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ABSTRACT

Deep Learning systems have shown tremendous accuracy in
image classification, at the cost of big image datasets. Col-
lecting such amounts of data can lead to labelling errors in
the training set. Indexing multimedia content for retrieval,
classification or recommendation can involve tagging or clas-
sification based on multiple criteria. In our case, we train face
recognition systems for actors identification with a closed set
of identities while being exposed to a significant number of
perturbators (actors unknown to our database). Face classi-
fiers are known to be sensitive to label noise. We review re-
cent works on how to manage noisy annotations when train-
ing deep learning classifiers, independently from our interest
in face recognition.

Index Terms— image classifier, noisy dataset, label
noise, noisy training

1. INTRODUCTION

Learning a deep classifier requires building a dataset.
Datasets in media are often situation dependant, with different
looking sets or landscape or exhibiting various morphologies,
even non-human for face recognition, especially in fantasy
and sci-fi contexts. It becomes tempting to use search engines
to build a dataset or sort large image sets based on metadata
and heuristics. Those methods are not perfect and label noise
is introduced.

It is widely accepted that label noise has a negative im-
pact on the accuracy of a trained classifier. Several works
have started to pave the way towards noise-robust training.
The proposed approaches range from detecting and elimi-
nating noisy samples, to correcting labels or using noise-
robust loss functions. Self-supervised, unsupervised and
semi-supervised learning are also particularly relevant to this
task since those techniques require few or no labels.

In this paper we propose a review of recent research on
training classifiers on datasets with noisy labels. We will re-
duce our scope to the data-dependant approaches estimating
or correcting the noise in the data. It is worth mentioning
that some works aim to make learning robust by designing
new loss functions [1, 2] without inspecting or correcting the

noisy dataset in any way. Those approaches are beyond the
scope of our study.

We first define label noise and summarize the different
experimental setups used in the literature. We conclude by
presenting recent techniques that rely on datasets with noisy
labels. This work is inspired by [3], extending it to deep clas-
sifiers.

2. OVERVIEW OF TECHNIQUES

All the techniques presented will vary in different ways de-
fined and presented briefly in this section. They can differ
on the noise model they build upon, and whether they handle
open or closed noise, presented in subsection 2.1, and based
on [3]. Those noise models might need some additional hu-
man annotations in the dataset in order to be estimated, in-
troduced in subsection 2.2. Subsection 2.3 will shortly enu-
merate approaches used for noisy samples detection, when
needed. Once noisy samples have been detected, they can be
mitigated differently, as outlined in subsection 2.4.

The various combinations taken by the approaches re-
viewed here are summed up in Table 1.

2.1. Problem definition

2.1.1. Models of label noise

In the datasets studied here, we posit that each sample xi of a
dataset has two labels: the true and unobservable label yi, and
the actual label observed in the dataset ŷi. We consider the
label noisy whenever the observed label is different from the
true label. We aim to learn a classifier f(xi) that outputs the
true labels yi from the noisy labels ŷi. We denote a dataset
D as D = {(x0, ŷ0, y0), ..., (xn, ŷn, yn)}. As presented in
[3] the dataset label noise can be modeled in three way in
descending order of generality.

1) The most general model is called Noise Not At Ran-
dom (NNAR). It integrates the fact that corruption can depend
on the actual sample content and actual label. It requires com-
plex models to predict the corruption that can be expected.

P (ŷ = c|x) =
∑
c′∈C

P (ŷ = c|y = c′, x)P (y = c′|x) (1)



2) Noise At Random (NAR) assumes that label noise is
independent from the sample content and occurs randomly
for a given label. Label noise can be modeled by a confusion
matrix that maps each true label to labels observation proba-
bilities. It implies that some classes may be more likely to be
corrupted. It also allows for the distribution of resulting noisy
labels not to be uniform, for instance in naturally ambiguous
classes. In other words, some pairs of labels may be more
likely to be switched than others.

P (ŷ = c|x) = P (ŷ = c)

=
∑
c′∈C

P (ŷ = c|y = c′)P (y = c′) (2)

3) The least general model, called Noise Completely
at Random (NCAR), assumes that each erroneous label is
equally likely and that the probability of an error is the same
among all classes. For an error probability E, it corresponds
to a confusion matrix with P (E = 0) on the diagonal and
P (E = 1)/(|C|−1) elsewhere. The probability of observing
a label ŷ of class c among the set of all classes C is

P (ŷ = c|x) = P (ŷ = c)

= P (E = 0)P (y = c)

+P (E = 1)P (y 6= c) (3)

2.1.2. Closed-set, open-set label noise

We distinguish open-set and closed-set noise. In closed-set
noise, all the samples have a true label belonging to the clas-
sification taxonomy. For instance, a chair image is labeled
”table” in a furniture dataset. In open-set noise this might not
be the case, in the way a chair image labeled ”chihuahua” in
a dog races dataset has no correct label.

2.2. Types of additional human annotations

While training is done on a dataset with noisy labels, a
cleaned test set is needed for evaluating the performance of
the model. Those clean labels can be acquired from a more
trusted yet limited source of data or via human correction.

We may also assume that a subset of the training set can
be cleaned. A trivial approach in such cases, is to discard the
noisy labels and perform semi-supervised learning using the
validated ones and the rest of data as unlabeled. In noisy label
training, one aims to exploit the noisy labels as well.

We can imagine a virtual metric, the complexity of anno-
tation of a dataset, determined by factors such as the num-
ber of classes, the ambiguity between classes and the domain
knowledge needed for labelling. A medical dataset could be
hard to label even if it has only two classes while a more gen-
eral purpose dataset could have a hundred classes that can eas-
ily be discriminated if they are all different enough. When the

dataset is simple, true label correction can be provided with-
out prohibitive costs. When it is not, a reviewer can some-
times provide a boolean annotation saying that the label is
correct or not, which might be easier than recovering the true
labels.

A dataset can then provide (1) no annotations, (2) cor-
rected labels or (3) verified labels for a subset of its labels.

2.3. Detecting the noisy labels

When working on a per-sample decision basis, we often per-
form noisy samples detection. There are several sources of
information to estimate the relevance of a sample to its ob-
served label. In the analyzed papers, four families of meth-
ods can be identified. Most of them manipulate the classifier
learned, either through its performance or data representation.

1) Deep features are extracted from the classifier during
training. They are analyzed with Local Outlier Factor (LOF)
[4] or a probabilistic variant (pLOF). Clean samples are sup-
posed to be in majority and similar so that they are densely
clustered. Outliers in feature space are supposed to be noisy
samples.

2) The samples with a high training loss or low classifi-
cation confidence are assumed to be noisy. It is assumed that
the classifier does not overfit the training data and that noise
is not learned.

3) Another neural network is learned to detect samples
with noisy labels.

4) Deep features are extracted for each sample from the
classifier. Some prototypes, representing each class, are learnt
or extracted. The samples with features too dissimilar to the
prototypes are considered noisy.

2.4. Strategies with noisy labels

Techniques mitigating noise can be divided in 4 categories.
One is based on the Noise At Random model, using statistical
methods depending only on the observed labels. The three
other methods use Noise Not At Random and need a per sam-
ple noise evaluation.

1) One can re-weight the predictions of the model with
a confusion matrix to reflect the uncertainty of each observed
label. This is inherently a closed-set technique as the proba-
bility mass of the confusion matrix has to be divided among
all labels.

2) Instead of re-weighting the predictions, we can re-
weight their importance in the learning process based on the
likelihood of a sample being noisy. Attributing a zero weight
to noisy samples is a way to deal with open-set noise.

3) Supposedly erroneous samples can be unlabeled. The
sample is kept and used differently, through semi-supervised
or unsupervised techniques.

4) Finally, we can try to fix the label of erroneous samples
and train in a classical supervised way.



3. EXPERIMENTAL SETUPS

While CIFAR-10 [5] remains one of the most used datasets
in image classification due to its small image sizes, relatively
small dataset size, and not-too-easy taxonomy, it has clean
labels that are unsuitable for our works. CIFAR-10 contains
60000 images evenly distributed among 10 classes such as
”bird”, ”truck”, ”plane” or ”automobile”.. It is still largely
employed in noisy label training with artificial random label
flipping, in a controlled manner to serve whichever method is
shown. However, synthetically corrupting labels fails to ex-
hibit the natural difficulties of noisy labels due to ambiguous,
undecidable, or out of domain samples. MNIST [6] can be
employed under the same protocols, with a reduced size of
classes of handwritten digits, each composed of 1000 images.

Clothing1M [7] contains 14 classes of clothes for 1 mil-
lion images. The images, fetched from the web, contain ap-
proximately 40% of erroneous labels. The training set con-
tains 50k images with 25k manually corrected labels, the val-
idation set has 14k images and the test set contains 10k sam-
ples. This scenario fits our low annotation complexity sit-
uation where labels can be corrected without too much dif-
ficulty, but the size of the dataset makes a full verification
prohibitive.

Food101-N [8] has 101 classes of food pictures for 310k
images fetched from the internet. About 80% of the labels are
correct and 55k labels have a human provided verification tag
in the training set. This dataset rather describes the high anno-
tation complexity scenario where the labels are too numerous
and semantically close for an untrained human annotator to
correct them. However, verifying a subset of them is feasible.

Finally, WebVision [9] was scraped from Google and
Flickr in a big dataset mimicking ILSVRC-2012 [10], but
twice as big. It contains the same categories, and images were
downloaded from text search. Web metadata such as caption,
tags and description were kept but the training set is left com-
pletely uncurated. A cleaned test set of 50k images is pro-
vided. WebVision-v2 extends to 5k classes and 16M training
images.

When working on image data, all the papers used classi-
cal modern architectures such ResNet [11], inception [12] or
VGG [13].

4. APPROACHES

4.1. Prediction re-weighting

Given a softmax classifier f(xi) for a sample xi, prediction
re-weighting mostly implies estimating the confusion matrix
C in order to learn CT f(xi) in a supervised fashion with the
noisy labels. Doing so will propagate the labels’ confusion in
the supervising signal to integrate the uncertainty about label
errors. The main difference between the approaches lies in
the way C is estimated.

In Noisy Label Neural Networks [18], noisy labels are
assumed to come from a real distribution observed through a
noisy channel. The algorithm performs an iterative Expecta-
tion Maximization algorithm. In the Expectation step, correct
labels ci are guessed through CT f(xi) while in the Maxi-
mization step, C is estimated from the confusion matrix be-
tween guessed labels ci and dataset labels ŷi. Finally, f(xi)
is trained on guessed labels ci. The process is repeated until
convergence.

Taking a more direct approach, (Xiao et al, 2015) [7] di-
rectly approaches C by manually correcting the labels of a
subset of the training set. Then, a secondary neural network
g(xi) is defined, giving to each sample a probability P (zi|xi)
of being (1) noise free, that is ŷi = yi, (2) victim of com-
pletely random noise (NCAR), ie P (ŷi|yi) = (U − I)yi such
that the matrix U is uniform and all rows of U − I sums to
1, or (3) confusing label noise (NAR), P (ŷi|yi) = CT ŷi. Fi-
nally, f(xi) is trained on the noisy labels so as to minimize
LCE(z1if(xi)+z2i(U−I)f(xi)+z3iCT f(xi), ŷi) with LCE
the cross entropy loss function.

(Hendrycks et al, 2018) [19] first train a model on the
dataset with noisy labels. This model is then tested on a cor-
rected subset and its predictions errors are used to build the
confusion matrix C. Finally f(xi) is trained on the corrected
subset and CT f(xi) is trained on the noisy subset.

4.2. Sample importance re-weighting

For a softmax classifier f(xi) trained with a loss function
such as cross-entropy LCE, sample importance re-weighting
consists in finding a sample weight αi and minimizing
αiLCE(f(xi), ŷi). For a value αi close to 0, the example has
almost no impact on training. αi values larger than 1 em-
phasize examples. If αi is exactly 0, then it is analogous to
removing the sample from the dataset.

Co-mining [22] investigates face recognition where cor-
recting labels is unapproachable for a large number of identi-
ties, and most likely a situation of open-set noise. Two neural
nets f1 and f2 are given the same batch. For each net, the
losses l1i = L(f1(xi), ŷi) and l2i = L(f2(xi), ŷi) are com-
puted for each sample and sorted. The samples with the high-
est loss for both nets are considered noisy and are ignored.
The samples s1i and s2i that have been kept by f1 and f2 are
considered clean and informative: both nets agreed. Finally,
the samples kept by only one net are considered valuable to
the other. Backpropagation is then applied, with clean faces
weighted to have more impact, valuable faces swapped in or-
der to learn f1 with s2i and f2 with s1i, and low quality sam-
ples are discarded.

CurriculumNet [21] trains a model on the whole dataset.
The deep features of each sample are extracted, and from the
Euclidean distance between features vectors, a matrix is built.
Densities are estimated, 3 clusters per class are found with k-
means, and ordered from the most to least populated. Those
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NLNL [14] X negative
labels

X X X

Iterative Noise Filter-
ing [15]

without
entropy
loss

with
entropy
loss

X X X

(Ren et al, 2018) [16] X X X X
Iterative learning
[17]

X X X X

NLNN [18] X X X X & TIMIT
(Hendrycks et al,
2018) [19]

X X X & NLP

Deep Self-Learning
[20]

X X X X X

CleanNet [8] X X X X X X
(Xiao et al, 2015) [7] X X X X
CurriculumNet [21] X X X X
Co-Mining [22] X X X face rec

Table 1. Approaches according to annotations in the dataset. Notes: TIMIT is a speech to text dataset, ”NLP” is a set of natural
language processing datasets (Twitter, IMDB and Stanford Sentiment Treebank), ”face rec” denotes classical face recognition
datasets (LFW, CALFW, AgeDB, CFP)

three clusters are used for training a classifier with a curricu-
lum, starting from the first with weight 1, then the second and
third, both weighted 0.5.

Iterative learning [17] chooses to operate iteratively
rather than in two phases like CurriculumNet. The deep rep-
resentations are analyzed throughout the training with a prob-
abilistic variant of Local Outlier Factor [4] for estimating the
densities. Local outliers are deemed noisy. The unclean sam-
ples importance is reduced according to their probability of
being noisy. A contrastive loss working on pairs of images
is added to the cross entropy. It minimizes the euclidean dis-
tance between the representation of samples considered cor-
rect and of the same class, and maximizes the Euclidean dis-
tance between clean samples of different class or clean and
unclean samples. The whole process is repeated until model
convergence.

We can also employ meta-learning by framing the choice
of the αi as values that will yield a model better at classify-
ing unseen examples after a gradient step. (Ren et al, 2018)

[16] performs a meta gradient step on L = αiLCE(f(xi), ŷi)
then evaluate the new model on a clean set. The clean loss
is backpropagated back through L, for which the gradient η
gives the contribution of each sample to the performance of
the model on the clean set after the meta step. By setting
αi = max(0, ηi), the samples that impacted the model neg-
atively are discarded, and the positive samples get an impor-
tance proportional to the improvement they bring.

CleanNet [8] learns what it means for a sample to come
from a given class distribution, utilizing a correct / incorrect
tag provided by human annotators. A pretrained model ex-
tracts deep features of the whole dataset. Then, they run a
per-class K-Means, and find the images with features closest
to the centroids as a set vc ofreference images for that class c.
A deep model g(vc) encodes the set into a single prototype. A
third deep model h(xi) encodes the query image xi in a pro-
totype. We learn to maximize wci = cos(g(vc), h(xi)) if xi
has a correct label c, and to minimize it otherwise. This rel-
evance score is used to weigh the importance of that sample



when training a classifier with max(0, wŷi)LCE(f(xi), ŷi).
Instead of getting a consistent wrong information from an

erroneous label, NLNL [14] (not to be confused with NLNN)
instead samples a label ỹi 6= ŷi and uses negative learning,
a negative cross-entropy version that minimizes the probabil-
ity of ỹi for xi. As the number of classes grows, the more
likely the sampled label ỹi is indeed different of yi and noise
is mitigated, despite being less informative. Then only sam-
ples with a label confidence above 1/|C| are kept and used
negatively in a second phase called Selective Negative Learn-
ing (SelNL). Finally, examples with confidence over a high
threshold (0.5 in the paper) are used for positive learning with
a classical cross entropy and their label ŷi.

4.3. Unlabeling

Iterative Noise Filtering [15]: A model is trained on the
noisy dataset. An exponential moving average estimate of this
model is then used to analyze the dataset. Samples classified
correctly are considered clean, while the label is removed.
The model is further trained with both a supervised and un-
supervised objective for labeled and unlabeled samples. The
samples with labels are used with a cross entropy loss. For
each unlabeled sample, we maximize maxc f(xi)c in order
to reinforce the model’s prediction, while maximizing the en-
tropy of the predictions over the whole batch to avoid degen-
erate solutions. Datasets labels are evaluated again according
to the average model. Training restarts with removed and re-
stored labeled. This procedure is repeated while testing con-
vergence improves.

4.4. Label fixing

A few methods already listed above try to fix the labels as
part of their approach. While listed as a sample re-weighting
method, NLNL [14] also employs a sort of label fixing pro-
cedure by using the negative labels. Similarly, (Bekker and
Gold-berger, 2016) [18] attempts to fix the labels while es-
timating the confusion matrix. Finally, Iterative Noise Fil-
tering [15], assumes that the class with the highest prediction
for the unlabeled examples is correct.

Deep Self-Learning [20] learns an initial net on noisy la-
bels. Then, deep features are extracted for a subset of the
dataset. A density estimation is made for each class and
the most representative prototypes are chosen for each clus-
ter. The similarity of all samples to each set of prototypes is
computed to re-estimate correct labels ỹi. The model train-
ing continues with a double loss balancing learning from the
original label or the corrected one L = λLCE(f(xi), ŷi) +
(1 − λ)LCE(f(xi), ỹi) with hyper-parameter λ ∈ [01]. We
iterate between label correction and weighted training until
convergence. Note that contrarily to sample weighting tech-
niques that weigh the contribution of each sample in the loss,
all samples have an equal importance, but we place a cursor as

a hyper-parameter to balance between contribution from the
noisy labels and corrected labels.

5. DISCUSSION AND CONCLUSIONS

Those approaches cover a wide variety of use cases, depend-
ing on the dataset: whether is has verified or corrected labels
or not, and the estimated proportion of noisy labels. They
all have different robustness properties: some might perform
well in low noise ratio but deteriorate quickly while others
might have a slightly lower optimal accuracy but do not dete-
riorate as much with high noise ratio.

Re-weighting predictions performs better on flipped la-
bels rather than uniform noise as shown in the experiments
on CIFAR-10 in [19]. As noise becomes close to a uniform
noise, the entropy of the confusion matrix C increases, la-
bels provide more diffused information, and prediction re-
weighting is less informative. CIFAR-10 being limited to 10
classes, NLNN [18] is shown to scale with a greater number
of classes on TIMIT. However those approaches only handle
closed-set noise by design, and while adding an additional ar-
tificial class for out-of-distribution samples can be imagined,
none of the works reviewed here explored this strategy.

Noisy samples re-weighting scales well: [21] scales in
number of samples and classes as the experiments on Web-
Vision shows, [22] is able to scale to face recognition datasets
and open-set noise at the expense of training two models,
CleanNet generalizes its noisy samples detection by manually
verifying a few classes.

However, NLNL [14] may not scale as the number of
classes grows: despite having negative labels that are less
likely to be wrong, they also become less informative.

We can expect unlabeling techniques to grow as the semi-
supervised and unsupervised methods gets better, since any of
those can be used once a sample had its label removed. One
could envision utilizing algorithms such as MixMatch [23] or
Unsupervised Data Augmentation [24] on unlabeled samples.

Similarly, the label fixing strategies could benefit from
unsupervised representation learning to learn prototypes that
makes it easier to discriminate hard samples and incorrect
samples. Deep self-learning [20] is shown to scale on Cloth-
ing1M and Food-101N. It would be expected however that
those approaches become less accurate as the number of
classes grows or the classes get more ambiguous. Some prior
knowledge or assumptions about the classes could be used
explicitly by the model. Iterative Noise Filtering [15] in its
entropy loss assumes that all the classes are balanced in the
dataset and in each batch.

Training a deep classifier using a noisy labeled dataset is
not a single problem but a family of problems, instantiated by
the data itself, noise properties, and provided manual annota-
tions if any. As types of problems and solutions will reveal
themselves to the academic and industrial deep learning prac-
titioners, deciding on a single metric, a more thorough and



standardized set of tests might be needed. This way, it will
be easier to answer questions about the use of domain knowl-
edge, generality, tradeoffs, strengths and weaknesses, of noisy
labels training techniques depending on the use-case.

In the face recognition system, that we are building, label
noise have varying causes: persons with similar names; con-
fusion with lookalikes; related persons that appear together;
erroneous faces detected on signs or posters in the picture;
errors from the face detector that are not faces; and random
noise. All those situations represent label noise with different
characteristics and properties that must be handled with those
algorithms. We believe those issues are more general than this
scenario and find an echo in the broader multimedia tagging
and indexing domain.
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