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Nuclear DNA from two early Neandertals reveals  
80,000 years of genetic continuity in Europe
Stéphane Peyrégne1*, Viviane Slon1, Fabrizio Mafessoni1, Cesare de Filippo1, Mateja Hajdinjak1, 
Sarah Nagel1, Birgit Nickel1, Elena Essel1, Adeline Le Cabec2, Kurt Wehrberger3,  
Nicholas J. Conard4, Claus Joachim Kind5, Cosimo Posth6, Johannes Krause6, Grégory Abrams7, 
Dominique Bonjean7, Kévin Di Modica7, Michel Toussaint8, Janet Kelso1, Matthias Meyer1, 
Svante Pääbo1, Kay Prüfer1,6*

Little is known about the population history of Neandertals over the hundreds of thousands of years of their exis-
tence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany 
and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent 
mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals 
from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina 
individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all 
later Neandertals trace at least part of their ancestry back to these early European Neandertals.

INTRODUCTION
Neandertals lived in western Eurasia for hundreds of thousands of 
years before modern humans spread outside Africa. The earliest 
morphological and genetic evidence of Neandertals reaches back 
approximately 430 thousand years (ka) ago (1, 2), while the last 
Neandertals disappeared around 40 ka ago (3). Denisovans, a sister 
group of Neandertals discovered by genetic analysis of remains 
from Denisova Cave (Altai Mountains, Russia; Fig. 1) (4), may have 
been widespread in Asia (5).

Recent analyses of nuclear genome sequences from Neandertals 
have shown that, toward the end of their existence, Neandertals 
across their entire geographic range from Europe to Central Asia 
belonged to a single group sharing a most recent common ancestor 
less than 97 ka ago (6, 7). However, population discontinuity has 
been observed in Denisova Cave, Russia, further back in time, 
where the Neandertal component in the genome of a ~90-ka-old 
Neandertal-Denisovan offspring (7) shows stronger affinities to late 
Neandertals in Europe than to the Altai Neandertal, another indi-
vidual found in the same cave (8). The latter lived 120 ka ago 
according to the number of missing mutations in her genome com-
pared to present-day human genomes. Thus, a population replace-
ment likely occurred in the easternmost part of the Neandertal territory 
between 90 and 120 ka ago.

Without nuclear genome sequences from early European 
Neandertals, it has not been possible to determine the origin of 
the replacement and whether it was limited to the east. To learn 
more about the early population history of European Neandertals, 
we studied the nuclear genomes of two individuals from Western 

Europe that are dated to approximately 120 ka ago and from which 
only mitochondrial DNA (mtDNA) was previously recovered. The 
first, a femur from Hohlenstein-Stadel Cave (HST) in Germany (9), 
carries an mtDNA genome that falls basal to all other known Neandertal 
mtDNAs and was dated to ~124 ka ago based on its branch length 
in the mitochondrial tree [95% highest posterior density interval 
(HPDI), 62 to 183 ka ago; associated faunal remains suggest a date 
between 80 and 115 ka ago] (10). The second, a maxillary bone from 
Scladina Cave [Scladina I-4A, here referred to as Scladina (11)], 
yielded the hypervariable region of the mtDNA genome (12) and 
was dated to 127 ka ago based on uranium and thorium isotopic 
ratios [1 SD, 95 to 173 ka ago (13)].

RESULTS
Because of the great age of the specimens and their extensive hand-
ling in the decades after their discovery, obtaining DNA of suffi-
cient quantity for genome-wide analyses is challenging. We thus 
used the most efficient DNA extraction and library preparation 
methods currently available (14–16) and coupled them with pre-
treatment methods for the removal of human and microbial con-
tamination (note S1) (17). We then characterized the libraries prepared 
from both specimens by hybridization capture of mtDNA and shallow 
shotgun sequencing to identify those libraries that were most suit-
able for further analysis (Materials and Methods; notes S2 and S3). 
On the basis of 450- and 107-fold coverage of the mtDNA genome, 
respectively, we were able to verify the published mtDNA sequence 
from HST (10) and reconstruct the complete mtDNA of Scladina 
(notes S5 and S6). Scladina dates to ~120 ka ago according to the 
branch length in the mtDNA tree (95% HPDI, 76 to 168 ka ago; 
note S7), consistent with the aforementioned date. Confirming pre-
vious results from the hypervariable region (10), we find that the 
complete Scladina mtDNA is most similar to the Altai Neandertal 
mtDNA (note S7). On the basis of only the mtDNA, it thus appears 
that both individuals fall outside the variation of later European 
Neandertals. However, mtDNA is only a single maternally inherited 
locus and of limited value for reconstructing the relationships among 
Neandertals and other archaic humans (1).
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We generated a total of 168 and 78 million base pairs (Mbp) of 
nuclear DNA sequence from the two individuals, respectively (note 
S3). Ancient DNA sequences often carry cytosine to thymine sub-
stitutions that are caused by cytosine deamination accumulating in 
DNA fragments over time, most often at the ends of the fragments 
(18). The frequency of these substitutions on both molecule ends 
(1), confirms that ancient nuclear DNA is present but that a large 
proportion of the HST and Scladina sequences are contaminants from 
present-day humans (note S8). At positions that are derived only 
in the Altai Neandertal [ancestral in the genomes of a Denisovan 
(19) and an Mbuti (19)], 57.8 and 31.1% of HST and Scladina sequences, 
respectively, show the Neandertal allele (note S9). However, sequences 
also match the derived allele in an Mbuti genome (19) more often 
than the high-coverage genome of the Altai Neandertal does (HST,   
8.8%; Scladina, 22.3%, Altai Neandertal, 1.4%; note S8). This ex-
cess of sharing suggests that 23 and 65% of the HST and Scladina 
sequences, respectively, are modern human contaminants (note S8). To 
reduce contamination, we restricted all further analyses to sequences 
that show evidence for deamination (Materials and Methods), leav-
ing us with 51 Mbp of the HST genome and 12 Mbp of the Scladina 
genome (note S3). This procedure reduces the estimated contamina-
tion to 2% for HST and 5.5% for Scladina and results in a coverage on 
the X chromosome and autosomes that shows that HST was male, 
whereas Scladina was female, in agreement with the morphological 
assessments (notes S4 and S8) (9, 13).

To investigate the relationship of HST and Scladina to Neandertals, 
we compared their nuclear sequences to two high-coverage Nean-
dertal genomes. The genome of a ~50-ka-old Neandertal from 
Vindija Cave in Croatia [Vindija 33.19, referred to as Vindija (20)] 
is a representative of the group of later Neandertals that inhabited 
Eurasia after 90 ka ago (6, 7), whereas the Altai Neandertal rep-
resents the earlier group of Neandertals in the east. We identified 
Vindija-specific– and Altai-specific–derived variants by randomly 
sampling an allele from these two Neandertal genomes and retain-
ing only those variants that differ from the other high-coverage 
Neandertal genome and from the Denisovan (19), one Mbuti (19), 
and several ape outgroup genomes (Materials and Methods) (21–24). 
At these sites, HST shares Vindija-specific alleles more often than 

Altai- specific alleles (531 versus 466; two-sided binomial test, P = 0.043), 
while no significant difference was observed for Scladina (110 versus 
106; P = 0.838; Fig. 2 and note S9). Since the number of DNA 
sequences with putative deamination-induced substitutions is small 
for Scladina, we repeated this analysis including all sequences and 
found that Scladina then shows more Vindija-specific alleles than 
Altai-specific alleles (Scladina, 443 versus 321; P < 10−4; HST, 1676 
versus 1326; P < 10−9; note S9). This cannot be accounted for by 
contamination with present-day human DNA, since the proportion of 
Neandertal ancestry in present-day humans is, on average, smaller than 
3% (note S9). Thus, these results indicate that both HST and Scladina are 
more closely related to Vindija than they are to the Altai Neandertal.

If HST and Scladina truly have a most recent common ancestor 
with Vindija more recently than with the Altai Neandertal, then 
their genomes are expected to share derived alleles with the Altai 
Neandertal genome as often as the Vindija genome does. However, 
the genomes of Vindija and the Altai Neandertal share more de-
rived alleles with each other than the HST or Scladina genomes 
share with either of them (Fig. 2 and note S9). This imbalance in 
allele sharing can largely be accounted for by a reference bias that 
favors the alignment of HST and Scladina sequences that carry a 
modern human reference allele over those carrying a Neandertal 
allele (note S9). By aligning to an alternative reference genome con-
taining alleles seen in the high-coverage Neandertals, we recover 
further sequences that we combine with the original set of align-
ments and compensate for this bias (Fig. 2, Materials and Methods, 
and note S9). The remaining imbalance in allele sharing can be 
explained by contamination and sequencing errors in Scladina and 
HST (Fig. 2 and note S9).

Using the reference bias–corrected alignments and two methods, 
we estimated split times between the populations represented by 
HST and Scladina and the Vindija population (note S10). Our first 
estimates are based on the sharing of derived alleles by HST/Scladina 
at sites where the high-coverage Vindija genome is heterozygous 
[F(A|B) statistic (8, 20)]. The estimated split times of HST and Scladina 
from the ancestor with Vindija are 101 ka ago [confidence interval 
(CI), 80 to 123 ka ago] and 100 ka ago (CI, 66 to 153 ka ago), respec-
tively. The second estimates are based on a coalescent divergence 

Sima de los Huesos

El Sidrón

Goyet
Spy

Scladina

Hohlenstein-Stadel
Feldhofer
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Mezmaiskaya

Denisova

Fig. 1. Sites from which partial to complete nuclear genomes from Neandertals (or their ancestors in Sima de los Huesos) were retrieved. References (1, 6, 8, 20, 34–36) 
describe Neandertal genomic data from these sites. The origins of the two Neandertals studied here are highlighted in purple and blue, respectively.
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model (25) and suggest, for both Neandertals, a ~10-ka-long shared 
history with Vindija after the split of the latter from the Altai Neandertal 
population (i.e., 122 to 141 ka ago, assuming 130 to 145 ka ago for 
the Vindija-Altai split time; note S10). The estimates from both 
methods are close to the estimated age of ~120 ka ago for these in-
dividuals (10, 13). Therefore, HST and Scladina could be members 
of an ancestral Neandertal population that gave rise to all Neandertals 
sequenced to date with the exception of the Altai Neandertal, who did 
not leave any descendants among sequenced Neandertals. This ancestral 
Neandertal population was established in the west by ~120 ka ago, 
and later descendants may have migrated east and replaced at least 
partially the eastern population of Neandertals represented by the 
Altai Neandertal.

It seems unexpected that HST carries an mtDNA lineage that 
diverged ~270 ka ago from other mtDNAs, given the recent popu-
lation split times from the Vindija ancestors and the low levels of 
genetic diversity in the nuclear genomes of Neandertals (8, 20). To test 
whether such a deeply diverging mtDNA lineage could be main-
tained in the Neandertal population by chance, we used coalescent 
simulations with a demography estimated from the high-coverage 
Neandertal genomes (20), which was scaled to match the lower 
effective population size of the mtDNA, taking into account the dif-
ference in effective population size between the two sexes (8). We 
find that population split times between HST and other Neandertals 
of less than 150 ka ago make the occurrence of a mitochondrial time 
to the most recent common ancestor (TMRCA) of 270 ka ago 
unlikely (1.2% of all simulated loci have such a deep TMRCA; 

note S11). We note that this result is robust to uncertainties in the 
estimates of the Neandertal population size and of the mitochondrial 
TMRCA (note S11). The presence of this deeply divergent mtDNA 
in HST thus suggests a more complex scenario in which HST carries 
some ancestry from a genetically distant population.

DISCUSSION
What scenarios could explain the deeply divergent mtDNA in HST? 
An explanation could be related to a replacement of mtDNAs in 
Neandertals that has been suggested to explain the discrepancy 
between the mtDNA divergence time (<470 ka ago) (10) and the 
population split times based on nuclear DNA (>520 ka ago) (20) 
between modern humans and Neandertals. The Sima de los Huesos 
hominins, and perhaps other early Neandertals, carried mtDNAs 
that shared a common ancestor with Denisovan mtDNAs more re-
cently than with those of modern humans, whereas later Neandertals 
carried mtDNAs that shared a more recent common ancestor with 
the mtDNAs of modern humans. Admixture between Neandertals 
and ancestors or relatives of modern humans could explain the 
origin of this later Neandertal mtDNA (1, 10). If several mtDNAs 
were introduced into the Neandertal population by such a putative 
gene flow, then the deeply divergent mtDNA in HST may represent 
the remnants of the mitochondrial diversity of this introgressing 
population (Fig. 3) (10). This would imply that this admixture into 
Neandertals occurred later than the previously suggested lower 
boundary of 270 ka ago (219 to 316 ka ago) (10). We estimate that 

Altai-like

Vindija H/S Altai
A D D

Ancestral

Altai VindijaH/S
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No ref. bias
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Fig. 2. Genetic relationship of HST and Scladina to Vindija 33.19 and the Altai Neandertal. The three possible tree topologies relating these Neandertals (H/S, HST or 
Scladina) are depicted in the middle. Mutations occurring on the internal branch (white points) produce an allelic configuration (A, ancestral; D, derived) that is informa-
tive of the underlying tree topology. Genome-wide counts of sites with the described configurations are presented on both sides (HST on left and Scladina on right) on 
the x axis. Lighter colors correspond to results using the alignments to the human reference hg19 (original) and to both hg19 and the Neandertalized reference (no ref-
erence bias). The darker points are corrected for present-day human DNA contamination assuming 2.0 and 5.5% contamination in the deamination-filtered fragments 
from HST and Scladina, respectively. The Vindija-like configuration (red) is the most supported topology after correcting for reference bias and contamination. The two 
other topologies are the result of incomplete lineage sorting and are equally likely. Bars represent 95% binomial CIs.
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the probability for this late mtDNA replacement is nearly identical 
to the admixture rate, i.e., more than 5% admixture is required to 
reach a probability of 5% for such an event to occur (note S12) (10).

An alternative source for the deeply divergent mtDNA in HST 
could be an isolated Neandertal population, for example, a popula-
tion that separated from other Neandertals before the glacial period 
preceding HST and Scladina (~130 to 190 ka ago; Fig. 3). Such an 
isolated population may have preserved the mtDNA that was later 
re-introduced during a warmer period between 115 and 130 ka ago 
(the “Eemian” period) when these populations met again and gene 
flow resumed. We note that the contact may have been a result of a 
recolonization from the Middle East or Southern Europe (26, 27).

Our analysis shows that late Neandertals that lived in Europe 
at around 40 ka ago trace at least part of their ancestry back to 
Neandertals that lived there approximately 80,000 years earlier. The 
latter became widespread, appearing in the east at least 90 ka ago. 
The genetic continuity seen in Europe contrasts, however, with 
the deeply divergent mtDNA in HST, which hints at a more complex 
history that affected at least some of the European Neandertals 
before ~120 ka ago. DNA sequences from even older Neandertals 
are needed to clarify whether Neandertal substructure, gene flow 
from relatives of modern humans, or both are the explanation for 
HST’s peculiar mtDNA.

MATERIALS AND METHODS
DNA extraction and library preparation
Bone or tooth powder was sampled from the HST and Scladina 
specimens using a sterile dentistry drill after removing the external 

surface of the specimen at the sampling site (note S1). For the initial 
assessment of ancient DNA preservation in the specimens, DNA 
was extracted using a silica-based method (14), as implemented in 
(17), either from untreated powder or following one of three decon-
tamination procedures described in the note S1. The treatment of 
the bone powder with 0.5% sodium hypochlorite yielded the highest 
proportion of fragments mapping to the human reference genome 
for HST and resulted in the lowest estimates of contamination by 
present-day human mtDNA for both HST and Scladina (note S2). 
For the subsequent generation of additional sequencing data, the 
bone or tooth powder was therefore incubated in 0.5% sodium 
hypochlorite solution before DNA extraction (17). Single-stranded 
DNA libraries were prepared from these DNA extracts (15, 16). 
Each library was tagged with two unique indexes, amplified into 
plateau, and purified (17, 28) before shotgun sequencing. In addi-
tion, an aliquot of each indexed DNA library was enriched for human 
mtDNA fragments using a hybridization capture method (29).

Sequencing and raw data processing
Libraries were sequenced on an Illumina MiSeq and HiSeq 2500 
platforms in 76-cycle paired-end runs (28). For a detailed descrip-
tion of the read processing, see note S3. When analyzing the rela-
tionship of HST and Scladina to Vindija and the Altai Neandertal, 
further processing was necessary to avoid a reference bias of the 
alignments. First, we aligned DNA sequences to both the human 
reference genome (GRCh37/hg19) and a modified (“Neandertalized”) 
version of the reference genome that includes the alternative alleles 
seen in Vindija and/or the Altai Neandertal. If there was more than 
one alternative base at a given site (i.e., a triallelic site), then a random 
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Fig. 3. Two scenarios to explain the deep divergence of HST’s mtDNA to other Neandertal mtDNAs. The HST mitochondrial lineage is shown as a green line; all other 
Neandertal mtDNAs are shown in black. Green and yellow areas indicate populations (Neandertals in green and relatives of modern humans in yellow). The area shaded 
in blue shows the glacial period (MIS 6, marine isotope stage 6) (37). Note that all Neandertal mtDNA lineages in the right-hand scenario could be introgressed from 
modern human relatives before 270 ka ago (10).
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base was chosen. We then merged sequences that aligned to either 
reference genome and removed one duplicate of the sequences that 
mapped to both. If a sequence aligned to the two references at dif-
ferent positions, then both alignments were excluded (representing 
522 and 332 such sequences for HST and Scladina, respectively). We 
developed an algorithm called bam-mergeRef to perform these merg-
ing steps, wrote it in C++, and made it available on GitHub (https://
github.com/StephanePeyregne/bam-mergeRef). For a description of the 
reference bias and the effects of this processing, see note S9. Sequences 
from libraries enriched for mtDNA fragments were aligned to the re-
vised Cambridge reference sequence (30) or the Altai Neandertal 
mtDNA with the same parameters as those applied to nuclear 
sequences (note S3).

Analysis of the mitochondrial genomes
Mitochondrial genome sequences were reconstructed from a con-
sensus call at each position where at least two-thirds of the frag-
ments aligning to the Altai Neandertal mtDNA carried the same base 
and if the position was covered by at least three fragments. Further 
details about the mtDNA reconstruction and the estimated propor-
tion of contamination by present-day human mtDNA for both 
specimens, as well as the phylogenetic analyses, are described in 
notes S5 to S7.

Analysis of the relationship to other archaic and  
modern humans
We determined lineage-specific derived alleles by comparing the 
high-quality genomes of Vindija and the Altai Neandertal (8, 20), 
Denisova 3 (19), and a present-day human from Africa [Mbuti, 
HGDP00456 (19)]. At sites where one of these individuals was het-
erozygous, we randomly picked an allele. An allele was regarded as 
ancestral when it matched at least three of four aligned great ape 
reference genome assemblies [chimpanzee (panTro4) (21), bonobo 
(panPan1.1) (22), gorilla (gorGor3) (23), and orangutan (ponAbe2) 
(24); LASTZ alignments to the human genome GRCh37/hg19 pre-
pared in-house and by the University of California, Santa Cruz, 
genome browser (31)]. The fourth ape was allowed to carry a third 
allele or have missing data but not to carry the alternative allele. To 
avoid errors from ancient DNA damage on HST and Scladina 
sequences at these positions, we only considered sequences 
that aligned in forward orientation when the ancestral or derived 
allele at the position was a G or in reverse orientation when either 
allele was a C and excluded sequences with a third allele. Only posi-
tions passing the published map35_100 filter for Denisova 3, Vindija, 
and the Altai Neandertal genotypes (20) were retained. A correction 
for the level of present-day human DNA contamination was applied 
in this analysis and is described in note S9.

Assessment of present-day human nuclear  
DNA contamination
We estimated contamination from the proportion p of sites where 
the Neandertal (HST or Scladina) carries a derived allele seen in the 
genome of a present-day Mbuti individual [HGDP00456 (19)] but 
not in Denisova 3 and a Neandertal high-coverage genome (either 
Vindija or the Altai Neandertal). This proportion p is the result of a 
mixture of present-day human DNA contamination and DNA en-
dogenous to the ancient specimens as follows: c × pc + (1 − c) × pe = p, 
with pc and pe being the expected proportions of derived alleles for 
the contaminant and endogenous molecules, respectively, and c is 

the contamination rate. The proportions pc and pe are unknown but 
can be approximated by the observed proportion of shared alleles 
between the Mbuti genome and another present-day human genome 
[33.2% for either a French, HGDP00521 (19) or a Han, HGDP00775 
(8)] or a Neandertal high-coverage genome (1.4% for the Altai 
Neandertal and 1.5% for Vindija), respectively. To compute pc and 
pe, we used the genotypes from the high-coverage genomes (ran-
domly sampling one allele at heterozygous positions) under the 
assumption that these are unaffected by sequencing errors or present- 
day human DNA contamination. CIs were calculated from the 
bounds of the binomial CIs of p. Assuming that p is the parameter 
of a binomial distribution (instead of the expected success rate in 
Poisson trials) is a conservative approximation for calculating CIs, 
as the variance for Poisson trials is lower or equal to the variance of 
the binomial distribution with parameter p.

Coalescent simulations of the mitochondrial  
common ancestor
Coalescent simulations using scrm (32) were used to compute the 
expected distribution of times to TMRCAs for the mitochondrial 
genomes, given different population split times (from 100 to 200 ka ago, 
with a step of 10 ka). To be able to compare these to the estimated 
date for the common mitochondrial ancestor of HST and Vindija, 
the simulations followed the Vindija demographic history estimated 
from the Pairwise Sequentially Markovian Coalescent model (PSMC) 
(33) [that assumed a mutation rate of 1.45 × 10−8 per base pair per 
generation and a generation time of 29 years (20)]. The scaling for 
the mitochondrial effective population size was calculated according 
to the females-to-males ratio, previously estimated to be 1.54 for 
the Altai Neandertal population (note S11) (8).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/6/eaaw5873/DC1
Note S1. Ancient DNA recovery and treatment.
Note S2. Decontamination methods and initial screening.
Note S3. Data generation and data processing.
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