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Abstract—This article tackles the problem of scheduling multi-
user scientific workflows with unpredictable random arrivals and
uncertain task execution times in a Cloud environment from
the Cloud provider point of view. The solution consists in a
deadline sensitive online algorithm, named NEARDEADLINE, that
optimizes two metrics: the energy consumption and the fairness
between users. Scheduling workflows in a private Cloud environ-
ment is a difficult optimization problem as capacity constraints
must be fulfilled additionally to dependencies constraints between
tasks of the workflows. Furthermore, NEARDEADLINE is built
upon a new workflow execution platform. As far as we know
no existing work tries to combine both energy consumption and
fairness metrics in their optimization problem. The experiments
conducted on a real infrastructure (clusters of Grid’5000) demon-
strate that the NEARDEADLINE algorithm offers real benefits in
reducing energy consumption, and enhancing user fairness.

Index Terms—Cloud Computing, Scientific Workflows, Fair-
ness, Energy, Scheduling, Algorithm

I. INTRODUCTION

Scientific workflow applications are defined as a set of
coarse-grain tasks linked together by data dependencies. De-
veloping scientific applications as a set of tasks with file
dependencies is a common pattern, that has been adopted
by many users. This approach allows to develop complex
applications by dividing it into different simpler parts. Once
done, as the parallel parts of the application are highlighted,
the application can be executed on a distributed infrastructure.

Historically, most of the academic works done on scien-
tific workflows scheduling have been studied on HPC or
Grid infrastructures, where the execution is done directly
on physical machines (Bare Metal), with the objective of
makespan minimization (i.e., shortest execution time). How-
ever, nowadays tasks of scientific workflows are commonly
heterogeneous in their libraries and packages dependencies,
their data types and even their needed operating systems. For
instance, the genomic data stream designed by the ICO in [1]
uses data produced by a vendor-specific machine. To convert
the output formats of the machine to a standard one, vendor-
specific software developed for Windows must be used, while
the other applications (e.g., Openswath) must be executed
on top of Linux. This heterogeneity is a common issue in
scientific workflows. In the last decade, efforts have been
conducted for the execution of scientific workflows on Cloud
infrastructures, where virtualization mechanisms considerably
help in the management of task heterogeneity. However, most

of those contributions have been studied in the context of
public Clouds that have high availability and limited cost (i.e.,
pay-as-you-go model), with a cost minimization optimization.
Furthermore, most works have focused their attention on the
execution of the workflows of one user, and have not taken
into account the fairness or equity between users, and as the
public Cloud is considered to be managed by a third party, the
energy consumption cannot be taken into account. In a public
infrastructure multiple users are in competition for a set of
resources, on which they submit different applications with
uncertain task executions at unpredictable random arrivals. As
far as we know there is no work on Grid, HPC or Cloud
computing infrastructures that aims at solving the following
problematics: (1) uncertainty, that is to say juggle with the
unpredictable random arrivals of workflows, and uncertain task
execution times; (2) user fairness, in other word, be able to
schedule a multi-user workload with a fair sharing of the
available resources; (3) energy minimization, i.e., minimizing
the energy consumption of the Cloud infrastructure.

In this article, we consider a Cloud infrastructure from the
provider point of view with the possibility of provisionning
virtual machines (VMs) for two reasons. On one hand, the
heterogeneity of operating systems and libraries makes it
mandatory to load different operating systems. On the second
hand, a multi-user workload is considered, thus, strong isola-
tion, for security reasons, must be guaranteed which is made
easier by the VMs. In addition, in this article each workflow
is submitted with a deadline. This deadline is used to define
the fairness between the users, where an execution is consider
fair if all the deadlines of the workflows are guaranteed.

This article presents the following contributions: (1) an
online scheduling algorithm for Cloud provider, named
NEARDEADLINE, that takes into account both virtualization
and deadlines and that schedules the workflows of all users on
a set of machines in order to maximize the user fairness and
minimize the energy consumption; (2) a detailed evaluation on
a real infrastructure execution of the proposed algorithm.

The rest of the document is organised as follows: Sec-
tion II presentes some noteworthy works related to scientific
workflow scheduling. Section III will give a detailed model
of the problem. Then Section IV presents our new algorithm
NEARDEADLINE, Section V offers a detailed evaluation of our
algorithm compared to other algorithms. Finally, the section VI
cloncludes this work and opens some perspectives.



II. RELATED WORK

In this section are presented some noteworthy works related
to scientific workflows scheduling.

Grid and HPC scheduling algorithm - On the one hand,
high-performance computing (HPC) and Grid computing have
shown interest in scientific workflow scheduling (heteroge-
neous coarse-grained, interconnected tasks). These domains
do not take virtualization into account in their scheduling
algorithms. Indeed, physical machines are directly considered
(Bare Metal) and most of the time consolidation of shared
resources are not taken into account to avoid interferences. In
the following works, we can isolate different groups of algo-
rithms: batch scheduling, list scheduling and pack scheduling.

In [2], Min-Min and Max-Min are presented. Both are batch
algorithms (i.e. independent job scheduling). The Min-Min
batch algorithm first creates a list of independent tasks and
schedules them, starting its decision process with the task
with the lowest execution time (or the highest execution time
for Max-Min). Then it deletes the tasks from the depen-
dency graph, creating a set of new independent tasks. These
two phases are repeated until all tasks are scheduled. These
algorithms have been designed to plan independent tasks;
therefore, they are not well suited for workflows scheduling,
as indicated in [3].

In [4], Sun et al. claim that most HPC scheduling algorithms
focus on CPU and core usage and that in practice, the user
of the batch scheduler must juggle alone with other server
resources, such as memory, requiring larger resources (a
complete server, for example). Sun et al. consider all resources
more precisely by studying two algorithms based on list and
pack scheduling. First, the list scheduling algorithm schedules
the sorted tasks in a list and tries to minimize the time it
takes to complete the submitted tasks (makespan). Secondly,
the pack scheduling algorithm creates packets of tasks that do
not exceed the considered capacities and prohibits any further
scheduling until all tasks in a packet are completed.

The HEFT algorithm [5] is a well-known heuristic based
on a list scheduling. This heuristic is divided into two parts.
First, a list is created containing all the tasks of the entire
workload sorted by priority. Second, each task is scheduled,
one by one, on the available resources while trying to minimize
the overall completion time required to execute the workflows
(makespan). In the scheduling phase of HEFT, a selection
of physical resources is made. For this purpose, the task
completion time is calculated for each physical resource. The
one offering the most efficient execution time is selected and
the task is scheduled on it.

All the algorithms that have been presented in this sub-
section aimed at minimizing the makespan of the overall
execution of a given workload. They are not well suited for
multi-users workloads as they cannot provide any isolation,
and cannot consider fairness as they merge all the tasks of all
workflows in one big workflow. Additionaly, they are static
algorithm that cannot reconsider the current schedule online.

Cloud scheduling algorithm - On the second hand, workflow
scheduling strategies have also been studied for Cloud com-
puting infrastructures. Generally those works focus on the case
where the Cloud is operated by a third party (e.g., public Cloud
providers such as AWS). Thus, the Cloud is considered as an
unknown black box that has infinite resources, and that is only
limited by the client budget. Typically, as depicted in [6] most
of the conducted works focus on minimizing end-user costs to
run scientific workflows in a public Cloud where the placement
decisions of the different virtual resources are made in an
internal scheduler controlled by the Cloud provider. In [3],
[7] a budget must be respected according to a public Cloud
offer. Such work assumes that the Cloud provider is always
able to meet the customer’s needs (infinite resources). In [3] an
algorithm based on HEFT is presented. This algorithm divides
the client’s budget by the number of workflows to schedule in
a public Cloud environment. The algorithm presented in [3]
aimed at minimizing the makespan of the workflows, when
respecting the budget of the client. The idea is to remove the
aspect of multi dimensional objective optimization, by setting
a maximal acceptable value for one of the objective and try
to minimize the other.

In [7] a deadline based algorithm to schedule one workflow
on IaaS cloud is presented. The IC-PCPD2 algorithm (Iaas
Cloud Partial Critical Path with Deadlines Distribution) which
was originally dedicated to Grid infrastructure in [8], uses
the cheapest resources in priority while trying to respect
the deadline of the workflow. In our previous work [9], we
have presented the HEFT deadline algorithm that schedules
workflows for multiple users in a Cloud infrastructure, while
respecting the deadline of each workflows. The objective of
this algorithm was to minimize the energy consumption of the
infrastructure, by minimizing the number of machines used to
execute a given workload.

The algorithms presented in [3], [7], [9] have the same lim-
itation: they do not take uncertainty into account and perform
a static schedule that has to be respected. In addition, all the
algorithms considering public Cloud environment, such as [3],
[7], are not designed for multi-users scheduling problems.
Finally, as the physical resources are handled by a third party,
the energy consumption cannot be taken into account in the
placement and scheduling decisions.

User fairness - The user fairness is defined by a fair sharing
of the physical resources between multiple users. As far as we
know, there is no work trying to manage the user fairness for
workflow scheduling in a Cloud infrastructure, as the Cloud
is considered as an unknown black box, and thus the fairness
is assumed to be taken into account by the provider. However,
some works focusing on the workflow scheduling in a Grid
environment, have contributed to enhance fairness between
users. In [10], the algorithm shares a set of processors between
mutiple workflows and consider a priority on each task. This
work assumes that each task consumes exactly one processor
and does not consider other resources. Also, in [11], the au-
thors consider the submission of multiple workflows belonging



to multiple users. The resource managment systems of those
two works, are difficult to adapt for a Cloud infrastructure.

Uncertainty and online scheduling - Finally some of the
algorithms presented above [3], [6] take into account some
uncertainty in task execution time. This uncertainty is usually
assumed to follow a Gaussian distribution [3], [12], [13]. In
addition to this, some recent works perform the scheduling
of multiple workflows that are submitted at different unpre-
dictable instants. [12] offers a solution to schedule multiple
workflows with unpredictable random arrivals and uncertain
task execution times on a IaaS Cloud infrastructure. This
work aims at ensuring that the deadline of each workflow
is respected, while minimizing the rental cost of the VM
in the Cloud infrastructure for a given user. Additionnaly,
in [13], a genetic algorithm to solve the scheduling problem
of multiple workflows with random arrivals is detailed. These
two works, however, do not take into account multiple users,
neither fairness. Furthermore, as they consider third party
Cloud providers, neither resource consolidation nor energy
optimization can be adressed.

To conclude, as far as we know, no existing work aims
at solving our specific problem : Defining an algorithm on
top of a virtualized infrastructure from the provider side to
execute multiple workflows with random arrivals and uncertain
task execution times, belonging to multiple users, in order
to maximize the user fairness, and minimize the energy
consumption.

III. MODELING AND PROBLEM FORMULATION

This section presents a model that describes the scheduling
problem: schedule all the tasks of submitted workflows on
virtual resources in order to satisfy task dependencies and their
resource needs, while respecting the capacity constraints of
the physical machines. Our objectives are to maximize the
user fairness by respecting the deadline of each users, and to
minimize the energy consumption of the physical machines.

Workflow definition - A scientific workflow can be defined as
a DAG (Directed Acyclic Graph) G = (V,A) were each vertex
v ∈ V represents a task and each arrow d ∈ A represents
a data dependency between two tasks. For simplicity of
further notation, let J be the set of all tasks composing the
submitted workflows over the time. For each task is associated
the following properties: (1) its needs in term of computing
resources (such as the quantity of memory it requires or the
number of cpus, etc.); (2) its software requirements (basically
the operating system, libraries and packages needed to execute
the task); (3) its execution time represented by two metrics:
for a task j ∈ J , µj is the number of instructions needed
to complete j in average, and σj is the standard deviation
of the execution time. Such information can be retreived by
sampling, and in this paper are assumed to be known.

In addition, a weight representing the size of the data that
has to be transferred from a task to another, denoted for each
file a ∈ A between i ∈ V and j ∈ V sizea,i,j , is associated to
each arc of the DAGs. It can be noted that a task can transfer

the same file to multiple successor tasks, and that a task can
get multiple files from the same ancestor task.
Infrastructure definition - The considered infrastructure
is composed of multiple nodes (physical machines), denoted
s ∈ S, where S is the set of all nodes. For each node are
attached some properties : (1) its computing capabilities, (the
quantity of memory, the number of cpus, etc.); (2) its speed
represented by the processor frequency (per CPU), denoted
speeds for s ∈ S. Let bws,r be the bandwith between two
nodes s and r ∈ S. One can note that in this paper, as the
targeted model only considers a single cluster, the bandwidth is
homogeneous for all nodes, thus for sake of simplicity bw will
refer to the bandwidth between all nodes, with one exception
for the bandwidth between a node and itself.

Any VM can be provisioned on nodes, with any size and
with any given operating system. Let V be the set of all
VMs launched on the nodes during the execution from the
start. For each vm v ∈ V , are attached two properties: (1)
its hardware capacities, in term of vcpus and memory; (2)
its software capacities embedded in its image, basically the
installed operating system, packages and libraries. It is ensured
that on a given node, at every moment, the number of vcpus
and memory used by the hosted VMs does not exceed its
capacities. As VMs are used to execute tasks, it is also ensured
that at every moment the sum of the needs of the hosted tasks
does not exceed the capacities of that VM. In other words,
this paper forbids over-provisioning on both nodes and VMs
levels. Such capacity constraints can be modeled as a classical
bin packing problem. A more formal definition of this problem
has been presented in our previous work [9] and is not detailed
in this document for sake of space. As over-provisioning is not
allowed in this work the deteroration of VM computing speed
is assumed to be low [14], and considered to be 5% of the
host node speed. Consequently as every task are running in
a VM, for simplicity, we will consider that the speed of all
node is actually 95% of their real speed.
Scheduling problem - The problem to solve is a dynamic
scheduling, meaning that, workflows can be submitted by users
at any moment. A workflow w ∈ W is submitted at a given
time wsubmit, with a deadline denoted wdead, by a given user
wuser.

For all tasks j ∈ J , are defined six temporal notations :
Notation Meaning
ESj The estimated start time of the task
EEj The estimated end time of the task
ETTi,j The estimated transfert time between i, j ∈ J
ASj The actual start time of the task
AEj The actual end time of the task
ATTi,j The actual transfert time between i, j ∈ J

Let jsucc ⊂ J be the set of tasks that succeed j ∈ J , also
called the set of successors. For each task j ∈ J :

∀s ∈ jsucc, ESs ≥ EEj + ETTj,s (1)

The estimated execution time of a task j ∈ J is computed
using the execution time properties of the task as described
earlier, naming µj and σj . We consider that the execution time



of a task follow a gaussian distribution N (µ, σ). Representing
the uncertainty of the task execution times by a Gaussian
distribution is a common approach in the state of the art [3],
[12], [13]. The estimated execution time of a task j ∈ J with
the Gaussian distribution N (µ, σ), on a node s ∈ S with the
uncertainty x ∈]0; 1[ is as follows:

Fx(µ, σ) =

∫ x

−∞

e
−(x−µ)2

2σ2

σ
√
2π

(2)

EEj = ESj +
Fx(µj , σj)

speeds
(3)

Likewise, after a set of experiments on a real infrastructure
we have observed that the VMs boot time is uncertain. Indeed,
the boot time of a VM is not static and can differ depending on
the stress that is applied to different resources of the node that
is hosting it. This observation has been highlighted in many
works [15]–[17]. Thus, we assume that the VMs boot time
follows a Gaussian distribution composed of two properties,
µv,s and σv,s, respectivally the mean time and the standard
deviation of the boot of v ∈ V on a node s ∈ S . These two
properties depend on the operating system of a given VM,
and the node that host it. Furthermore, they can be retreived
by sampling, and are assumed to be known in this paper.
One can note that these properties are more static than the
task execution time uncertainty, as possible bootable operating
systems are bounded and determined by the Cloud provider,
while tasks are unknown and chosen by users. Consequently,
the administrator can run benchmarks for each OS to get the
average boot times of a VM, and its standard deviation.

For each VM v ∈ V , three different temporal notations are
introduced :

Notation Meaning
EPv The estimated instant of the VM provisioning
ESv The estimated ready time of the VM
EEv The estimated end time of the VM

Let vJ ⊂ J for v ∈ V be the set of tasks to execute on v,
and s ∈ S the hosting node for v. For each VM, the following
temporal constraints are defined:

ESv = min
j∈vJ

(ESj) (4)

EEv = max
j∈vJ

(EEj) (5)

EPv = ESv − Fx(µv,s, σv,s) (6)

Fairness objective - One of the objective of this work
is to ensure the fairness between the different users of the
workflow platform. The fairness is represented by the respect
of the deadline of each workflow, and thus this objective
can be define as the minimization of the sum of deadline
violations. The deadline violation of a workflow is defined
by Equation (8) and the associated objective by Equation (9).

deviationw = max
j∈wJ

(AEj)− (wsub − wdead) (7)

violationw =

{
deviationw If deviationw > 0

0 Otherwise
(8)

Minimize(
∑

w ∈ W
violationw) (9)

where wJ ⊂ J is the set of tasks of the workflow w, and
AEj is the actual end time of the task j ∈ wJ .

Energy objective - The second objective is the minimization
of the energy consumption when answering the execution of
all the submitted workflows. It has already been shown [18],
[19] that the CPU’s energy consumption of a node is not a
linear to the CPU load and the duration time. The Figure 1
shows the energy consumption measured on one Ecotype node
(see Table II) when executing a variable number of tasks that
perform a CPU-burn benchmark.
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Fig. 1: Power consumption of Ecotype node when varying the number of used cores

It can be noted from Figure 1 that, since CPU consumption
is not linear, when using multiple nodes of a cluster, it is more
likely that using one node that is 100% used is less consuming
than using two nodes that are 50% used, (for example for
two Ecotype nodes used at 50% the consumption would be
132 + 132 = 264W , when with only one node used at 100%
and the other at 0%, the consumption would be 145 + 65 =
210W ). For this reason, to optimize the energy consumption,
in this work the objective is to use the nodes at the maximum
of their capacity by regrouping the tasks on the same nodes.

IV. DEADLINE BASED DYNAMIC ALGORITHM

In this section, is introduced our new deadline-aware
scheduling algorithm NEARDEADLINE. Our algorithm is built
such that workflows belonging to different users - each as-
sociated to a deadline - can be submitted at any time to
the workflow execution platform. The algorithm is launched
when new submissions are performed, with a configurable
submission window (i.e., schedule all the workflows that have
been submitted during a window of t seconds).

In the following, three definitions will be used: (1) the
workload is the set of all submitted workflows; (2) an expected
schedule is generated by the scheduling algorithm and contains
all the tasks, files and VMs running or expected to run in the
future; (3) a configuration, generated from a schedule, contains
only the tasks, files and VMs that are currently running or need



to be launched or sent immediately. Thus, a configuration does
not contain any information about the future. The algorithm
takes into account the current expected schedule and generates
a new one containing the new workflows. This new expected
schedule is then used to create a new configuration that will
be executed.

Priorities and deadlines - When a new workflow is submitted
to the platform, the algorithm first computes its rank based on
its deadline and its estimated execution time computed from
its critical path (i.e., set of tasks responsible for its overall
execution time). The rank of a workflow is computed by
Equation (10). The workflow with the lowest rank is handled
first.

rankw = wdead − max
∀j∈wJ

(priorityj) (10)

The priority of a task presented in Equation (11), is used to
compute the execution time of the critical path of the workflow.
For each task j ∈ J its priority corresponds to the partial
execution time of the workflow from this task. It is established
according to the average completion time of the task t on all
possible nodes, denoted ETj , as computed in Equation (12), as
well as its average communication time (between all possible
nodes) denoted ETTj,k, for j, k ∈ J .

priorityj = ETj + max
z∈jsucc

(
ETTj,z + priorityz

)
(11)

ETj =

∑
s ∈ S

Fx(µj ,σj)
speeds

|S|
(12)

After computing the rank of each submitted workflow (if
multiple workflows are submitted at the same time), the
NEARDEADLINE algorithm sorts them by increasing rank, and
schedule them one by one. As presented in Algorithm 1, the
scheduling of a workflow is made in two different phases, the
first one tries to schedule each task of the workflow, as near
as possible to their respective deadline. This first scheduling is
the function SCHEDULEWORKFLOWND. In the second phase,
if this schedule fails, the workflow moves in panic mode and
will be scheduled in best effort. The rest of this section follows
these two phases.

Algorithm 1 Main part of NEARDEADLINE

function NEARDEADLINE(workflows, node)
Q← workflows
while |Q|! = 0 do
panic← None
Q← SORTBYRANK(Q)
for w ∈ Q do

if not SCHEDULEWORKFLOWND(wJ , nodes) then
INVALIDATE(j), ∀ j ∈ wJ
panic← w
break

if panic 6= None then
(Q′, P ′)← REMOVEALLUNDER(panic, nodes)
P ← SORTBYRANK(panic+ P ′)
Q← Q+Q′

for all w ∈ P do
SCHEDULETASKBESTEFFORT(wJ , nodes)

Scheduling near the deadline - The first scheduling that
is performed on a workflow is made by the function SCHED-
ULEWORKFLOWND, presented in Algorithm 2. The idea is
to free resources as most as possible before the deadline
in case of future submissions with shorter deadlines. The
Figure 2 shows an example illustrating this idea, where a first
workflow is submitted with a smooth deadline, and afterwards
a second workflow is submitted with a more difficult deadline.
The y-axis models an imprecise vision of the load on the
infrastructure as the percentage of used resources. One can
note in this example that the current workload doesn’t need to
be reconsidered to place the new workflow.
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Fig. 2: Scheduling near the deadline to have free resources

Another idea could have been to schedule the workflows
using a small amount of resources, as presented in the Figure 3.
But as discussed in Section III, the energy consumption is not
linear to its executing load. Thus, using this idea would lead to
under used nodes during long period of time, wich would be
much worse in term of energy consumption than using nodes
during small period and leave them in idle mode the rest of
the time.
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Fig. 3: Scheduling with low resources to have free resources

Algorithm 2 Single workflow scheduling near its deadline

function SCHEDULEWORKFLOWND(tasks, nodes)
tasks← SORTBYBACKWARDRANK(tasks)
for all j ∈ tasks do

if not SCHEDULETASKND(j, nodes) then return False
return True

To perform this scheduling, tasks need to be sorted in
backward order (starting by the exit tasks), therefore sorted
by backward priority (function SORTBYBACKWARDRANK).
The backward priority of a task is computed the same way
as the forward priority, but by considering the predecessors
instead of the successors. Equation (13) shows the calculation
of the backward priority of a task j ∈ J , where jpred is the
list of predecessors tasks of j :

bpriorityj = ETj + max
z∈jpred

(
ETTj,z + bpriorityz

)
(13)

The function SCHEDULETASKND, detailed in Algorithm 3,
reserves a location for a task on a node. The function SCHED-
ULETASKONNODEND, presented in Algorithm 4, is launched



Algorithm 3 Single task scheduling near its deadline

function SCHEDULETASKND(task, nodes)
loc← None
for all s ∈ nodes do
locs ← SCHEDULETASKONNODEND(j, node)
if ISBESTND(locs, loc) then . Eq. (9)
loc← locs

if loc not None then
RESERVE(loc)
return True

else return False

on each node for a given task. For a node s ∈ S and a task
j ∈ J , this function returns a location, on a VM v ∈ sV . The
returned location is the one that optimizes the local objective
evaluated by the fitness function ISBESTND, which will be
presented in the objective subsection. The goal of this objective
is to choose the location that is closest to the deadline.

Algorithm 4 Single task scheduling near its deadline on one node

function SCHEDULETASKONNODEND(j, s)
len← COMPUTELENOFTASK(j, s)
loc← None
zero← CURRENTTIMESTAMP
for all v ∈ sV do

if vuser = juser and CANRUN(v, j) then
locv ← SCHEDULETASKONVMND(j, v, zero, len) . Eq. (6,4,5)
if ISBESTND(locv, loc) then . Eq. (9)
loc← locv

if loc is None then
new v ← EMPTYVM(jos, juser)
loc← SCHEDULETASKONVMND(j, new v) . Eq. (6,4,5)

return loc

In the function SCHEDULETASKONNODEND, one can note
the called function SCHEDULETASKONVMND. This function
retreives the first location where the task can be placed without
overcharging the capacity of the VM. This place is searched
between the zero instant of the current schedule and the
deadline jdead of the task j ∈ J , of the workflow w ∈ W (that
is calculated using Equation (14)). This function, detailed in
Algorithm 5, is also in charge of the VM dimensions. One may
note that a VM can be resized if it is not currently powered
on, and therefore the capacity of the node must be taken into
account in this function in order to not overcharge it. The
resizing of the VM is multi dimensional, it can be either on
capacity, and temporal aspects.

jdead =

wdead If |jsucc| = 0

min
∀z∈jsucc

ESz − ETTj,z Otherwise
(14)

As can be seen, the value MES is computed in SCHEDULE-
TASKONVMND. This value is the minimal estimated start
time of the task and is computed by Equation (15). Its utility
will be explained later, as it requires information given in
the panic subsection. COLLISIONONVM is the function in
charge of checking if the VM, when adding the new task, does
not exceed the capacity of the node. There are two different
types of VMs collisions. The first one is when a VM cannot
be resize in capacity terms, and an example is illustrated in
the Figure 4. The second case is when the VM cannot be
extended in time because of node overcharge. It is illustrated
in Figure 5. COLLISIONONVM handles multi-dimensional

Algorithm 5 Single task scheduling near its deadline on one VM

function SCHEDULETASKONVMND(j, v, zero, len)
LST ← jdead − len . Last Start Time, Eq. (14)
bootT ime← ESv − EPv . Eq. (6)
nodeUsage← NODEUSAGEWITHOUTVM(vhost, v)
nodeCapas← NODECAPACITIES(vhost)
MES ← COMPUTEMINSTART(j, jpred) . Eq. (15)
zero← MAX(zero,MES)
position← LST
while position > zero+ bootT ime do
loc← (position, position+ len)
over ← COLLISIONONVM(loc, v, nodeUsage, nodeCapas)
if over is None then

return loc
else
position← over − len

return None

capacities (vcpus, vram, disk space, . . . ), but for simplicity
of explanation, the two figures represent vcpu resources only.
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Fig. 4: Collision when increasing the capacities of a VM on a server with 4 cpus
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Fig. 5: Collision when increasing the length of a VM on a server with 4 cpus

Let the first case scenario illustrated in the Figure 4, be a
capacity collision, as the collision occurs inside the VM, and
changes the VM capacities; and the second case scenario be
a temporal collision, as the collision is external to the VM
and is due to a duration change on the VM. In the case of a
capacity collision, the function COLLISIONONVM returns the
exact location of the collision inside the VM (in the example,
the instant 4). In the case of an temporal collision, the whole
VM is considered and the function returns the location of the
collision at the node level (in the example, the instant 2). It
can be noted that the VM does not always provide a possible
location as they are constrained. If none of the currently
available VMs hold a valid location, a new empty VM is
considered (function EMPTYVM, called in Algorithm 4).
Panic mode - When required resources are available on
the infrastructure, the previous algorithm SCHEDULEWORK-
FLOWND detailed in the previous subsection performs the
scheduling of a workflow near its deadline. However, it may
happen that scheduling the workflow in time is impossible with
the avaible remaining resources. In that case the considered
workflow moves in panic mode, as presented in Algorithm 1.

The function REMOVEALLUNDER, is an important part of
NEARDEADLINE. Since there is no remaining resource to
schedule the workflow in time, resources must be released in
the current expected schedule to be able to find a suitable place



for the new workflow. The function REMOVEALLUNDER
explores all the nodes and removes all the non-running tasks
belonging to workflows that are less urgent than the new panic
workflow. The tasks that are currently running, though, are not
interrupted for energy and efficiency reasons. We are aware
that it can cause missed deadlines when dealing with long-term
tasks. However, it would not be difficult to add a system to
handle this case by computing the ratio between the remaining
execution time and the priority of the tasks, and it would be
a possible orientation for a future work. When the function
REMOVEALLUNDER ends, it may happen that some running
or booting VMs do not contain tasks any longer. In that case,
these VMs are killed, even if they have not been useful yet.

Finally, the function REMOVEALLUNDER returns two lists
of workflows, a list P ′ containing all the removed workflows
from the expected schedule that have already been scheduled in
panic mode, and the list Q′ containing all the other removed
partial workflows. It should be noted that those workflows
(for both P ′, and Q′) might be uncomplete, as the tasks that
are finished and the tasks that are currently running are not
rescheduled, or only a subset of the workflow is less urgent
than the panic workflow. That is to say, when the list Q is
refilled, some tasks have ancestor that are still in the expected
schedule, and therefore it explains why the value MES must
be computed in the function SCHEDULETASKONVMND.
Each workflow in the list P is then scheduled in best effort
mode, using the function SCHEDULETASKBESTEFFORT.

Algorithm 6 Single task scheduling in best effort on one VM

function SCHEDULETASKONVMBE(j, v, zero, len)
MES ← COMPUTEMINSTART(j, jpred)
bootT ime← ESv − EPv
nodeUsage← NODEUSAGEWITHOUTVM(vhost, v)
nodeCapas← NODECAPACITIES(vhost)
position← MAX(zero,MES)
while True do
loc← (position, position+ len)
over ← COLLISIONONVM(loc, v, nodeUsage, nodeCapas)
if over is None then

return loc
if ISTEMPORALCOLLISION(over) and (position+len) >= EEv then

return None
else
position← over − len

The function SCHEDULETASKBESTEFFORT is close to the
HEFT algorithm of the related work, but with three main
differences: (1) it is adapted to take into account virtual
resources; (2) it plans workflows one by one instead of mixing
all the tasks of all workflows and then executing the schedul-
ing; (3) it uses the fitness function ISBESTBE to choose
between multiple possible locations. The function SCHEDULE-
TASKONNODEBE, is used in SCHEDULETASKBESTEFFORT
to find a location on a node for a task.

The function SCHEDULETASKONNODEBE, is equivalent to
the function SCHEDULETASKONNODEND. There is only two
differences. First, instead of ISBESTND the fitness function
ISBESTBE is used, this function will be detailled in the
objectives subsection. The second difference is the call to the
function SCHEDULETASKONVMBE, instead of the function
SCHEDULETASKONVMND. This function retreives the first

location where the task can be placed without overcharging
the capacity of the VM. Unlike the function SCHEDULE-
TASKONVMND, for a task j ∈ J and a VM v ∈ V this
function minimizes the makespan (the minimal EEj), and
hence searches the location starting by the minimal ESj of
the task, defined in Equation (15). Algorithm 6 presents this
function.

MESj = max
∀s∈jpred

(EEs + ETTs,j) (15)

The function SCHEDULETASKONVMBE, in Algorithm 6,
stops its search when the VM is blocked and cannot grew in
length.

Objectives - In the last subsections, two fitness functions
ISBESTND and ISBESTBE were introduced. These two func-
tions are used to select one location between two possibili-
ties. The first function, ISBESTND, is used during the first
scheduling phase. This function chooses the closest location
to the deadline. We assume that, as we are considering the
execution time of the task in a pessimist way with the Gaussian
distribution, if the scheduling returns a location that is before
the deadline, the actual end time of the task will equally be
before the deadline. This function gives the priority to the
location that is the nearest to the deadline but before it.

The second function ISBESTBE, is the fitness function
used when dealing with best effort scheduling. Two different
versions of ISBESTBE are available. The first version gives
the priority to the VM that owns the greatest number of tasks.
The objective is to minimize the number of VMs created on
a node, in order to minimize the number of energy waste
occuring when a VM is booting. The second version of this
fitness function prioritizes location on a VM that optimizes the
most the ratio between length and height. The length of a VM
v ∈ V is EEv −EPv , and the height is the number of vcpus
it requires vvcpus. Equation (16) is used to compute the ratio.
In this second version of ISBESTBE, the location in the VM
with the highest ratio is selected. If two ratios are equivalent,
the earliest location is returned. The objective of this second
version is to remove a defect of the first version that can use a
single VM with only one vcpu when the load is busy and the
VMs very constrained. However, it has the tendency to create
more VMs, and therefore consumes more energy.

∀v ∈ V, ratiov =
vvcpus

EEv − EPv
(16)

As two versions of the fitness function ISBESTBE are
defined, it is possible to define two versions of the algo-
rithm NEARDEADLINE, the first one will be called simply
NEARDEADLINE, and the second one using the ratio fitness
function will be called NEARDEADLINERATIO.

V. EVALUATION

To compare the performances of the NEARDEADLINE
algorithm, we have conducted expriments on a real infras-
tructure. Those experiments were performed on the Seduce
platform [20], a scientific testbed integrated to Grid’5000, that



monitor the electrical consumption of the nodes described in
Table II. This evaluation section shows comparisons between
NEARDEADLINE, NEARDEADLINERATIO, HEFT [5], and
HEFT DEADLINE [9]. Both HEFT and HEFT DEADLINE
are presented in the Section II. As the algorithms proposing
online workflow scheduling with uncertainty in the state of the
art consider the Cloud resources as a black box handled by
a third party, they cannot be adapted in our context without
strong modifications. Consequently our evaluation does not
present experimental comparison with them.
Execution platform - For this evaluation, we implemented
a platform using the library Scala Akka. The architecture
of the plaform is modular and allows to indeferently choose
one scheduling algorithm or another. Therefore the algorithm
comparaisons can be performed in fair conditions.

The platform is based on a Master Worker architecture
with three modules: MASTER, SCHEDULER and WORKER.
Each node runs an instance of the WORKER daemon that
is responsible for the provisioning of VMs on the node,
and that answers simple orders such as starting a task on
a given VM, downloading a file from another node, etc.
The MASTER is in charge of applying the configurations
that are transmitted to it by the SCHEDULER. To do so the
MASTER sends orders to the WORKERS. The SCHEDULER is
the entry point of the platform, meaning that the users submit
new workflows to it. The SCHEDULER reconsiders its current
schedule and generates both a new expected schedule and
a new configuration. The VMs provisionned on each node
represent computing resources. Thus, they only access the
files of their user available on the node hosting them. File
transfers are performed at the node level instead of the the
VM level. This aims to enhance the overlapping between
computations and communications, and hence the efficiency
of the execution. The source code of the platform, the different
algorithms, and experimental results can be accessed on a
public git repository1.
Experimental workflows and performance metrics - We
evaluate the four algorithms by running the realistic workflow
Montage presented in [21] and depicted in Figure 6. This
workflow is a typical case-study used to evaluate scheduling
algorithms [7], [12]. It is a complex workflow that integrates
most of the workflow classes characterized by Bharati et al.
in [22]. The Montage workflow used in this evaluation is
composed of 31 tasks, and is successfuly executed on the
presented results i.e., returning a valid result a the end of each
execution.

Table I lists the different tasks of Montage, and presents
for each task its execution time (on an Ecotype node), its
amount of input data and the amount of data it creates. All the
VMs launched during the experiments use the Ubuntu 18.04
operating system, with the hypervizor KVM. The image is
replicated on each compute node. The properties µv,s and σv,s,
acquired by sampling are set to respectively 31 seconds, and
20 seconds. The certainty x presented in Section III, has been

1https://gitlab.inria.fr/ecadorel/workflowplatform
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Fig. 6: Montage workflow composed of 24 tasks

set to 0.7 for both VM and task execution times. This is the
value that gaves us the best results, being a good tradeoff
between too optimistic and too pessimistic uncertainty.

We have used 10 nodes of the Ecotype cluster of the ex-
perimental platform Grid’5000, presented in the Table II, with
one node dedicated to both the MASTER and the SCHEDULER
modules, and the others for instances of the WORKER module.

Name Quantity µ (s) σ (s) size (MB) input (MB) output (MB)
mProject 6 23 3 4.5 1.5 8
mDiffFit 3 2 1 18 16 1
mConcatFit 3 2 1 0.5 1 1
mBgModel 3 2 1 0.1 1 1
mBackground 6 2 1 4.4 8 8
mImgtbl 3 2 1 4.5 8 1
mAdd 3 2 1 8.8 16 1
mJPEG 4 2 1 5.1 1 1
Sum 31 37 10 169.5 187 114

TABLE I: Description of Montage tasks

The performance metrics are based on the objectives pre-
sented in the Section III. The first metric, named time vio-
lation, is the sum of violationw of Equation (8) for each
w ∈ W . The second metric, named nb succeed, is the number
of workflows that have successfuly been executed before their
deadline. The last metric, named power usage, is the power
consumption of the physical machines during a period of 350
seconds, divided by the maximal possible power consumption
during the same period of time. The period 350 seconds is
the maximal duration of the scenario in our evaluation. The
real power consumption of the nodes is retreived thanks to the
Seduce platform, which monitors the electrical consumption of
the nodes using Power Distribution Units (PDUs).

Scenari - Our evaluations are conducted on a multi-user
scenario where each user submits one workflow at a given
instant, with a given deadline. We have divided the workload
into two subsets, the workload that arrives at time 0, named
initial workload, and the workload composed of workflows
with random arrivals, named the interfering workload. A
scenario consists in five different variables, where four are
constants and the last one is the one that is evaluated in the
scenario. The five variables are defined as follows:
• nb init: the number of users submitting a workflow at

time 0;
• nb inter: the number of users submitting a workflow at

random times;
• dead init: the deadline of the workflows in the initial

workload;



Location Name Number of nodes CPU Memory Storage Network
Nantes ecotype 48 Intel Xeon E5-2630L v4 (Broadwell, 1.80GHz, 2 CPUs/server, 10 cores/CPU) 128 GiB 400 GB SSD 2 x 10 Gbps

TABLE II: Description of the servers of the real infrastructure used in the evaluation

• dead inter: the deadline of the workflows in the interfer-
ence workload;

• arrival: the arrival time of the workflows in the interfer-
ence workload.

The scenario (A), defined in Table III, aimed at showing the
impact of the variation of the deadline of the workflows in the
interfering workload, when each interfering workflow arrives
each 10 seconds from the instant 0. The second scenario (B)
makes the arrival of the interfering workflows vary, by making
them arrive all together at a given instant of the scenario.
The scenario (C) makes the number of interfering workflows
vary when they arrive each 10 seconds. The last scenario (D)
aimed at showing the impact when the deadline of the initial
workload varies.

Evaluation results - Figure 7 represents the power usage
metric for the execution of the different scenarios with the
different algorithms. The first observation that can be made,
is that our algorithm is always able to minimize the energy
consumption compared to HEFT. This is due to the dispersion
of the tasks among all the nodes. To prevent task dispersion,
HEFT DEADLINE, places the tasks on already used nodes
and therefore tries to consolidate before using a new node.
One can note that HEFT DEADLINE is sometimes better
than NEARDEADLINE for minimizing energy consumption,
as for the scenario (A) for instance. In this scenario, both
NEARDEADLINE and NEARDEADLINERATIO reconsider the
expected schedule, kill VMs and launched new ones, and
therefore consume more energy, when HEFT DEADLINE
will not change anything. However, NEARDEADLINE and
NEARDEADLINERATIO are far better than HEFT DEADLINE
in optimizing the user fairness, as it can be seen in the
Figure 8 and 9, that respectively shows the time violation and
nb succeed metrics. Figure 8 illustrates that NEARDEADLINE
and NEARDEADLINERATIO are able to adapt their expected
schedule to the submission of new workflows at differents ar-
rivals. In the scenario (A), both HEFT and HEFT DEADLINE
place the new workflows at the end of their expected sched-
ule, and therefore, the more the deadlines of the interfering
workflows are tight, the more the time violation will be high.
For NEARDEADLINE and NEARDEADLINERATIO, however,
this basically does not have any significant impact. The
time violation for HEFT and HEFT DEADLINE are always
correlated to the fact that they do not reconsider the previous
expected schedule in every scenario. The scenario (D) aimed at
showing the impact of the variation of dead init. In the fourth
variation, for the value 150, no algorithm is able to guarantee
the deadline for the initial workload, but there is propably
no solution to successfuly perfom this execution in time. In
addition, NEARDEADLINE and NEARDEADLINERATIO are
still able to overcome HEFT and HEFT DEADLINE in both
energy and user fairness objectives.
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Fig. 7: Power usage of the different scenario executions
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Fig. 8: Time violation of the different scenario executions

The scheduling algorithm is launched in parallel to the
workflow execution, and is therefore difficult to evaluate. But
one can note that the solving time of NEARDEADLINE and
NEARDEADLINERATIO is necessarily small enough for the
algorithm to give a expected schedule that maximize the user
fairness in most case.

VI. CONCLUSION

This paper tackles the problem of scheduling workflows
of multiple users with random arrivals and uncertain task
execution times, while minimizing the energy consumption
of the Cloud infrastructure and maximizing the user fairness.



scenario nb init nb inter dead init (s) dead inter (s) arrival (s)
A 50 15 300 {250, 200, 150, 100} each 10
B 50 15 300 200 {at 0, at 10, at 50, at 150 }
C 50 {5, 10, 15, 20 } 300 200 each 10
D 50 15 { 300, 250, 200, 150 } 200 each 10

TABLE III: Description of the different scenari
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Fig. 9: The number of successful execution under deadline

The NEARDEADLINE algorithm has been presented as a
solution to this problem. The NEARDEADLINE algorithm
adds deadlines to the workflows chosen by users. These
deadlines offer an opportunity to make a smart usage of
the infrastructure at disposal while respecting the user initial
wishes. The NEARDEADLINE algorithm has been compared
to HEFT and HEFT DEADLINE, on real experiments on a
real infrastructure. Experiments have shown real benefits in
the reduction of both deadline violation and energy consump-
tion. In future work we plan to take a more complicated
infrastructure into account, by considering multiple clusters
and heterogeneous network. Furthermore, an economic model
should be combined to the deadline mechanism such that
energy savings acheived through user flexibility are rewarded.
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