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Abstract—Reliable in-order multi-path data transfer under
asymmetric heterogeneous network conditions has known prob-
lems related to receiver’s buffer blocking, caused by out of
order packet arrival. Consequently, the aggregate capacity from
multiple paths, which theoretically should be available to and
achievable by the multi-path transport protocol, is practically
severely underutilized. Several mitigation techniques have been
proposed to address this issue mostly by using various packet re-
transmission schemes, load-balancing and bandwidth-estimation
based mechanisms. In comparison to the existing reactive tech-
niques for buffer block mitigation, we propose a novel and yet
simpler to implement, delay aware packet scheduling scheme
for multipath data transfer over asymmetric network paths,
that proactively minimizes the blocking inside receiver’s buffer.
Our initial simulation results show that, in comparison to the
default round robin packet scheduler, by using our proposed delay
aware packet scheduling scheme, we can significantly improve the
overall performance of a multi-path transport protocols while
notably minimizing the receiver’s buffer usage. Therefore, our
proposal is particularly beneficial for multi-homed hand-held
mobile devices with limited buffering capacity, which, due to their
multi-homing and heterogeneous wireless network features (i.e.
availability of 3G and Wi-Fi) are also one of the most common
use cases for multi-path transport.

Index Terms—Multipath Transport Protocol; Receiver’s Buffer
Blocking; CMT-SCTP; Receiver’s Window Blocking

I. INTRODUCTION AND MOTIVATION

With the increased popularity of hand-held devices

equipped with multiple heterogeneous radio interfaces and

multi-homing capable data-centres connected to the Internet

with several network access links, contemporary networking

is demonstrably moving towards multi-homed and multi-path

oriented communication. Yet the majority of data transfer today

is still performed using traditional TCP, which neither supports

multi-homing nor can provide multi-path data transfer. To

address these deficiencies, a multi-path and multi-homing

capable version of TCP has been proposed recently and is

actively being contributed to in IETF [2]. Stream Control

Transport Protocol (SCTP) [1] was originally designed to

fulfil the limitations of traditional TCP with features such

as inherent multi-homing, multi-streaming, reliable, unreliable

and partial reliable data delivery and elimination of TCP’s

head-of-line blocking problem. Although SCTP provides in-

built multi-homing, secondary paths are still only meant to

provide fail-over redundancy and load-balancing. Therefore an

extension to the existing SCTP standard, Concurrent Multipath

Transfer SCTP (CMT-SCTP) [3], has been proposed to enable

simultaneous usage of multiple available paths, aggregating

dispersed available capacity.

Receiver’s buffer blocking is a known problem for both MP-

TCP [6] and CMT-SCTP [9] when operating under various

asymmetric network scenarios, since out of order incom-

ing packets may occupy the entire receiver’s buffer eventu-

ally stalling the whole transmission flow. Before transmit-

ting newer data packets, both MP-TCP and CMT-SCTP’s

congestion control mechanism will check if the receiver’s

buffer has enough space by following the result given by

min(CWNDi, RWND) where CWNDi is the data sender’s

congestion window for each path and RWND is receiver’s

congestion window for the whole connection which essentially

indicates the available space in the receiver’s buffer. Therefore,

although the potential of aggregating capacity in concurrent

multipath data transfer might seem a straightforward way to

use all the available resources, out of order packet arrival

leading to receiver’s buffer block together with the conservative

nature of congestion control may significantly degrade the

expected overall performance of multipath data transmission

protocols [4], [5]. Since the original proposal of CMT-SCTP,

several retransmission-policy based mitigation techniques for

receiver’s buffer blocking have been put forward [9], [10], [12].

The fundamental idea behind buffer-block mitigation by re-

transmission is to provide the receiver with in order packets as

fast as possible, based on different policies exploiting inherent

metrics such as congestion window size, slow-start threshold,

estimated path loss and round trip time (RTT), or hybrid

policies using a combination of them. On the other hand,

present state of deployable MP-TCP still depends on increasing

the buffer size estimated from the combined bandwidth delay

product using the highest RTT RTTmax of the available paths

and concludes that the buffer size should be adaptable based

on the type of end-point devices [6]. If communicating devices

can afford to provide bigger buffers, they may achieve higher

throughput. Otherwise they will receive limited throughput for

the case of constrained buffer size.

Considering the current state of the art buffer management

and packet scheduling in multipath transport protocols, our

contributions include:



• The proposal for a novel packet scheduling technique that

exploits the awareness of per-path delay with respect to

the combined overall capacity of the paths, to mitigate

receiver’s buffer blocking.

• A related technique to estimate the forward delay for

delay aware scheduling.

• Evaluation (via simulation) of the performance of the pro-

posed scheduling mechanism as compared to the standard

round robin scheduling used in current multi-path trans-

port protocols. Sensitivity analysis of the performance to

the imperfect delay estimation.

We note that although we refer to the specific details of

the CMT-SCTP protocol when evaluating the performance

improvement resulting from the use of our proposed scheduling

mechanism, our proposal is equally applicable to other multi-

path transport protocols like e.g. MP-TCP.

The organization of the rest of the paper is as follows: in

Section II we propose and explain our delay-aware packet

scheduling in contrast to CMT-SCTP’s default round-robin

packet scheduling. We additionally present a proposal for a

delay estimation mechanism and the required modifications to

CMT-SCTP. In Section III we present an evaluation of the

proposed packet scheduling technique and compare it with

CMT-SCTP’s sender congestion window round robin packet

scheduler. We also present the impact of a varying delay

estimation error to the performance of our proposal. Finally

in Section IV we draw conclusion and propose future work.

II. DELAY AWARE PACKET SCHEDULING FOR MULTI-PATH

DATA TRANSFER

In this section, we first introduce the round robin scheduling

currently utilized in the CMT-SCTP transport protocol and the

associated performance issues. We then present our proposal

for delay based packet scheduling, followed by the description

of a mechanism used to estimate the delay on specific paths.

A. Round Robin Scheduling

In CMT-SCTP’s original round robin packet scheduling

mechanism, data sender attempts to send packets on multiple

paths, based on the congestion window of each path. A sepa-

rate congestion window is kept for each individual path. The

scheduler observes the usable partition of sender’s congestion

window, subtracting the on-the-flight unacknowledged packets

from current congestion window size for each path, in a

so called "blind" round robin manner using the Equation 1

where Cwndi and Unacknowledgedi represents the sender

side congestion window size and amount of unacknowledged

packets for any path Pi. The resulting amount of packets from

Equation 1, which is assumed to be safe to prevent the overflow

of the receiver’s buffer, is transmitted over the particular path

during multipath transmission. Each path gets the opportunity

to transmit packets based on the output of Equation 1 in a

round robin manner. Once the receiver’s buffer is full with out

of order packets i.e. with Rwnd = 0, the missing packets are

retransmitted, even though they might actually be in flight over

the longer delay paths. The retransmission based mitigation
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Table I
TRADITIONAL ROUND-ROBIN PACKET SCHEDULING

techniques perform their role in these cases by determining the

best path to retransmit the missing packet(s) based on various

path characteristics criteria which will lead to unblocking of

the receiver’s buffer [9], [10], [12].

min(Cwndi − Unacknowledgedi, Rwnd) (1)

An illustration of buffer block in round robin packet

scheduling in presented in Table I where the multi-path trans-

port protocol is using two paths: P1 and P2, with RTT1 =
20ms and RTT2 = 200ms respectively. The bandwidth of the

paths are considered B1 = 1.6Mbit/s and B2 = 400Kbit/s
respectively. The above parameters closely represent a multi-

path scenario, where a mobile device e.g. smartphone which

has two (heterogeneous) interfaces, 3G and Wi-Fi and is

downloading content from a data-centre.

Therefore, considering symmetric forward and reverse delay

on both paths, with an average packet size of S = 1000Bytes,

P1 will emit Bi.RTTi

8.S = (1.6).1000.1000
8.1000 × 10

1000 = 2Packets
at every 10ms. Similarly, P2 will emit 400.1000

8.1000 × 100
1000 =

5Packets at every 100ms until the receiver’s buffer is full.

For the sake of illustration, we assume that the receiver’s buffer

size is 10packets in Table I.

As can be seen in Table I, receiver buffer is blocked during

50ms − 100ms clearly due to the way packet sequences are

selected by the scheduler. To further establish our argument on

the problem, we present the NS-2 [14] simulation results for

CMT-SCTP with round-robin scheduling in Figures 1 and 2.

The parameters chosen for this simulation were the same as

in Table I.

Figure 1 presents the packet sequence progression in time1

As can be seen, although we receive packets over both Path1

and Path2, the application-received packets are controlled

by the worse bandwidth-delay path, due to the buffer-and-

release nature introduced as a consequence of round-robin

scheduling. Figure 2 depicts the throughput evolution in time

(throughput is averaged over 1 second intervals), for each path

1Note that we only show the first 5 seconds of the data transfer.
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and aggregated, i.e. presented to the application. Similarly, the

reduced performance of the multi-path transport protocol can

evidently be observed from the figure, as the transport protocol

utilizes only a part of the available total capacity.

We should note that it is possible to get around buffer

blocking by providing a large enough buffer. For the given

scenario in Table I, we will at least need a buffer with size

equal to the combined delay product with respect to the highest

RTT of the corresponding paths, as shown in Equation 2, to

avoid blocking.

Rbufmin =
∑

i∈{P1,P2,...Pn}

Bi × max
j∈{P1,P2,...Pn}

(RTTj) (2)

From Equation 2, a given receiver’s buffer size of 50KB
would have sufficed for the illustrated scenario in Table I.

But this would not be a scalable and optimum solution as

Rbufmin easily becomes more demanding if we consider a

slightly different scenario of two paths with 10Mbit/s and

1Mbit/s bandwidth and 20ms and 200ms RTT respectively,

where the required minimum buffer size would be 275KB to

avoid blocking. The required minimum buffer size will be even

higher if we consider lossy scenarios where lost or delayed

packets will frequently need to be retransmitted. Therefore, to

avoid these existing problems with round-robin scheduling, we

propose delay-aware scheduling in Section II-B.

B. Delay Aware Scheduling

To mitigate the problems associated with the path unaware

round-robin packet scheduling, in this section we propose a

delay aware packet scheduling which carefully selects packet

sequences to be transmitted over each path. The main idea

behind delay aware packet scheduling is not to transmit mono-

tonically increasing packet sequences in a multipath transfer,

but to carefully choose and then emit packets based on the

delay of the associated paths to receive packets in order.

First, we define Pi ∈ {P1, P2, . . . Pn} as the set of

the paths associated in a multipath transmission and Di ∈
{D1, D2, . . . Dn} are the respective forward delays of the

paths. We assume that the set of the paths is sorted in ascending

order based on their forward delays. The packet emission

capacity of each Pi is given by Ci ∈ {C1, C2, . . . Cn} which

could be estimated from instantaneous congestion window of

each path.

Then we obtain the ideal number of packets Ki that

can be transmitted on the path Pi within lcm2(Di ∈
{D1, D2, . . . Dn}) time using Equation 3. In an ideal scenario,

the time duration lcm(Di ∈ {D1, D2, . . . Dn}) ensures that

having started at time instant 0, the scheduler will be back to

the same state after lcm(Di ∈ {D1, D2, . . . Dn}) amount of

time.

Ki = lcm (Dj ∈ {D1, D2, ..., Dn})×
Ci

Di

(3)

Thus the ideal number of packets N sent on all the paths

during the time lcm (Dj ∈ {D1, D2, ..., Dn}) is given by

Equation 4.

N =
∑

i∈{1,2,...,n}

lcm (Dj ∈ {D1, D2, ..., Dn})×
Ci

Di

(4)

Our goal now is to transmit this N packets in such

an order over the available paths that they would occupy

the least amount of space in the receiver’s buffer. To in-

fer in order packet reception, we create the vector Oi ∈
{O1, O2, ..., O∑

i∈{1,2,...,n}
lcm(Di)

Di

} that contains the ideal or-

der of the paths in which the transmitted packets should be

received. Calculation of Oi is shown in Algorithm 1.

In order to prove our hypothesis, we considering a deter-

ministic scenario where the delays of the paths do not change

during the transmission of these N packets.

Using Algorithm 1, we can derive the vector O of expected

reception order of N packets denoting the paths over which

they will continue to be transmitted during the next lcm(Di ∈
{D1, D2, ..., Dn}) duration of time as shown in (5). Now, from

each path Pi with corresponding path capacity Ci and using

the order in the vector O, we generate another vector SEQPi

2Lowest Common Multiple (LCM)



Algorithm 1 Expected Order of Data Reception in Delay

Aware Scheduling

j ← 0
t← 1
while t ≤ lcm(Di ∈ {D1, D2, ..., Dn}) do

for each Pi ∈ {P1, P2, ..., Pn} do

if t ≡ 0 (mod Di) then

O[j]← Pi

j ← j + 1
end if

end for

t← t+ 1
end while

for each path Pi which describes the packet sequence numbers

that can be transmitted at every attempt of the scheduler to emit

over the particular path. The method to derive SEQPi
from

O is shown in Algorithm 2.

Algorithm 2 Deriving Packet Sequence Numbers to Transmit

Per Path Using Expected Reception Order

Smax ← 0
for each Pi ∈ {P1, P2, ..., Pn} do

SEQPi
← IntializeV ector()

end for

for each Pi ∈ {O1, O2, ..., O∑
i∈{1,2,...,n}

lcm(Di)

Di

} do

SEQPi
← Append (SEQPi

, [Smax + 1, Smax + Ci])
Smax ← Smax + Ci

end for

Then we can easily schedule the next sequence of packets

using Algorithm 3.

Reception T ime Over P1 Over P2

T10ms O(1) = P1 −
T20ms O(2) = P1 −
T30ms O(3) = P1 −
T40ms O(4) = P1 −
T50ms O(5) = P1 −
T60ms O(6) = P1 −
T70ms O(7) = P1 −
T80ms O(8) = P1 −
T90ms O(9) = P1 −
T100ms O(10) = P1 O(11) = P2

(5)

With the same multipath scenario and path parameters

used in Table I, we present another illustration of packet

transmission using the delay aware scheduling in Table II.

First we derive N = 25 for this scenario using Equation

4. Algorithm 1 and 2 yield that packets [1 . . . 20] should be

transmitted over P1 while packets [21 . . . 25] should go over

P2. As can be seen in Table II, since the packets sequences

are carefully selected based on per path delay and emitted over

the appropriate paths, the receiver’s buffer is never blocked in

Algorithm 3 Transmission Based on Pre-calculated Sequence

t← 0
while t < lcm(Di ∈ {D1, D2, ..., Dn}) do

for each Pi ∈ {P1, P2, ..., Pn} do

if t ≡ 0 (mod Di) then

Transmit(Pi, SEQPi
[ t
Di

])
end if

end for

t← t+ 1
end while

Xmit
Time
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Xmit
over
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Xmit
over
P2

Rcvd.
Time
(ms)

Rcvd.
over
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Rcvd.
over
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Good-
put

Pkts
in
Rbuf

0 1− 2 21−
25

10 1− 2 none 1−2 0

10 3− 4 none 20 3− 4 none 3−4 0
20 5− 6 none 30 5− 6 none 5−6 0
30 7− 8 none 40 7− 8 none 7−8 0
. . . . . . . . . . . . . . . . . . . . . . . .

90 19 −
20

none 100 19 −
20

21−
25

19−
25

0

Table II
DELAY AWARE PACKET SCHEDULING

this non-oscillating deterministic scenario. In fact the buffer is

always empty due to the proper in order arrival of the packets.

C. Estimating Forward Delay for Delay Aware Scheduling

In order to accurately estimate forward delay in CMT-

SCTP, we propose a timestamp based method similar to the

mechanism used for the RTT estimation in Datagram Con-

gestion Control Protocol (DCCP) [15]. Although CMT-SCTP

maintains its own estimation of RTT, in our previous work

we have shown that RTT estimation in CMT-SCTP is severely

degraded in presence of asymmetric transmission paths [5].

An accurate RTT estimation can easily be made without

making significant modifications in the CMT-SCTP protocol.

Our proposal to estimate RTT correctly includes adding some

additional fields in the SCTP packet header namely sender-

timestamp (Ts) for data packets and receiver-timestamp (Tr)
and time-elapsed (Te) for SACK packets. An illustration of

how the delay calculation may be performed using these

timestamp fields is shown in Figure 3.

As shown in Figure 3, data packet pi is sent with sender-

timestamp Ts1. It is received by the receiver and acknowledged

at time Tr. If it takes Te amount of time for the receiver before

sending the selective acknowledgement for data packet pi, we

can estimate the forward delay Dfwd as shown in Equation 6

after having received the SACKpi
.

Dfwd = Tr − Te − Ts1 (6)

In the following section, we evaluate the improvements

resulting from our proposal, by comparison with the baseline

performance of the multipath protocol using round robin

scheduling.



Ts1
Datapi

Sackpi

Te

Ts2

Tr

Figure 3. Timestamp based forward delay estimation

Figure 4. Simulation topology

III. EXPERIMENTAL EVALUATION

To check the validity of our proposal from Section II, we

have implemented both the round-robin scheduling and delay-

aware scheduling for multipath data transfer in GNU’s Matlab

equivalent Octave tool [13]. The round robin scheduling im-

plementation was also cross-checked with simulation results

from NS-2 [14].

The network topology used during the simulations was as

shown in Figure 4. The path parameters are as per the example

presented in Table I, with path P1 having RTT1 = 20ms
and B1 = 1.6Mbit/s; path P2 with RTT2 = 200ms and

B2 = 400Kbit/s.

In Figure 5, we present a snapshot of the simulation
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Figure 5. Comparison of round-robin and delay-aware scheduling
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Figure 6. Comparison of receiver’s buffer occupancy and unacknowldeged
on the flight packets for round-robin and delay-aware scheduling

performed with the same parameters presented in Table I and

II. We show cumulative packet sequence numbers received

by the application and the application goodput resulting from

aggregated data transfer on both paths. As can be seen, the

performance of delay-aware scheduling is clearly much better

than the round-robin scheduling both in terms of overall good-

put and minimization of jitter experienced by the application.

In Figure 6, we present a comparison of the receiver’s

buffer usage and unacknowledged data packets on the flight.

As can be observed, the delay aware scheduling clearly results

in lower occupancy of the receiver’s buffer, while also emitting

more data packets which eventually leads to higher application

goodput.

A. Impact of Incorrect Delay Estimation on Delay Aware

Scheduling

We now present practical considerations related to the

performance of our proposed scheme. The results presented

in Figures 5 and 6 assume perfect estimation of the delay on

both paths. We now present results for the case where there is

an error in the estimated delay value(s), in Figures 7 and 8.
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Figure 7. Impact of Incorrect Delay Estimation on Delay Aware Scheduling:
Comparison of the overall application goodput
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Figure 8. Impact of Incorrect Delay Estimation on Delay Aware Scheduling:
Comparison

Figure 7 shows the goodput available to the application from

the total data transfer on both paths. Baseline results are shown

for the round-robin scheduling (bottom curve), the delay aware

scheduling where there is no error in the delay estimation on

both paths (top curve), and for the error in the delay over-

estimation ranging from 10% to 100%. It can be observed that

there is a solid gain by the delay aware scheduling mechanism,

even for the case when there is a 100% error (twice the original

delay) in the delay estimation.

Figure 8 presents the cumulative packet sequence numbers

received by the application, for the first 5 seconds of the data

transfer. Again, the bottom curve represents the result for the

round-robin scheduling, and the top curve the delay aware

scheduling where there is no error in the delay estimation on

both paths. The middle curves represent results for the error in

the delay estimation which is varied between 10% and 100%.

Similarly to the application goodput results, it can be seen that

a considerable error in estimating the delay on both path cannn

be tolerated by the delay aware scheduling mechanism, while

still providing an improvement compared to the round robin

scheduling.

We note that the results for the occupancy of the receiver’s

buffer are omitted for the case of imperfect delay estimation,

as they would show a similar trend as the comparison shown in

Figures 7 and 8, i.e. that even a considerable error in the delay

estimation by the transport protocol, used in the delay aware

scheduling, still results in a solid improvement compared to

the round robin schduling mechanism.

IV. CONCLUSION AND FUTURE WORK

Our current evaluation indicates that the delay-aware

scheduling has significant potential for providing performance

improvement over the traditional round-robin scheduling in

asymmetric multipath scenarios. As future work, we plan to

implement our proposal first in NS-2 and later in FreeBSD’s

CMT-SCTP stack to evaluate the performance gain in realistic

network conditions and address the related practical issues.
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