Golam Sarwar
email: golam.sarwar@nicta.com.au

Roksana Boreli
email: roksana.boreli@nicta.com.au

Emmanuel Lochin
email: ⊳emmanuel.lochin@isae.fr

Ahlem Mifdaoui
email: ⊲ahlem.mifdaoui@isae.fr

Guillaume Smith
email: ∞guillaume.smith@nicta.com.au

Mitigating Receiver's Buffer Blocking by Delay Aware Packet Scheduling in Multipath Data Transfer

Keywords: Multipath Transport Protocol, Receiver's Buffer Blocking, CMT-SCTP, Receiver's Window Blocking

Reliable in-order multi-path data transfer under asymmetric heterogeneous network conditions has known problems related to receiver's buffer blocking, caused by out of order packet arrival. Consequently, the aggregate capacity from multiple paths, which theoretically should be available to and achievable by the multi-path transport protocol, is practically severely underutilized. Several mitigation techniques have been proposed to address this issue mostly by using various packet retransmission schemes, load-balancing and bandwidth-estimation based mechanisms. In comparison to the existing reactive techniques for buffer block mitigation, we propose a novel and yet simpler to implement, delay aware packet scheduling scheme for multipath data transfer over asymmetric network paths, that proactively minimizes the blocking inside receiver's buffer. Our initial simulation results show that, in comparison to the default round robin packet scheduler, by using our proposed delay aware packet scheduling scheme, we can significantly improve the overall performance of a multi-path transport protocols while notably minimizing the receiver's buffer usage. Therefore, our proposal is particularly beneficial for multi-homed hand-held mobile devices with limited buffering capacity, which, due to their multi-homing and heterogeneous wireless network features (i.e. availability of 3G and Wi-Fi) are also one of the most common use cases for multi-path transport.

I. INTRODUCTION AND MOTIVATION

With the increased popularity of hand-held devices equipped with multiple heterogeneous radio interfaces and multi-homing capable data-centres connected to the Internet with several network access links, contemporary networking is demonstrably moving towards multi-homed and multi-path oriented communication. Yet the majority of data transfer today is still performed using traditional TCP, which neither supports multi-homing nor can provide multi-path data transfer. To address these deficiencies, a multi-path and multi-homing capable version of TCP has been proposed recently and is actively being contributed to in IETF [START_REF][END_REF]. Stream Control Transport Protocol (SCTP) [START_REF] Stewart | RFC 4960 -Stream Control Transmission Protocol[END_REF] was originally designed to fulfil the limitations of traditional TCP with features such as inherent multi-homing, multi-streaming, reliable, unreliable and partial reliable data delivery and elimination of TCP's head-of-line blocking problem. Although SCTP provides inbuilt multi-homing, secondary paths are still only meant to provide fail-over redundancy and load-balancing. Therefore an extension to the existing SCTP standard, Concurrent Multipath Transfer SCTP (CMT-SCTP) [START_REF] Iyengar | Concurrent Multipath Transfer Using SCTP Multihoming Over Independent End-to-End Paths[END_REF], has been proposed to enable simultaneous usage of multiple available paths, aggregating dispersed available capacity.

Receiver's buffer blocking is a known problem for both MP-TCP [START_REF] Raiciu | How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP[END_REF] and CMT-SCTP [START_REF] Janardhan | Retransmission Policies For concurrent Multipath Transfer Using sctp Multihoming[END_REF] when operating under various asymmetric network scenarios, since out of order incoming packets may occupy the entire receiver's buffer eventually stalling the whole transmission flow. Before transmitting newer data packets, both MP-TCP and CMT-SCTP's congestion control mechanism will check if the receiver's buffer has enough space by following the result given by min(CW N D i , RW N D) where CW N D i is the data sender's congestion window for each path and RW N D is receiver's congestion window for the whole connection which essentially indicates the available space in the receiver's buffer. Therefore, although the potential of aggregating capacity in concurrent multipath data transfer might seem a straightforward way to use all the available resources, out of order packet arrival leading to receiver's buffer block together with the conservative nature of congestion control may significantly degrade the expected overall performance of multipath data transmission protocols [START_REF] Adhari | Evaluation of Concurrent Multipath Transfer over Dissimilar Paths[END_REF], [START_REF] Sarwar | Performance Evaluation of Multipath Transport Protocol in Heterogeneous Network Environments[END_REF]. Since the original proposal of CMT-SCTP, several retransmission-policy based mitigation techniques for receiver's buffer blocking have been put forward [START_REF] Janardhan | Retransmission Policies For concurrent Multipath Transfer Using sctp Multihoming[END_REF], [START_REF] Liu | Rethinking Retransmission Policy In Concurrent Multipath Transfer[END_REF], [START_REF] Qiao | Path Selection of SCTP Fast Retransmission in Multi-homed Wireless Environments[END_REF]. The fundamental idea behind buffer-block mitigation by retransmission is to provide the receiver with in order packets as fast as possible, based on different policies exploiting inherent metrics such as congestion window size, slow-start threshold, estimated path loss and round trip time (RTT), or hybrid policies using a combination of them. On the other hand, present state of deployable MP-TCP still depends on increasing the buffer size estimated from the combined bandwidth delay product using the highest RTT RT T max of the available paths and concludes that the buffer size should be adaptable based on the type of end-point devices [START_REF] Raiciu | How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP[END_REF]. If communicating devices can afford to provide bigger buffers, they may achieve higher throughput. Otherwise they will receive limited throughput for the case of constrained buffer size.

Considering the current state of the art buffer management and packet scheduling in multipath transport protocols, our contributions include:

• The proposal for a novel packet scheduling technique that exploits the awareness of per-path delay with respect to the combined overall capacity of the paths, to mitigate receiver's buffer blocking. • A related technique to estimate the forward delay for delay aware scheduling. • Evaluation (via simulation) of the performance of the proposed scheduling mechanism as compared to the standard round robin scheduling used in current multi-path transport protocols. Sensitivity analysis of the performance to the imperfect delay estimation. We note that although we refer to the specific details of the CMT-SCTP protocol when evaluating the performance improvement resulting from the use of our proposed scheduling mechanism, our proposal is equally applicable to other multipath transport protocols like e.g. MP-TCP.

The organization of the rest of the paper is as follows: in Section II we propose and explain our delay-aware packet scheduling in contrast to CMT-SCTP's default round-robin packet scheduling. We additionally present a proposal for a delay estimation mechanism and the required modifications to CMT-SCTP. In Section III we present an evaluation of the proposed packet scheduling technique and compare it with CMT-SCTP's sender congestion window round robin packet scheduler. We also present the impact of a varying delay estimation error to the performance of our proposal. Finally in Section IV we draw conclusion and propose future work.

II. DELAY AWARE PACKET SCHEDULING FOR MULTI-PATH DATA TRANSFER

In this section, we first introduce the round robin scheduling currently utilized in the CMT-SCTP transport protocol and the associated performance issues. We then present our proposal for delay based packet scheduling, followed by the description of a mechanism used to estimate the delay on specific paths.

A. Round Robin Scheduling

In CMT-SCTP's original round robin packet scheduling mechanism, data sender attempts to send packets on multiple paths, based on the congestion window of each path. A separate congestion window is kept for each individual path. The scheduler observes the usable partition of sender's congestion window, subtracting the on-the-flight unacknowledged packets from current congestion window size for each path, in a so called "blind" round robin manner using the Equation 1where Cwnd i and U nacknowledged i represents the sender side congestion window size and amount of unacknowledged packets for any path P i . The resulting amount of packets from Equation 1, which is assumed to be safe to prevent the overflow of the receiver's buffer, is transmitted over the particular path during multipath transmission. Each path gets the opportunity to transmit packets based on the output of Equation 1 in a round robin manner. Once the receiver's buffer is full with out of order packets i.e. with Rwnd = 0, the missing packets are retransmitted, even though they might actually be in flight over the longer delay paths. The retransmission based mitigation techniques perform their role in these cases by determining the best path to retransmit the missing packet(s) based on various path characteristics criteria which will lead to unblocking of the receiver's buffer [START_REF] Janardhan | Retransmission Policies For concurrent Multipath Transfer Using sctp Multihoming[END_REF], [START_REF] Liu | Rethinking Retransmission Policy In Concurrent Multipath Transfer[END_REF], [START_REF] Qiao | Path Selection of SCTP Fast Retransmission in Multi-homed Wireless Environments[END_REF].

min(Cwnd i -U nacknowledged i , Rwnd) (1)
An illustration of buffer block in round robin packet scheduling in presented in Table I where the multi-path transport protocol is using two paths: P 1 and P 2 , with RT T 1 = 20ms and RT T 2 = 200ms respectively. The bandwidth of the paths are considered B 1 = 1.6M bit/s and B 2 = 400Kbit/s respectively. The above parameters closely represent a multipath scenario, where a mobile device e.g. smartphone which has two (heterogeneous) interfaces, 3G and Wi-Fi and is downloading content from a data-centre.

Therefore, considering symmetric forward and reverse delay on both paths, with an average packet size of S = 1000Bytes, P 1 will emit Bi.RT Ti 8.S = (1.6).1000.1000 8.1000 × 10 1000 = 2P ackets at every 10ms. Similarly, P 2 will emit 400.1000 8.1000 × 100 1000 = 5P ackets at every 100ms until the receiver's buffer is full. For the sake of illustration, we assume that the receiver's buffer size is 10packets in Table I.

As can be seen in Table I, receiver buffer is blocked during 50ms -100ms clearly due to the way packet sequences are selected by the scheduler. To further establish our argument on the problem, we present the NS-2 [START_REF]The Network Simulator -NS-2[END_REF] simulation results for CMT-SCTP with round-robin scheduling in Figures 1 and2. The parameters chosen for this simulation were the same as in Table I.

Figure 1 presents the packet sequence progression in time 1 As can be seen, although we receive packets over both P ath 1 and P ath 2 , the application-received packets are controlled by the worse bandwidth-delay path, due to the buffer-andrelease nature introduced as a consequence of round-robin scheduling. Figure 2 and aggregated, i.e. presented to the application. Similarly, the reduced performance of the multi-path transport protocol can evidently be observed from the figure, as the transport protocol utilizes only a part of the available total capacity. We should note that it is possible to get around buffer blocking by providing a large enough buffer. For the given scenario in Table I, we will at least need a buffer with size equal to the combined delay product with respect to the highest RT T of the corresponding paths, as shown in Equation 2, to avoid blocking.

Rbuf min = i∈{P1,P2,...Pn} B i × max j∈{P1,P2,...Pn} (RT T j) (2)
From Equation 2, a given receiver's buffer size of 50KB would have sufficed for the illustrated scenario in Table I. But this would not be a scalable and optimum solution as Rbuf min easily becomes more demanding if we consider a slightly different scenario of two paths with 10M bit/s and 1M bit/s bandwidth and 20ms and 200ms RTT respectively, where the required minimum buffer size would be 275KB to avoid blocking. The required minimum buffer size will be even higher if we consider lossy scenarios where lost or delayed packets will frequently need to be retransmitted. Therefore, to avoid these existing problems with round-robin scheduling, we propose delay-aware scheduling in Section II-B.

B. Delay Aware Scheduling

To mitigate the problems associated with the path unaware round-robin packet scheduling, in this section we propose a delay aware packet scheduling which carefully selects packet sequences to be transmitted over each path. The main idea behind delay aware packet scheduling is not to transmit monotonically increasing packet sequences in a multipath transfer, but to carefully choose and then emit packets based on the delay of the associated paths to receive packets in order. First, we define P i ∈ {P 1 , P 2 , . . . P n } as the set of the paths associated in a multipath transmission and D i ∈ {D 1 , D 2 , . . . D n } are the respective forward delays of the paths. We assume that the set of the paths is sorted in ascending order based on their forward delays. The packet emission capacity of each P i is given by C i ∈ {C 1 , C 2 , . . . C n } which could be estimated from instantaneous congestion window of each path.

Then we obtain the ideal number of packets K i that can be transmitted on the path P i within lcm 2 (D i ∈ {D 1 , D 2 , . . . D n }) time using Equation 3. In an ideal scenario, the time duration lcm(D i ∈ {D 1 , D 2 , . . . D n }) ensures that having started at time instant 0, the scheduler will be back to the same state after lcm(D i ∈ {D 1 , D 2 , . . . D n }) amount of time.

K i = lcm (D j ∈ {D 1 , D 2 , ..., D n }) × C i D i (3)
Thus the ideal number of packets N sent on all the paths during the time lcm (D j ∈ {D 1 , D 2 , ..., D n }) is given by Equation 4.

N = i∈{1,2,...,n} lcm (D j ∈ {D 1 , D 2 , ..., D n }) × C i D i (4)
Our goal now is to transmit this N packets in such an order over the available paths that they would occupy the least amount of space in the receiver's buffer. To infer in order packet reception, we create the vector

O i ∈ {O 1 , O 2 , ..., O i∈{1,2,...,n} lcm(D i) D i
} that contains the ideal order of the paths in which the transmitted packets should be received. Calculation of O i is shown in Algorithm 1.

In order to prove our hypothesis, we considering a deterministic scenario where the delays of the paths do not change during the transmission of these N packets.

Using Algorithm 1, we can derive the vector O of expected reception order of N packets denoting the paths over which they will continue to be transmitted during the next lcm(D i ∈ {D 1 , D 2 , ..., D n }) duration of time as shown in [START_REF] Sarwar | Performance Evaluation of Multipath Transport Protocol in Heterogeneous Network Environments[END_REF]. Now, from each path P i with corresponding path capacity C i and using the order in the vector O, we generate another vector SEQ Pi

i ∈ {O 1 , O 2 , ..., O i∈{1,2,...,n} lcm(D i) D i } do SEQ Pi ← Append (SEQ Pi , [S max + 1, S max + C i]) S max ← S max + C i end for
Then we can easily schedule the next sequence of packets using Algorithm 3.

Reception T ime

Over

P 1 Over P 2 T 10ms O(1) = P 1 - T 20ms O(2) = P 1 - T 30ms O(3) = P 1 - T 40ms O(4) = P 1 - T 50ms O(5) = P 1 - T 60ms O(6) = P 1 - T 70ms O(7) = P 1 - T 80ms O(8) = P 1 - T 90ms O(9) = P 1 - T 100ms O(10) = P 1 O(11) = P 2 (5)
With the same multipath scenario and path parameters used in Table I, we present another illustration of packet transmission using the delay aware scheduling in Table II. First we derive N = 25 for this scenario using Equation 4. Algorithm this non-oscillating deterministic scenario. In fact the buffer is always empty due to the proper in order arrival of the packets.

C. Estimating Forward Delay for Delay Aware Scheduling

In order to accurately estimate forward delay in CMT-SCTP, we propose a timestamp based method similar to the mechanism used for the RTT estimation in Datagram Congestion Control Protocol (DCCP) [START_REF] Kohler | Datagram Congestion Control Protocol (DCCP)[END_REF]. Although CMT-SCTP maintains its own estimation of RTT, in our previous work we have shown that RTT estimation in CMT-SCTP is severely degraded in presence of asymmetric transmission paths [START_REF] Sarwar | Performance Evaluation of Multipath Transport Protocol in Heterogeneous Network Environments[END_REF].

An accurate RTT estimation can easily be made without making significant modifications in the CMT-SCTP protocol. Our proposal to estimate RTT correctly includes adding some additional fields in the SCTP packet header namely sendertimestamp (T s) for data packets and receiver-timestamp (T r) and time-elapsed (T e) for SACK packets. An illustration of how the delay calculation may be performed using these timestamp fields is shown in Figure 3.

As shown in Figure 3, data packet p i is sent with sendertimestamp T s1 . It is received by the receiver and acknowledged at time T r . If it takes T e amount of time for the receiver before sending the selective acknowledgement for data packet p i , we can estimate the forward delay D f wd as shown in Equation 6after having received the SACK pi .

D f wd = T r -T e -T s1 (6)
In the following section, we evaluate the improvements resulting from our proposal, by comparison with the baseline performance of the multipath protocol using round robin scheduling.

III. EXPERIMENTAL EVALUATION

To check the validity of our proposal from Section II, we have implemented both the round-robin scheduling and delayaware scheduling for multipath data transfer in GNU's Matlab equivalent Octave tool [START_REF] Gnu Octave | [END_REF]. The round robin scheduling implementation was also cross-checked with simulation results from NS-2 [START_REF]The Network Simulator -NS-2[END_REF].

The network topology used during the simulations was as shown in Figure 4. The path parameters are as per the example presented in Table I, with path P 1 having RT T 1 = 20ms and B 1 = 1.6M bit/s; path P 2 with RT T 2 = 200ms and B 2 = 400Kbit/s.

In Figure 5, we present a snapshot of the simulation I and II. We show cumulative packet sequence numbers received by the application and the application goodput resulting from aggregated data transfer on both paths. As can be seen, the performance of delay-aware scheduling is clearly much better than the round-robin scheduling both in terms of overall goodput and minimization of jitter experienced by the application.

In Figure 6, we present a comparison of the receiver's buffer usage and unacknowledged data packets on the flight. As can be observed, the delay aware scheduling clearly results in lower occupancy of the receiver's buffer, while also emitting more data packets which eventually leads to higher application goodput.

A. Impact of Incorrect Delay Estimation on Delay Aware Scheduling

We now present practical considerations related to the performance of our proposed scheme. The results presented in Figures 5 and6 assume perfect estimation of the delay on both paths. We now present results for the case where there is an error in the estimated delay value(s), in Figures 7 and8 Figure 7 shows the goodput available to the application from the total data transfer on both paths. Baseline results are shown for the round-robin scheduling (bottom curve), the delay aware scheduling where there is no error in the delay estimation on both paths (top curve), and for the error in the delay overestimation ranging from 10% to 100%. It can be observed that there is a solid gain by the delay aware scheduling mechanism, even for the case when there is a 100% error (twice the original delay) in the delay estimation.

Figure 8 presents the cumulative packet sequence numbers received by the application, for the first 5 seconds of the data transfer. Again, the bottom curve represents the result for the round-robin scheduling, and the top curve the delay aware scheduling where there is no error in the delay estimation on both paths. The middle curves represent results for the error in the delay estimation which is varied between 10% and 100%. Similarly to the application goodput results, it can be seen that a considerable error in estimating the delay on both path cannn be tolerated by the delay aware scheduling mechanism, while still providing an improvement compared to the round robin scheduling.

We note that the results for the occupancy of the receiver's buffer are omitted for the case of imperfect delay estimation, as they would show a similar trend as the comparison shown in Figures 7 and8, i.e. that even a considerable error in the delay estimation by the transport protocol, used in the delay aware scheduling, still results in a solid improvement compared to the round robin schduling mechanism.

IV. CONCLUSION AND FUTURE WORK Our current evaluation indicates that the delay-aware scheduling has significant potential for providing performance improvement over the traditional round-robin scheduling in asymmetric multipath scenarios. As future work, we plan to implement our proposal first in NS-2 and later in FreeBSD's CMT-SCTP stack to evaluate the performance gain in realistic network conditions and address the related practical issues.

V. ACKNOWLEDGMENT This research work has been supported by funding from National ICT Australia (NICTA). NICTA is a research organization funded by Australian Government research initiatives through Australian Research Council (ARC).

Figure 1 .Figure 2 .

 12 Figure 1. Impact of receiver's buffer blocking on application received packets

Figure 3 .

 3 Figure 3. Timestamp based forward delay estimation

Figure 5 .Figure 6 .

 56 Figure 5. Comparison of round-robin and delay-aware scheduling

 .

Figure 7 .Figure 8 .

 78 Figure 7. Impact of Incorrect Delay Estimation on Delay Aware Scheduling: Comparison of the overall application goodput

 Algorithm 1 Expected Order of Data Reception in Delay Aware Scheduling j ← 0 t ← 1 while t ≤ lcm(D i ∈ {D 1 , D 2 , ..., D n }) do for each P i ∈ {P 1 , P 2 , ..., P n } do if t ≡ 0 (mod D i) then P i which describes the packet sequence numbers that can be transmitted at every attempt of the scheduler to emit over the particular path. The method to derive SEQ Pi from O is shown in Algorithm 2.

	O[j] ← P i
	j ← j + 1
	end if
	end for
	t ← t + 1
	end while
	for each path Algorithm 2 Deriving Packet Sequence Numbers to Transmit
	Per Path Using Expected Reception Order
	S max ← 0
	for each P

i ∈ {P 1 , P 2, ..., P n } do SEQ Pi ← IntializeV ector() end for for each P

 1 and 2 yield that packets [1 . . . 20] should be transmitted over P 1 while packets [21 . . . 25] should go over P 2 . As can be seen in Table II, since the packets sequences are carefully selected based on per path delay and emitted over the appropriate paths, the receiver's buffer is never blocked in Algorithm 3 Transmission Based on Pre-calculated Sequence t ← 0 while t < lcm(D i ∈ {D 1 , D 2 , ..., D n }) do for each P i ∈ {P 1 , P 2 , ..., P n } do if t ≡ 0 (mod D i) then T ransmit(P i , SEQ Pi [t

						Di])		
		end if						
	end for						
	t ← t + 1						
	end while						
	Xmit	Xmit	Xmit	Rcvd.	Rcvd.	Rcvd.	Good-	Pkts
	Time	over	over	Time	over	over	put	in
	(ms)	P 1	P 2	(ms)	P 1	P 2		Rbuf
	0	1 -2	21 -	10	1 -2	none 1-2	0
			25					
	10	3 -4	none 20	3 -4	none 3-4	0
	20	5 -6	none 30	5 -6	none 5-6	0
	30	7 -8	none 40	7 -8	none 7-8	0

	90	19 -	none 100 19 -	21 -	19 -	0
		20			20	25	25	
				Table II			
		DELAY AWARE PACKET SCHEDULING	

Note that we only show the first 5 seconds of the data transfer.