Fε
(
ρT
)

=
1

2

∫
Qω

|ργ |2 dt da dx−
∫
Q

zdφ
γ dt da dx+ ε

∥∥ρT∥∥
L2(QA)

≥ 1
2‖ρ

γ‖2L2(Qω) + ε‖ρT ‖L2(QA) −
δ

2

∥∥∥∥ 1

κ
zd

∥∥∥∥2

L2(Q)

− 1

2δ
‖κφγ‖2L2(Q) ,

for some δ > 0. Using the observability inequality (81), then choosing δ = 2C
with C = C(Ψ, N, T,A, s, λ), we deduce that

Fε
(
ρT
)
≥ 1

4

∫
Qω

|ργ |2 dt da dx+ ε
∥∥ρT∥∥

L2(QA)
− C

∥∥∥∥ 1

κ
zd

∥∥∥∥2

L2(Q)

.

This allowed us to say that Fε is coercive in L2(QA). Consequently, there
exists a unique point ρTε,γ ∈ L2 (QA) where Fε reaches its minimum.

To characterize the optimal control, we write the Euler-Lagrange optimality
conditions:

lim
λ→0

Fε
(
ρTε,γ + λρT

)
− Fε

(
ρTε,γ

)
λ

= 0, ∀ρT ∈ L2(QA). (86)

After some calculations (86) gives

0 =

∫
Qω

ργερ
γ dt da dx−

∫
Q

zdφ
γ dt da dx

+
ε∥∥ρTε,γ∥∥L2(QA)

∫
QA

ρTε,γρ
T da dx, ∀ρT ∈ L2(QA).

(87)

Let ρTε,γ be the solution of the problem (84) and ργε be the solution of (58)

associated to ρTε,γ . Let also yγε , S
γ
ε , q

γ
ε and pγε be the solution associated to

k = kγε = ργεχω of problem (8), (9), (11) and (10) respectively:
Lyγε = vγεχO + kγεχω in Q,
yγε = 0 on Σ,

yγε (0, ., .) = 0 in QA,
yγε (., 0, .) = 0 in QT ,

(88)


L∗Sγε = yγε in Q,
Sγε = 0 on Σ,

Sγε (T, ., .) = 0 in QA,
Sγε (., A, .) = 0 in QT ,

(89)


L∗qγε = yγε − zd +

1
√
γ
pγε in Q,

qγε = 0 on Σ,
qγε (T, ., .) = 0 in QA,
qγε (., A, .) = 0 in QT ,

(90)
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and 
Lpγε = 0 in Q,
pγε = 0 on Σ,

pγε (0, ., .) = 0 in QA,

pγε (., 0, .) =
1
√
γ
Sγε (., 0, .) in QT ,

(91)

with

vγε = −q
γ
ε

N
χO (92)

and
kγε = ργεχω. (93)

Multiplying (88)1 by ργ , (89)1 by ψγ , (90)1 by φγ and (91)1 by ζγ and
integrating by parts over Q, then adding the results, we have that

0 =

∫
QA

yγε (T, a, x)ρT (a, x) da dx−
∫
Qω

ργερ
γ dt da dx+

∫
Q

zdφ
γ dt da dx,

which in view of (87) gives∫
QA

(
yγε (T, a, x) +

ερTε,γ(a, x)∥∥ρTε,γ∥∥L2(QA)

)
ρT (a, x) da dx = 0, ∀ρT ∈ L2(QA).

Hence,

yγε (T, a, x) = −
ερTε,γ(a, x)∥∥ρTε,γ∥∥L2(QA)

.

Consequently,
‖yγε (T, a, x)‖L2(QA) = ε. (94)

If we take ρT = ρTε,γ in (87) we obtain that

‖ργε‖
2
L2(Qω) =

∫
Q

zdφ
γ dt da dx− ε

∥∥ρTε,γ∥∥L2(QA)

≤
∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

‖κφγε‖L2(Q) ,

which in view of (81) yields

‖ργε‖
2
L2(Qω) ≤ C

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

‖ργε‖L2(Qω) ,

where C = C(Ψ, N, T,A, s, λ) > 0. Thus,

‖kγε ‖L2(Qω) = ‖ργε‖L2(Qω) ≤ C
∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

,

where C = C(Ψ, N, T,A, s, λ) > 0. This end the proof of Proposition 9.
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3.1 Proof of Theorem 2

We proceed in three steps.
Step 1. We give some a priori estimates on vγε , yγε , Sγε , pγε and qγε .

Observing on the one hand that kγε = ργεχω because of (93), and on the
other hand that, yγε , S

γ
ε , p

γ
ε and qγε satisfy (88)-(91), using Proposition 4 and

the fact that kγε satisfies also (85), we deduce that

‖vγε ‖L2(QO) ≤ C

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, (95a)

‖yγε ‖L2(U ;H1
0 (Ω)) ≤ C

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, (95b)

‖Sγε ‖L2(U ;H1
0 (Ω)) ≤ C

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, (95c)

‖pγε‖L2(U ;H1
0 (Ω)) ≤ C

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, , (95d)

∥∥∥∥ 1
√
γ
pγε

∥∥∥∥
L2(Q)

≤ C1

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, (95e)

‖qγε ‖L2(U ;H1
0 (Ω) ≤ C1

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, (95f)

1
√
γ
‖S (., 0, .; vγε )‖L2(QT ) ≤ C

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, (95g)

‖S (., 0, .; vγε )‖L2(QT ) ≤
√
γC

(
‖zd‖L2(Q) +

∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

)
, , (95h)

where C = C(Ψ, N, T,A, s, λ) > 0 andC1 = C(γ,Ψ, N, T,A, s, λ) > 0.
Step 2 We study the convergence when ε→ 0 of the sequences kγε , vγε , yγε , Sγε ,
pγε and qγε .

In view of (85), (95a)-(95f), we can extract subsequences still denoted by
kγε , vγε , yγε , Sγε , pγε , qγε such that when ε→ 0,

kγε ⇀ k̂γ weakly in L2(Qω), (96a)

vγε ⇀ v̂γ weakly in L2(QO), (96b)

yγε ⇀ŷγ weakly in L2(U ;H1
0 (Ω)), (96c)

Sγε ⇀Ŝγ weakly in L2(U ;H1
0 (Ω)), (96d)

qγε ⇀ q̂γ weakly in L2(U ;H1
0 (Ω)), (96e)

pγε ⇀p̂γ weakly in L2(U ;H1
0 (Ω)). (96f)
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From (92), (96b) and (96e), we obtain

v̂γ = − q̂
γ

N
in QO. (97)

Multiplying the first equation in (88) by ξ ∈ D(Q) and integrate by parts over
Q, ∫

Q

yγεL
∗ξ dt da dx =

∫
QO

ξvγε dt da dx+

∫
Qω

ξkγε dt da dx,

which passing to the limit when ε→ 0 gives∫
Q

ŷγL∗ξ dt da dx =

∫
QO

ξv̂γ dt da dx+

∫
Qω

ξk̂γ dt da dx

because of (96a), (96b) and (96c). Integrating this latter identity by parts over
Q, ∫

Q

ξLŷγ dt da dx =

∫
QO

ξv̂γ dt da dx+

∫
Qω

ξk̂γ dt da dx.

Hence,
∂ŷγ

∂t
+
∂ŷγ

∂a
−∆ŷγ + µŷγ = v̂γχO + k̂γχω in Q. (98)

Since ŷγ ∈ L2(U ;H1
0 (Ω)) we have on the one hand that the traces ŷγ(t, a)|Γ

exist and belong to H1/2(Γ) for almost every (t, a) ∈ U , and on the other hand
that

∂ŷγ

∂t
+
∂ŷγ

∂a
=
(

∆ŷγ − µŷγ + v̂γχO + k̂γχω

)
∈ L2(U ;H−1(Ω)).

Hence we know ( see e.g. [3]) that the traces (ŷγ(t, A), ŷγ(t, 0)) exists and
belongs to (L2(QT ))2 and (ŷγ(T, a), ŷγ(0, a))) exists and belongs to (L2(QA))2.

Multiplying the first equation of (8) by ξ ∈ C∞(Q) such that ξ = 0 on Σ,
ξ(T, a) = 0 in (0, A)×Ω, ξ(t, A) = 0 in (0, T )×Ω, then integrate by parts over
Q, we get∫
QO

ξvγε dt da dx+

∫
Qω

ξkγε dt da dx =

∫
Q

yγε

(
−∂ξ
∂t
− ∂ξ

∂a
−∆ξ + µξ

)
dt da dx.

Passing this latter identity to the limit when ε → 0, while taking into account
(96a), (96b) and (96c), we get for all ξ ∈ C∞(Q) such that ξ = 0 on Σ, ξ(T, a) =
0 in (0, A)× Ω, ξ(t, A) = 0 in (0, T )× Ω,

∫
QO

ξv̂γ dt da dx+

∫
Qω

ξk̂γ dt da dx =

∫
Q

ŷγ
(
−∂ξ
∂t
− ∂ξ

∂a
−∆ξ + µξ

)
dt da dx,
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which integrating by parts overQ and using (98) gives for any ξ ∈ C∞(Q) such that ξ =
0 on Σ, ξ(T, a) = 0 in (0, A)× Ω, ξ(t, A) = 0 in (0, T )× Ω,

0 =

∫
QA

ŷγ(0, a, x) ξ(0, a, x) da dx

+

∫
QT

ŷγ(t, 0, x) ξ(t, 0, x) dt dx

+

∫
Σ

ŷγ
∂ξ

∂ν
dt da dx,

(99)

Taking in (99) successively ξ(0, a) = 0 in QA and ξ(t, 0) = 0 in QT ; then
ξ(t, 0) = 0, we successively obtain

ŷγ = 0 on Σ (100)

and
ŷγ(0, a) = 0 in QA. (101)

Finally, we obtain from (99) that

ŷγ(., 0, .) = 0 in QT . (102)

Thus, from (98), (100), (101) and (102) it follows that ŷγ = y
(
k̂γ ; v̂γ , 0

)
satisfies ( 8). Proceeding as for the proof yγε in page 24-25, while using (96a)-
(96f), (95g) and (95e), we prove that when ε→ 0, we have that

1
√
γ
S(., 0, .; vγε ) ⇀

1
√
γ
S(., 0, .; v̂γ) weakly in L2(QT ), (103)

1
√
γ
pγε ⇀

1
√
γ
p̂γ weakly in L2(Q), (104)

and finally that Ŝγ = S(v̂γ), p̂γ , q̂γ are solution of (9)-(11). Moreover using
(94) we prove that when ε→ 0,

ŷγ(T, ., .) = 0 in QA. (105)

It then follows that (k̂γ , v̂γ , ŷγ = y(k̂γ ; v̂γ , 0), Ŝγ = S(v̂γ), p̂γ , q̂γ) is solution of
the null controllability problem (8)-(11), (7).

Step 3 We study the convergence when ε→ 0 of the sequences ργε , ψγε , φγε ,
ζγε .

Observing that kγε = ργεχω, where ργε , ψγε , φ
γ
ε and ζγε satisfy the following

systems: 
L∗ργε = ψγε + φγε in Q,
ργε = 0 on Σ,

ργε (T, ., .) = ρT in QA,
ργε (., A, .) = 0 in QT ,

(106)
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
Lψγε = 0 in Q,
ψγε = 0 on Σ,

ψγε (0, ., .) = 0 in QA,

ψγε (., 0, .) =
1
√
γ
ζγε (., 0, .) in QT ,

(107)


Lφγε =

−1

N
ργεχO in Q,

φγε = 0 on Σ,
φγε (0, ., .) = 0 in QA,
φγε (., 0, .) = 0 in QT

(108)

and 
L∗ζγε =

1
√
γ
φγε in Q,

ζγε = 0 on Σ,
ζγε (T, ., .) = 0 in QA,
ζγε (., A, .) = 0 in QT ,

(109)

it follows from (81) that

‖κφγε‖
2
L2(Q) +

∥∥∥∥1

%
ργε

∥∥∥∥2

L2(Q)

≤ C
∫
Qω

|ργε |
2
dt da dx,

which in view of (85) gives

‖κφγε‖
2
L2(Q) +

∥∥∥∥1

%
ργε

∥∥∥∥2

L2(Q)

≤ C
∥∥∥∥ 1

κ
zd

∥∥∥∥2

L2(Q)

, (110)

where C = C(Ψ, N, T,A, s, λ) > 0.
For any positive function Θ ∈ L∞(Q) and any bounded domain X, we set
L2(Θ, X) =

{
ϕ ∈ L2(X),

∫
X

Θ|ϕ|2dX <∞
}

. Then we have that L2(X) ⊂
L2(Θ, X) and the canonical injection is continuous. Thus, in view of (110)

φγε ⇀ φ̂γ weakly in L2 (κ,Q) ,

ργε ⇀ ρ̂γ weakly in L2
(

1
% , Q

)
,

(111)

which in view of according to the definitions of Ψ, η, ϕ, κ and % given by (52),
(53), (54), (76) and (80) implies that

φγε ⇀ φ̂γ weakly in L2(]0, T − β[×]0, A− τ [×Ω),
ργε ⇀ ρ̂γ weakly in L2(]0, T − β[×]0, A− τ [×Ω),

where β, τ > 0. Consequently if we denote by D(Q) the space of infinitely
continuously differentiable functions with compact in Q and D′(Q) its dual,
then

φγε ⇀ φ̂γ weakly in D′(Q),
ργε ⇀ ρ̂γ weakly in D′(Q)
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and then,

ψγε ⇀ ψ̂γ weakly in D′(Q),

ζγε ⇀ ζ̂γ weakly in D′(Q).

Therefore, we prove by passing to the limit in systems (106)-(109) that for any

ρT ∈ L2(QA) and γ > 0, the functions ρ̂γ , ψ̂γ , φ̂γ and ζ̂γ satisfy (15)-(18).
Moreover, using the weak-lower semi-continuity of the norm and (96a), we

deduce from (85),∥∥∥k̂γ∥∥∥
L2(Qω)

= ‖ρ̂γ‖L2(Qω) ≤ C
∥∥∥∥ 1

κ
zd

∥∥∥∥
L2(Q)

.

4 Concluding remarks

We proposed a method to control hierarchically a population dynamics model
with missing birth rate. This method consists in studying a Low-regret control
for the follower and the null controllability problem for the leader. The controls
found depend on the parameter of the Low-regret control γ. We can prove that
the Low-regret control converges to a control, called No-regret control and even
give the characterization of this control. A further work to study the linearity
of this control with respect to the follower k so as to consider a Problem 2 with
the state associated the No-regret control.
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