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ABSTRACT

This work investigates the embeddings for representing dialog his-
tory in spoken language understanding (SLU) systems. We focus
on the scenario when the semantic information is extracted directly
from the speech signal by means of a single end-to-end neural net-
work model. We proposed to integrate dialogue history into an end-
to-end signal-to-concept SLU system. The dialog history is repre-
sented in the form of dialog history embedding vectors (so-called
h-vectors) and is provided as an additional information to end-to-
end SLU models in order to improve the system performance. Three
following types of h-vectors are proposed and experimentally eval-
uated in this paper: (1) supervised-all embeddings predicting bag-
of-concepts expected in the answer of the user from the last dialog
system response; (2) supervised-freq embeddings focusing on pre-
dicting only a selected set of semantic concept (corresponding to
the most frequent errors in our experiments); and (3) unsupervised
embeddings. Experiments on the MEDIA corpus for the semantic
slot filling task demonstrate that the proposed h-vectors improve the
model performance.

Index Terms— End-to-end models, spoken language under-
standing (SLU), dialog history, h-vectors, semantic slot filling (SF)

1. INTRODUCTION

The task of spoken language understanding (SLU) system is to detect
fragments of semantic knowledge in speech data. Popular models
are made of frames describing relations between entities and their
properties [1–3]. The SLU system instantiates a predefined set of
frame structures called concepts that can be mentioned in a sentence
or a dialogue turn. Concept mentions express dialogue acts (DA),
intents, domain knowledge, and frame properties often represented
by slots, identified by entity names, and slot filler values identified
by mention types. Concept mentions are difficult to characterize
in terms of words or characters. They may be localized by head
words or short word sequences called concept supports. For exam-
ple, word spans can be hypothesized to be mentions of concepts,
while entire sentence can be considered for hypothesizing dialogue
acts. Unfortunately, mentions may be ambiguous because their word
spans may express more semantic constituents, be incomplete or be
affected by errors of an automatic speech recognition (ASR) sys-
tem. These difficulties can be alleviated by considering certain head
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words, word spans, or a sentence as a seed for hypotheses genera-
tion and using additional context for providing predictions useful for
constraining instantiation decision. An example of additional distant
context used so far is a representation of dialogue history made of
embeddings of sentences preceding the sentence or dialogue turn to
be interpreted [4–12].

A problem that has not yet thoroughly investigated is to select
what to embed and how. Some popular corpora used so far (e.g.
ATIS [13]) do not have explicit sentence history. In this case, the
only context to pay attention to is the sentence to be interpreted. If
some history information is available, then distant contexts for DA
and concepts may be different. Specific contexts for DA have been
proposed in [14, 15]. For concepts, the selection of distant contexts
may depend on the complexity of the application semantic domain.
For example, the French MEDIA corpus [16] has concepts of ref-
erence, relative time, locations, prices, logical conjunction and dis-
junction that are expressed by short semantically ambiguous words,
which are often difficult to recognize, requiring knowledge of a se-
mantic context called state of-the world to reduce the perplexity.
Furthermore, the problem of deciding the type of embedding is also
relevant as made evident in recent published papers [17–22].

In this paper, we investigate the use of different types of dialog
history representation, extracted with or without supervision, and
their impact on the performance of an end-to-end signal-to-concept
neural network.

Noticeable approaches for reducing uncertainty in concept de-
tection automatically extract relevant information from dialogue his-
tory [4, 5, 8]. Considering the concern expressed in [7] and prior
knowledge, we propose to focus on types of history contents start-
ing by considering the previous system turn that contains semanti-
cally unambiguous information. In fact, the sequence of words in
the system turn is generated by a semantic model whose goal is to
reach a commit state for performing a transaction. Furthermore, us-
ing the train set, it is possible to compute prediction probabilities
of user enunciated concepts, given the system enunciated concepts.
The most likely predicted concepts can thus be used for reducing
interpretation uncertainty in the following user turn.

The rest of the paper is organized as follows. Section 2 presents
an architecture of an end-to-end signal-to-concept model and the
proposed way of integration of dialog history ebmeddings (to which
we refer as h-vectors) into this model. Section 3 introduces differ-
ent ways to represent the dialog history. Sections 4 describes the
experimental setup and results. Finally, the conclusions are given in
Section 5.
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Fig. 1: End-to-end concept-to-semantic deep neural network model
architecture. H-vectors represent dialog history embeddings vectors.

2. END-TO-END SIGNAL-TO-CONCEPT NEURAL
ARCHITECTURE

Nowadays there is a growing research interest in end-to-end sys-
tems for various SLU tasks [23–31]. In this work, similarly
to [26, 29], end-to-end training of signal-to-concept models is per-
formed through the recurrent neural network (RNN) architecture and
the connectionist temporal classification (CTC) loss function [32] as
shown in Figure 1. A spectrogram of power normalized audio clips
calculated on 20ms windows is used as the input features for the
system. As shown in Figure 1, it is followed by 2D-invariant (in the
time and-frequency domain) convolutional layers, and then BLSTM
layers. A fully connected layer is applied after BLSTM layers, and
the output layer of the neural network is a softmax layer. The model
is trained using the CTC loss function. H-vectors are appended to
the outputs of the last (second) convolutional layer, just before the
first recurrent (BLSTM) layer.

The outputs of the network consist of the two subsets: (1) out-
puts to represent the words (graphemes of a corresponding language,
a space symbol to denote word boundaries, and a blank symbol), and
(2) outputs to represent semantic concepts types and a closing sym-
bol for semantic tags. We have several symbols corresponding to
semantic concepts (in the text these characters are situated before
the beginning of a semantic concept, which can be a single word or
a sequence of several words) and a one tag corresponding to the end
of the semantic concept, which is the same for all semantic concepts.

In order to improve model performance, we integrate dialog his-
tory information in form of h-vectors into the model as shown in
Figure 1. Each h-vector is calculated from the last dialog system
response as described further in Section 3.

H-vectors are appended to the outputs of the last (second) con-
volutional layer, just before the first recurrent (BLSTM) layer. In
this paper, for better initialization, we first train a model using zero
vectors of the same dimension (all values are equal to 0) instead of
h-vectors. Then, we use this pretrained model and finetune it on the
same data but with the real h-vectors. This approach was inspired
by [33], where the idea of using zero auxiliary features during pre-
training was implemented for language models, and by [29], where

it was used for i-vectors. In our preliminary experiments this type of
pretraing demonstrated better results than direct model training with
h-vectors, hence we use it in the experiments presented in this paper.

3. DIALOG HISTORY REPRESENTATION

The MEDIA corpus is a French corpus of spoken human/machine di-
alogues dedicated to hotel booking [16]. Recently, it has been shown
that this corpus is one of the current most challenging corpora for
slot filling (SF) task [34] due to its complexity. In this dataset, a hu-
man/machine dialogue is composed of 15 utterances from the user
on average, and the same number from the system.

For this work, we decided to use as history information, the pre-
vious system prompt as it provides most of the time a good evidence
of what the user answers. The goal is to help the main system to
predict concept tags, hence our aim is to encode the previous sys-
tem prompt into an embedding that contains useful information to
achieve this objective.

3.1. Embedding with supervision

A first h-vector type is produced using a bidirectional gated recurrent
unit (GRU [35]) network to analyse the system prompt and produce
a vector of embedding that is the input to a decision layer whose
objective is to predict the bag of concepts of the future user answer,
illustrated in Figure 2a. The bag of concepts is represented by a vec-
tor whose size is the number of unique concepts (slots) in the appli-
cation, the concepts that appears in the next user intervention are set
to one. The output layer is thus a multiclass multi-output sigmoid
layer and the network is trained using a binary cross-entropy loss.
As the turn in the dialog itself may identify some useful statistics, a
very short part (2%) of the h-vector is reserved to encode the dialog
turn itself. Obviously, predicting the presence or absence of all the
concepts of the next user answer from the previous system prompt is
not possible and the network may overfit.

3.2. Embedding with no supervision

Another solution that is more straightforward to train is to use a re-
current autoencoder to encode the prompt into a single h-vector. This
h-vector is obtained by a symmetric neural network using a forward
GRU in the encoder and decoder part, the output is a softmax layer
(size is the vocabulary of the system) whose objective is to recon-
struct the input prompt, illustrated in Figure 2b.

4. EXPERIMENTS

4.1. Data
Several publicly available corpora have been used for experiments
(see Table 1).

Table 1: Corpus statistics for ASR and SF tasks.

Task Corpora Size, hours
ASR train EPAC [36], ESTER 1,2 [37] 404.6

ETAPE [38], REPERE [39]
DECODA [40], MEDIA [16]
PORTMEDIA [41]

SF train MEDIA (train) 15.8
SF dev MEDIA (dev) 1.6
SF test MEDIA (test) 4.6
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Fig. 2: Supervised and unsupervised architectures for h-vector extraction

4.1.1. ASR data
In this paper, the ASR data (audio speech files with text transcrip-
tions) are used for transfer learning as described in Section 4.3. The
corpus for ASR training is composed of corpora from various eval-
uation campaigns in the field of automatic speech processing for
French, as shown in Table 1. The EPAC [36], ESTER 1,2 [37],
ETAPE [38], REPERE [39] contain transcribed speech in French
from TV and radio broadcasts. These data were originally in the
microphone channel and for experiments in this paper were down-
sampled from 16kHz to 8kHz, since the test set for our main target
task (SF) consists of telephone conversations. The DECODA [40]
corpus is composed of dialogues from the call-center of the Paris
transport authority. The MEDIA [16,42] and PORTMEDIA [41] are
corpora of dialogues simulating a vocal tourist information server.

4.1.2. SF data

The MEDIA French corpus, dedicated to semantic extraction from
speech in a context of human/machine dialogues, is used in the cur-
rent experiments (see Table 1). The corpus has manual transcrip-
tion and conceptual annotation of dialogues from 250 speakers. It
is split into the following three parts [43]: (1) the training set (720
dialogues, 12K sentences), (2) the development set (79 dialogues,
1.3K sentences, and (3) the test set (200 dialogues, 3K sentences).
A concept is defined by a label and a value, for example with the
concept date, the value 2001/02/03 can be associated [16, 43]. The
MEDIA corpus is related to the hotel booking domain, and its anno-
tation contains 76 semantic concept tags: room number, hotel name,
location, date, room equipment, etc.

4.2. H-vector extraction

We produced three different types of h-vectors: two types of h-
vectors using the neural architecture trained in a supervised way to
predict the bag of MEDIA concepts:

• supervised-all h-vectors. To extract these h-vectors, we
trained a model as described in Section 3.1. The accuracy
of the model to predict the next bag of concepts is 45% on
the train and 26% on the test dataset. The model has 30.382
parameters.

• supervised-freq h-vectors. This version has been trained with
a bag of the four history concepts that have been observed
in the train and development set to predict concepts that are
frequently misrecognized.

This version tends to overfit with around 60% of accuracy on
the train and only 16% on the test. The model has 23.918
parameters.

The third type of embeddings is trained in an unsupervised way:

• unsupervised h-vectors. These h-vectors are produced by the
autoencoder architecture as described in Section 3.2. The au-
toencoder has 246.270 parameters, and the accuracy in the
reconstruction is 52% on the train and 48% on the test.

Jointly trained word embedding is of size 10 while the dimen-
sion of h-vectors equals to 100 in all experiments. The described
architectures for h-vectors were implemented using the Keras frame-
work [44].

4.3. Signal-to-concept models

The neural architecture is inspired by the Deep Speech 2 [45] for
ASR. The two major differences in comparison with the original ar-
chitecture are the following. First, we integrated dialog history into
this system based on dialog history embedding vectors (h-vectors) as
shown in Figure 1 and proposed in Section 3. Second, in this paper,
the task is SF, therefore the output sequence besides the alphabetic
characters also contains special characters corresponding to the se-
mantic tags [26, 29].

A spectrogram of power normalized audio clips calculated on
20ms windows is used as the input features for the system. As
shown in Figure 1, input features are spectrograms. They are fol-
lowed by two 2D-invariant (in the time and-frequency domain) con-
volutional layers1, and then by five 800-dimensional BLSTM layers
with sequence-wise batch normalization. A fully connected layer is
applied after BLSTM layers, and the output layer of the neural net-
work is a softmax layer. The model is trained using the CTC loss
function [32]. We used the deepspeech.torch implementation2 for
training baseline models, and our modification of this implementa-
tion to integrate dialog history embedding vectors.

In this work, we performed experiments with two types of mod-
els: (1) models that are trained directly on the target task using the
MEDIA corpus dataset and (2) models that are trained using the
transfer learning paradigm. Transfer learning is performed from the
ASR task as described in [29].

1With parameters: kernel size=(41, 11), stride=(2, 2), padding=(20, 5)
2https://github.com/SeanNaren/deepspeech.pytorch



For transfer learning experiments, we first trained an ASR model
on the ASR data (described in Section 4.1.1) using a similar end-to-
end model architecture as we used for the SLU model. The differ-
ence is in the text data preparation and output targets. For training
ASR systems, the output targets correspond to alphabetic characters
and a blank symbol, while for slot filling task, we used additional
targets corresponding to the semantic concept tags and one tag cor-
responding to the end of a concept. Then, we changed the softmax
layer in this model by replacing the targets with the SF targets and
continue training on the corpus annotated with semantic tags (Sec-
tion 4.1.2).

4.4. Results

Performance was evaluated in terms of concept error rate (CER)3

and concept value error rate (CVER)4 on the MEDIA test dataset.
In the first series of experiments, we trained a baseline model

and models with different types of h-vectors described in Sec-
tion 4.2. Results for these models are given in Table 2. All the
models in this table are trained directly on the MEDIA training
corpus. The first line shows the baseline result for the end-to-end
signal-to-concept model. The other three lines (#2,3,4) correspond
to the models trained with dialog history integration and differ from
each other in the way the dialog history is represented in the form
of h-vectors. We can observe, that all types of h-vectors provide
an improvement over the baseline model for both metrics CER and
CVER. The best result (line #4) is obtained for supervised-all h-
vectors and corresponds to 12.5% of relative CER reduction and to
11.9% of CVER reduction in comparison with the baseline model.

Table 2: Slot filling performance results on the MEDIA test dataset
for the baseline model and models trained with different types of
dialog history embedding vectors. Results are given in terms of CER
and CVER metrics (%); ∆CER and ∆CVER (%) denote relative
error reduction for CER and CVER correspondingly in comparison
with the baseline model (#1).

# h-vector type CER ∆CER CVER ∆CVER
1 no (baseline) 39.2 - 53.0 -
2 unsupervised 35.8 8.7 47.6 10.2
3 supervised-freq 35.9 8.4 48.2 9.1
4 supervised-all 34.3 12.5 46.7 11.9

It was shown in [29], that transfer learning can significantly im-
prove the performance of end-to-end SLU models. In this work,
we are also interested in exploring the proposed approach for more
accurate models trained using the transfer learning paradigm. For
this purpose, we trained two models using transfer learning from the
ASR task as proposed in [29] and described in Section 4.3. Results
for these models are presented in Table 3. The first line corresponds
to a baseline model. The second line demonstrates the result for the
model trained with the best type of dialog history embedding vectors
(supervised-all) chosen according to our first series of experiments.
We can see that h-vectors continue to provide an improvement in per-
formance over the stronger baseline: 7.7% of relative CER reduction
and 6.3% of relative CVER reduction.

3CER is defined as the ratio of the total number of deleted, inserted and
confused concepts and the total number of concepts in reference utterances.

4CVER, in comparison to CER, takes into account concept/value pairs
instead of only concepts.

Table 3: Slot filling performance results on the MEDIA test dataset
for the baseline model and the best model trained with supervised-
dall type of dialog history embedding vectors. Models for SF are
trained using transfer learning from an ASR model.

# h-vector type CER ∆CER CVER ∆CVER
1 no (baseline) 23.5 - 30.0 -
2 supervised-all 21.7 7.7 28.1 6.3

5. CONCLUSIONS

In this paper, we have proposed a novel way of integration of the dia-
log history information into end-to-end signal-to-concept SLU mod-
els by means of using so-called h-vectors. We have proposed dif-
ferent types of h-vectors and investigated their effectiveness for end-
to-end SLU using as an example the semantic slot filling task. Ex-
periments on the MEDIA corpus demonstrated that using h-vectors
improves the slot filling model performance by about 813% of rela-
tive CER reduction, and by about 6-12% of relative CVER reduction.
The best result was obtained using supervised-all h-vectors predict-
ing bag-of-concepts representations of the user’s answer from the
last system response.
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N. Camelin, B. Favre, B. Jabaian, and L. Rojas-Barahona, “Ro-
bustness and portability of spoken language understanding sys-
tems among languages and domains: the PortMedia project [in
French],” in JEP-TALN-RECITAL, 2012, pp. 779–786.

[42] H. Bonneau-Maynard, C. Ayache, F. Bechet, A. Denis, A.
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