
HAL Id: hal-02551210
https://hal.science/hal-02551210v2

Preprint submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MATHEMATICAL MODELS OF CONFINEMENT
AND DECONFINEMENT

Satyanad Kichenassamy

To cite this version:
Satyanad Kichenassamy. MATHEMATICAL MODELS OF CONFINEMENT AND DECONFINE-
MENT. 2020. �hal-02551210v2�

https://hal.science/hal-02551210v2
https://hal.archives-ouvertes.fr


MATHEMATICAL MODELS OF CONFINEMENT AND

DECONFINEMENT

SATYANAD KICHENASSAMY

Abstract. We propose a class of confinement and deconfinement strategies based
on new space-extended SIR models that model confinement of part of the popula-
tion as well as their partial mobility. Our model differs from earlier ones by the
introduction of a term reflecting government-induced restrictions on travel between
regions. It is shown that a deconfinement procedure that preferentially allows com-
munication between regions with a similar infection rate can stall the growth of
the epidemic in the less infected regions, while avoiding complete lockdown. We
also propose to introduce a new set of compartments for confined susceptibles and
infectives. The model is compared to exisiting models.

Background. Mobility in SIR models has so far only taken into account the struc-
tural factors and behavior patterns that limit or encourage mobility, but not the
possibility of nationwide government action based on a real-time estimation of the
sanitary situation in individual regions.

Method. We modify a space-extended SIR model by the introduction of a limita-
tion on travel between regions in which the sanitary situation is significantly different.
Compartments represent urban centers, connected to others by rail, air or highways.
We also include new compartments for partially confined individuals, whether infec-
tives or not. Mobility may take into account region attractivity, government action,
and citizens’ rational decisions in response to them.

Findings. The proposed modification prevents all regions from reaching their peak at
the same time, while allowing some communication between them. It seems realistic
to implement a deconfinement policy in which the interregional restrictions would be
based on the relative difference in infection rates rather than the absolute infection
rate of a region, or on interregional distance.

Recommendations. During deconfinement, travel restrictions should be based on
the difference of the epidemic level between regions, rather than distance, or the
absolute epidemic level. For instance, if the regions of the country are classified
as ”red” or ”green” zones, there should be fewer restrictions for travel between red
regions that between red and green regions.
Keywords: Covid-19, SARS-Cov-2, SIR model, confinement and deconfinement,
lockdown.

1. Introduction

Confinement measures have stalled the Covid-19 epidemic, but did not quell it. It
is therefore necessary to devise a procedure for deconfinement that limits the number
of new cases it will necessarily induce. We propose a strategy that, in a somewhat
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counter-intuitive fashion, both allows a measure of population mobility and prevents
all regions from reaching a peak of infection at the same time.

The compartmental approach has been used for about a century for modeling epi-
demics, and has been adapted to the recent situation. Its space-extended versions are
appropriate in countries in which mobility mostly consists of travel between urban
centers (called “regions” in the sequel), through public transportation or highways.
We introduce here two new elements. This proposal takes stock of the current con-
sensus in epidemiology, and seeks to introduce spatial variation without losing the
advantages of the compartmental approach. Indeed, the SIR model and its variants,1

by summarizing spatial interaction in the mass-action term, can only be modified into
a space-dependent setup in two ways: by modifying the mechanism of interaction,
and by introducing different compartments for different regions. It follows from a
recent survey of spatially-extended TSIR models (Bjørnstad, Grenfell, Viboud and
King, 2019) that all earlier approaches amount to replacing terms of the form βSI/N
in the usual equations by βS(I + ι)/N ,2 where ι depends on the model. We propose
here to incorporate into ι a factor representing government-imposed restrictions on
travel between regions, on top of a model for population mobility and show its effect
on a example. For other metapopulation approaches, see e.g. [6, 1], and their refer-
ences. It seems that none of these approaches has incorporated governement-imposed
restrictions on mobility that depend on the infection levels in the various regions.
Indeed, the possibility of dynamically controlling the means of transmission of the
epidemic by government action, on the basis of a real-time estimation of metapopu-
lations through tracking and testing, is an unprecedented development, that makes
the deconfinement strategy proposed here realistic.

In this paper, confinement and deconfinement are modeled at two levels. At the
inter-regional level, we propose to limit the allowed flux of population in terms of
the gradient of a measure of the sanitary situation of the individual regions, and
obtain easily implementable, government-induced restrictions on travel that propose
a compromise between mobility and safety. While many works have proposed models
of population movement during the spread of an epidemic, it seems that none have
incorporated the effect of such nationwide measures, that are indeed unprecedented.
We show on examples that this has the effect of preventing less-infected regions from
reaching a peak at the same time as the others. In some cases, a plateau rather
than a peak is observed. Note that nation-wide measures not only affect the physical
possibilities for travel, but also modifies the actors’ rational choices by providing
public information about the epidemic in real time. At the intra-regional level, the
effects of confinement measures are modeled by the time variation of the reproduction
rate. Our second new element is the introduction of subcompartments within the
compartments of susceptible and infective, that seem to represent more faithfully
than other models the actual situation of lockdown.

Regarding the choice of the movement model, it seems that a “simple-trip” model
with a well-defined home location (as in Citron et al., 2020) reflects the situation
in France. That is why we did not allow for migration (for extended holidays for
instance). The implicit assumption that the infectious periods are exponentially dis-
tributed could be removed by introducing further compartments, as was shown by
Keeling and Grenfell (2001) and Lloyd (2002).

1Kermack and McKendrick (1927). Since we are dealing with short periods, we neglect births.
Age-related transmission could be also included in the obvious manner.

2Or more generally, βS(I + ι)α/N . The extension of our considerations to this case is immediate.
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1.1. New elements in our model. In (Bjørnstad et al., 2019), the number Ij of
infectious persons in region Aj that occurs in the “mass-action” terms is replaced by
an expression of the form Ij + ιj where ιj =

∑
i 6=j ψij(Ik)Ii. We modify it by taking

ιj =
∑

i 6=j mij(t)ψij(Ik)(1+ [Ii/Ni− Ij/Nj]
2/K2)−1. For earlier models, see Bjørnstad

et al. (2019), or Arenas et al. (2020) [1] and their references.
We construct our models by successive generalizations, starting from a standard

SIR model, spelling out the meaning of the assumptions introduced at each step. We
first deal with the gradual reinstatement of communication between regions, and then
deal with the issue of intraregional deconfinement by introducing subcompartments
to deal with confined classes3. Other recent proposals include (Wu et al. (2020) and
Sardar (2020) and Nadim et al. (2020); the latter propose seven compartments (sus-
ceptibles, exposed, quarantined, asymptomatic, symptomatic, isolated and recovered
individuals) see . By contrast, in the present model, confined individuals are not quar-
antined, and could be susceptible as well as infective (or recovered). Our proposal
represents more faithfully the current situation, by the structure of its compartments,
and also by recognizing the nonzero mobility of confined classes.

1.2. Possible extensions and variants. On the relation between deterministic and
probabilistic compartmental models, see e.g. Keeling and Ross (2007). For the esti-
mation of the reproduction rate in various mobility models, see [2].

In a different direction, one could include a finer game-theoretic analysis of social
distancing [3], that takes into account the cost of infection for the individual, this
cost being modeled as an increasing function of the current infection rate. This
would amount to introducing a dependence on Ij in some of the β coefficients. The
present model could be modified along these lines.

We assume that the effect of intra-regional confinement is the reducion of the
effective value βi of β in each region, by decreasing the possibility of contact between
susceptibles and infectives. Another approach is to consider that confinement reduces
the number of susceptibles, while keeping β constant, by assuming that the population
of susceptibles and asymptomatic infectives are depleted at a constant rate, at the
expense of a quarantined compartment (Maier and Brockmann, 2020). However, their
paper deals with the early phase of the epidemic. By contrast, we are interested here
in the deconfinement period, to that the assumption of constant-rate depletion does
not seem appropriate.

2. Communication between regions

2.1. A model for each region. Consider first a spatially extended SIR model with
several regions Ai, in which there are Si susceptibles, Ii infectives and Ri recovered.
With obvious notation, if there is no interaction between regions, the unknowns satisfy
(primes denote time derivatives)

S ′
i = −βiSiIi/Ni(1)

I ′i = βiSiIi/Ni − (γ + d)Ii(2)

R′
i = γIi.(3)

3With sufficient computing power, it would be possible to subsume the second issue under the
first, treating each home as a different “region,” but this would require to take into account the
qualitative differences between communication between urban centers and communication within a
city.
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The coefficients βi could depend on time. Indeed, if confinement is successful, we
expect R0i := βi/γ to decrease. Here, we have assumed that the recovery rate and
the death rate are the same for all regions – which is reasonable if the health system
is the same throughout the country.

2.2. Introduction of communication between regions: Models A and B.

Let us now assume that the susceptibles can be infected by contact with infectious
individuals from other regions:

S ′
i = −βiSi (Ii + ιi) /Ni(4)

I ′i = βiSi (Ii + ιi) /Ni − (γ + d)Ii(5)

R′
i = γIi,(6)

with

ιi =
∑

j 6=i

MijIj ,(7)

Mij =
mijϕij

1 +D2

ij/K
2
,(8)

Dij = Ii/Ni − Ij/Nj,(9)

where the parameters mij and K define the deconfinement strategy, and Ni is the
total population of region Ai, while ϕij represent the fraction of the infectives in
region Aj that could enter in contact with susceptibles in Ai, because of commuting,
or family or shopping trips. Thus, mij and K represent government action, based
on a detailed knowledge of the situation in all regions, while ϕij models the mobility
that individuals would have under normal circumstances. This model is therefore
well-adapted to a gradual deconfinement situation. Assumptions are as follows:

• individuals try and return to their normal mobility patterns, based only on
local knowledge of the situation, and the synthetic information provided by
the media;

• government action acts the basis of global information, directly on mij and K
through restrictions on interregional travel, and indirectly on the βi through
more or less stringent confinement rules within each region.

It follows that government action has three different dimensions: it reduces inter-
regional travel, it reduces intra-regional mobility and it acts on peoples’ judgement
by making information publicly available.

Note that 0 ≤ Mij ≤ mijϕij, and that the second inequality becomes an equality
when the infection rates in the two regions are equal. Limiting cases are as follows.

• If K is very large, the Mij are very close to mijϕij . If in addition all the
mij = 1, the Si susceptibles interact with all the infected as they used to in
pre-epidemic conditions. This represents the stage of full deconfinement.

• If on the contrary all the mij = 0, the value of K becomes irrelevant, and in
this situation, all regions boundaries are closed.

• To encourage communication between Ai and Aj is to make Mij closer to ϕij ,
by increasing mij or K.

• A larger value of K means that the mobility is less dependent on the infection
levels of the regions. Conversely, a very small K means that the model is very
sensitive to differences in infection levels.
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The restriction on inter-regional travel depends on a measure Dij of the difference in
the sanitary situation in the two regions involved. We have taken Dij to depend on
the infection levels. It would be possible to include a more complex indicator that
takes into account the number of available intensive care units (ICU) in the target
regions.4

We propose two possible methods for the choice of ϕij — the fraction of infectives
in one region that can interact with susceptibles of the other: either by estimating
them on the basis of normal behavior patterns, or on the basis of subjective reactions
to information about this exceptional situation, that is broadcast by the government.
We distinguish two approaches.

In Model A, we take for ϕij = ϕA
ij the value of ιij given by one of the models

described by Brønstad et al.. As they explain, there seem to be two main strategies
for modeling mobility in the absence of disease: the “gravity” model, and variants of
Stouffer’s model. In the former, the attractivity of travel from region Ai to region
Aj is inversely proportional to some power of the distance dij between them, hence
the name. In the latter, regions Ak that are closer to Ai than to Aj are taken into
account, considering that they provide “opportunities” that compete with Aj for
preferential travel to it. Both models include a multiplicative parameter θ (or two
parameters θ and φ, see [4]). Our proposal to replace ϕij by Mij amounts to making
these parameters depend on the difference between the infection levels in the two
regions involved.

A slightly more detailed analysis of the infection process (Pei and Shaman (2020))
distinguishes between daytime and nighttime transmission.

Model B assumes that individuals modify their normal behavior patterns by exer-
cising their judgement, on the basis of public information. We therefore propose to
let ϕij = ϕB

ij , where ϕ
B
ij represents the mobility that a typical individual in Aj might

consider rational given the current information about the level of infection and the
possible saturation of the ICU. This decision in turn also depends on government-
controlled information. For instance, assume that there are Bav

j available ICU units
out of a total of Bj in region Aj, and that a typical citizen is aware of this. Obviously,
if Bav

j = Bj , a rational actor would be reluctant to travel to region Aj. Therefore,
the coefficient representing the tendency to move from Aj to Ai would have the form
ϕB
ij = S(Bav

j /Bj − Bav
i /Bi) where S is a nonnegative sigmoid function on [−1, 1].

Thus, travelers would be reluctant to travel if Bav
j /Bj ≪ Bav

i /Bi.
Hybrid models combining features of Model A and Model B are also possible.

2.3. An example. As a simple illustration that the suggested mechanism actually
has the expected consequences, let us consider the case of three regions A1, A2 and
A3, in which the rates of infection are initially 20%, 2% and 10% respectively. We
take γ = 1, d = 0.1; β is the same in all three regions, and varies with the simulation.
We assume that regions A2 and A3 interact only with A1 (m23 = 0).

All figures describe the time evolution of the proportions of infected patients Ii/Ni

for various choices of parameters. in Figures 1-5, β = 3; in Fig. 6, β = 1.6; in Fig. 7,
β = t

8
×0.6+(1− t

8
)×1.6 (t ∈ [0, 8]) and in Fig. 7, β = t

8
×0.8+(1− t

8
)×3 (t ∈ [0, 8]).

Figure 1 describes the situation where the regions are disconnected. There are
three distinct infection peaks, reflecting the differences in initial infection levels.

4For instance, Dij = |Ii/Ni − Ij/Nj |+ α(Li)+, where Lj is the number of available ICU units in
region Aj , and α is decreasing. Thus, the smaller the value of Li, the stronger restriction on travel
into Ai. Another implementation of the same idea is proposed in Model B below.
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Figure 1. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
with confined regions (m12 = m13 = 0).
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Figure 2. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
with strong interaction between regions and no flux limitation (m12 =
m13 = 1, K = 1000).

Figure 2 describes the opposite situation, when all regions are allowed to interact
freely. All three populations now exhibit much closer peaks. Even though A2 and A3

interact only through A1, the evolution is almost identical in all three regions except
for small times.

Figure 3 shows the result of favoring exchanges between A1 and A3, that are much
more infected initially than A2 (m12 = 0.3, m13 = 1). In this case, by taking K
relatively large (K = 3), one also takes to some extent account their differences in
infection as the epidemic progresses. The peaks are not as clustered, but are still
close.

Figure 4 shows the result of favoring exchanges between A1 and A3 as before,
(m12 = 0.3,m13 = 1), but giving now greater importance to the differences in infection
levels (K = 0.3). The peaks are more separated.

Figure 4 shows the result of favoring exchanges between A1 and A3, with the
same values of the mij (m12 = 0.3, m13 = 1), but giving greater importance to the
differences in infection levels (K = 0.3). The infection peaks are more separated.
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Figure 3. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
favoring exchanges between regions with similar levels of infection ini-
tially (m12 = 0.3, m13 = 1), with slight flux limitation (K = 3).
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Figure 4. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
favoring exchanges between regions with similar levels of infection ini-
tially (m12 = 0.3, m13 = 1), with significant flux limitation (K = 0.3).

Figure 5 shows that, with the same values of mij but with a much larger effect of
infection differences (K = 0.0003), the result is similar to the fully confined situation.

Figure 6 assumes β = 1.6, γ = 1, m12 = m13 = 1 and K = 1000 and K = 0.03
respectively. The separation of peaks is again apparent. In addition, a plateau
formation is seen.

Figures 7 and 8 consider the effet of deconfinement through the linear increase of β.
In Figure 7, β increases from 0.6 to 1.6, so that the reproduction had been significantly
reduced by confinement, and does not increase very rapidly. The cases K = 1000 and
K = 0.003 are presented. It is apparent that the introduction of restrictions on travel
prevents weakens the “second wave” of infection after deconfinement, and separates
the peaks.

In Figure 8, β increases from 0.8 to 3, so that the reproduction rate had only
barely been pushed below 1 by confinement, and increases to higher values upon
deconfinement. Even so, our method prevents the formation of a secondary wave
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Figure 5. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
favoring exchanges between regions with similar levels of infection ini-
tially (m12 = 0.3, m13 = 1), with significant flux limitation (K =
0.0003).

immediately upon deconfinement. The peaks are considerably weaker with a small
value of K.

We have discussed deconfinement strategies at the region level. Now, the SIR
model does not distinguish, within a given region, infected individuals in or out of
quarantine, nor susceptibles that are confined at home, as opposed to those that may
move more freely (such as health workers for example). These are handled next, by
introducing new compartments within regions.

3. Introduction of further compartment for confined classes

We introduce a slightly more elaborate model, involving quarantine as well as
confined compartments. It is relevant for full confinement, or partial intra-regional
deconfinement. It differs from earlier models by the splitting of the susceptible and
infected classes into confined and unconfined ones, and by allowing a small, nonzero
mobility to the confined classes, in accordance with what has been observed in recent
weeks.

3.1. Class IQ. We first write Ii = Fi + Qi, distinguishing ‘free’ and ‘quarantined’
infectives. For simplicity, we did not distinguish exposed and symptomatic carriers;
they are both treated as infected. We also assume that, even in times of confinement,
there are unconfined classes, associated with food supplies or health workers.

We therefore need to distinguish subcompartments of confined and unconfined in-
dividuals, for each of the compartments except Q. Even F individuals can be confined
(they cannot be distinguished from the S before testing). The confined individuals
are characterized by having a much lower value of β (ideally zero, but this is not
realistic). The confined are not quarantined, and may meet infectives while shopping
etc. Let us write Si = Sic + Siu, Fi = Fic + Fiu, Ri = Ric +Riu, and Ii = Fi +Qi.
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Figure 6. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
with β = 1.6, γ = 1, m12 = m13 = 1, K = 1000 (top) and K = 0.03
(bottom).

The introduction of mobility is very simple at this point: susceptibles in region
Ai may not only meet the Fiu free infectives from their region, but also some from
other regions Aj. Since the latter are not confined (since they can travel), it suffices
to introduce terms of the form ιi corresponding to the modified space-extended SIR
model A or B discussed above, as follows. We also allow the susceptible to interact
weakly with the confined infectives. The resulting equations are given next, and the
new parameters it involves are discussed afterwards.

S ′
iu = −βiSiu(Fiu + ιi)/Ni − βcSiuFic/Ni(10)

S ′
ic = −βcSic(Fiu + ιi)/Ni − σcSic(11)

F ′
iu = βcSiu(Fiu + ιi)/Ni + βcSiuFic/Ni − µiFiu(12)

F ′
ic = βcSic(Fiu + ιi)/Ni − µiFic + σcFic(13)

Q′
i = µiFi − (γ + d)Qi(14)

R′
iu = γIiu,(15)

R′
ic = γIic.(16)

This relies on the following additional hypotheses
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Figure 7. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
with β increasing from 0.6 to 1.6, γ = 1, m12 = m13 = 1, K = 1000
(top) and K = 0.0003 (bottom). The peaks in the bottom figure are
weaker and remain apart.

(1) the unconfined susceptibles are mostly infected by asymptomatic carriers F
from their own region and by infectives from other regions, but also through
imperfect confinement (βc ≪ βi, assumed independent of i);

(2) the quarantined do not contribute to the spreading of the disease;
(3) the confined susceptibles are infected not only by unconfined individuals, but

also by the infectives confined with them, the latter effect being globally rep-
resented by the coefficient σc.

(4) the possibility that a confined person might infect another that is also confined,
but in a different apartment or house, is neglected;

(5) the death rate of the F is neglected; so are deaths from other causes;
(6) free infected individuals develop symptoms at a constant rate µi (the subscript

i leaves room for the possibility that the incubation period might depend on
the environment in Ai, such as the average number of occupants in confined
accomodation);

(7) all infected patients with symptoms are in quarantine (at home or in a hospi-
tal);

(8) births are neglected;
(9) there is no net population flux from one region to the other
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Figure 8. Infection levels in regions 1 (blue), 2 (red) and 3 (yellow),
with β increasing from 0.6 to 1.6, γ = 1, m12 = m13 = 1, K = 1000
(top) and K = 0.003 (bottom). One observes delayed, weak secondary
peaks in the bottom picture

4. Conclusion

We have proposed a modified space-extended SIR model containing restrictions on
travel between regions, that favors communication between regions with a similar
level of infection. We have proposed a model for confinement and deconfinement
on this basis, in which public policies act by modifying the time dependence of the
parameters in the model, representing new regulations as well as citizens’ rational
response to them.

Deconfinement amounts (i) to increasing in each region the value of βc for the
confined categories, representing the relaxing of lockdown within regions; (ii) increas-
ing the parameters m and K representing selective restrictions on travel and (iii)
restoring the terms ιi representing allowed inter-regional travel or commuting to their
pre-epidemic values by restoring the citizens’ confidence that travel is safe. Confine-
ment is the modification of the parameters in the opposite direction.

We have shown on examples that this model allows for communication between
regions while avoiding that all regions should reach their peak at the same time, and
may weaken significantly the secondary wave of infection consecutive to deconfine-
ment.
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It appears that the models proposed here are consistent with the current concepts
in use in epidemiology, that should only be modified with care, since they are the
outcome of the comparison of theory and observations for over a century (Serfling
(1952), Hethcote (2000)). The class of models in this paper enables one to plan
a progressive deconfinement, that can be controlled in real time according to the
evolution of the disease, while avoiding excessive restrictions on citizens’ freedom.
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Matamalas, David Soriano and Benjamin Steinegger,“A mathematical model for the spatiotem-
poral epidemic spreading of COVID19,” https://www.medrxiv.org/content/10.1101/2020.

03.21.20040022v1.full.pdf
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