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MATHEMATICAL MODELS OF CONFINEMENT AND

DECONFINEMENT

SATYANAD KICHENASSAMY

Abstract. We introduce modifications of space-extended SIR mod-
els by taking into account confinement of part of the population
as well as their partial mobility. We introduce distinct compart-
ments for major regions of the country, and for confined classes
within each region. It is shown that a deconfinement procedure
that depends on the infection levels of different regions can stall
the growth of the epidemic in the less infected regions while avoid-
ing complete lockdown. Deconfinement may therefore be achieved
without saturation of the health system.

Keywords: Covid-19, SARS-Cov-2, SIR model, confinement and de-
confinement, lockdown.

1. Introduction

Confinement measures have stalled the Covid-19 epidemic, but did
not quell it. It is therefore necessary to devise a procedure for decon-
finement that limits the number of new cases it will necessarily induce.
We propose a strategy that, in a somewhat counter-intuitive fashion,
both allows a measure of population mobility and prevents all regions
from reaching a peak of infection at the same time. The main idea
is to limit the allowed flux of population in terms of the gradient of
infection.

This proposal takes stock of the current consensus in epidemiology,
and seeks to introduce spatial variation without losing the advantages
of the compartmental approach. Indeed, the SIR model and its vari-
ants, by summarizing spatial interaction in the mass-action term, can
only be modified into a space-dependent setup in two ways: by modi-
fying the mechanism of interaction, and by introducing different com-
partments for different regions. Since we are dealing with short periods,
we neglect births. Age-related transmission could be included in the
obvious manner. It follows from a recent survey of spatially-extended
TSIR models (Bjørnstad, Grenfell, Viboud and King, 2019) that all
earlier approaches amount to replacing terms of the form βSI/N in
the usual equations by βS(I + ι)/N ,1 where ι depends on the model.

1Or more generally, βS(I + ι)α/N . The extension of our considerations to this
case is immediate.
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We propose here a particular form of ι, and show its relevance on a
example.

The implicit assumption that the infectious periods are exponentially
distributed could be removed by introducing further compartments, as
was shown by Keeling and Grenfell (2001) and Lloyd (2002), but we
do not consider this straightforward extension here.

We construct our models by successive generalizations, starting from
a standard SIR model, spelling out the meaning of the assumptions
introduced at each step. We first deal with the gradual reinstatement
of communication between regions, and then deal in the third section
with the issue of intraregional deconfinement2. The conclusions of the
paper are then summarized.

2. Communication between regions

2.1. A model for each region. Consider first a spatially extended
SIR model with independent regions Ai, in which there are Si suscep-
tibles, Ii infectious and Ri recovered. With obvious notation, if there
is no interaction between regions, the unknowns satisfy (primes denote
time derivatives)

S ′
i = −βiSiIi/Ni(1)

I ′i = βiSiIi/Ni − (γ + d)Ii(2)

R′
i = γIi.(3)

The coefficients βi could depend on time. Indeed, if confinement is
successful, we expect R0i := βi/γ to decrease. Here, we have assumed
that the recovery rate and the death rate are the same for all regions
– which is reasonable if the health system is the same throughout the
country. The introduction of further compartments within regions will
be performed in the next section.

2.2. Introduction of communication between regions. Let us
now assume that the susceptibles can be infected by contact with in-
fectious individuals from other regions:

S ′
i = −βiSi

(

Ii +
∑

j 6=i

ιij

)

/Ni(4)

I ′i = βiSi

(

Ii +
∑

j 6=i

ιij

)

/Ni − (γ + d)Ii(5)

R′
i = γIi,(6)

2With sufficient computing power, it would be possible to subsume the second
issue under the first, treating each home as a different “region,” but this would
not necessarily be appropriate, since communication between urban centers differs
qualitatively from communication within a city.
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with

ιij =
∑

j 6=i

MijIj ,(7)

Mij =
mij

(1 + [Ii/Ni − Ij/Nj]2/K2)
,(8)

where the parameters mij and K define the deconfinement strategy,
and Ni is the total population of region Ai. Note that 0 ≤ Mij ≤ mij ,
and that the second inequality becomes an equality when the infection
rates in the two regions are equal.

Special cases include the following.

• If K is very large, the Mij are very close to the mij . If in
addition all the mij = 1, the Si susceptibles interact with all
the infected. This represents the stage of full deconfinement.

• If on the contrary all the mij = 0, the value of K becomes irrel-
evant, and in this situation, all regions boundaries are closed.

• To encourage communication between Ai and Aj is to make Mij

closer to 1, by increasing mij or K.
• A larger value of K means that the mobility is less dependent
on the infection levels of the regions. Conversely, a very small K
means that the model is very sensitive to differences in infection
levels.

2.3. An example. As a simple illustration that the suggested mecha-
nism actually has the expected consequences, let us consider the case of
three regions A1, A2 and A3, in which the rates of infection are initially
20%, 2% and 10% respectively. We take β = 3, γ = 1 (hence R0 = 3),
d = 0.1. We assume that region A1 interact only with A1 (m23 = 0).

All figures describe the time evolution of the proportions of infected
patients Ii/Ni for various choices of parameters.

Figure 1 describes the situation where the regions are disconnected.
There are three distinct infection peaks, reflecting the differences in
initial infection levels.

Figure 2 describes the opposite situation, when all regions are allowed
to interact freely. All three populations now exhibit much closer peaks.
Even though A2 and A3 interact only through A1, the evolution is
almost identical in all three regions except for small times.

Figure 3 shows the result of favoring exchanges between A1 and A3,
that are much more infected initially than A2 (m12 = 0.3, m13 = 1). In
this case, by taking K relatively large (K = 3), one also takes to some
extent account their differences in infection as the epidemic progresses.
The peaks are not as clustered, but are still close.

Figure 4 shows the result of favoring exchanges between A1 and A3

as before, (m12 = 0.3, m13 = 1), but giving now greater importance
to the differences in infection levels (K = 0.3). The peaks are more
separated.
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Figure 1. Infection levels in regions 1 (blue), 2 (red)
and 3 (yellow), with confined regions (m12 = m13 = 0).
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Figure 2. Infection levels in regions 1 (blue), 2 (red)
and 3 (yellow), with strong interaction between regions
and no flux limitation (m12 = m13 = 1, K = 1000).

Figure 4 shows the result of favoring exchanges between A1 and A3,
with the same values of the mij (m12 = 0.3, m13 = 1), but giving
greater importance to the differences in infection levels (K = 0.3).
The infection peaks are more separated.
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Figure 3. Infection levels in regions 1 (blue), 2 (red)
and 3 (yellow), favoring exchanges between regions with
similar levels of infection initially (m12 = 0.3, m13 = 1),
with slight flux limitation (K = 3).
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Figure 4. Infection levels in regions 1 (blue), 2 (red)
and 3 (yellow), favoring exchanges between regions with
similar levels of infection initially (m12 = 0.3, m13 = 1),
with significant flux limitation (K = 0.3).
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Figure 5. Infection levels in regions 1 (blue), 2 (red)
and 3 (yellow), favoring exchanges between regions with
similar levels of infection initially (m12 = 0.3, m13 = 1),
with significant flux limitation (K = 0.0003).

Figure 5 shows that, with the same values of mij but with a much
larger effect of infection differences (K = 0.0003), the result is similar
to the fully confined situation.

Figure 6 assumes β = 1.6, γ = 1, m12 = m13 = 1 and K = 1000 and
K = 0.03 respectively. The separation of peaks is again apparent. In
addition, a plateau formation is seen.

We have discussed deconfinement strategies at the region level. Now,
the SIR model does not distinguish, within a given region, infected
individuals in or out of quarantine, nor susceptibles that are confined
at home, as opposed to those that may move more freely (such as
health workers for example). These may be handled in a fairly simple
manner, by introducing new compartments within regions, and will be
discussed elsewhere.

3. Conclusion

We have proposed a modified space-extended SIR model containing
restrictions on travel between regions, that favors communication be-
tween regions with a similar level of infection. We have proposed a
model for confinement and deconfinement on this basis, in which pub-
lic policies act by modifying the time dependence of the parameters in
the model. We have shown on an example that this model allows for
communication between regions while avoiding that all regions reach
their peak at the same time.
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Figure 6. Infection levels in regions 1 (blue), 2 (red)
and 3 (yellow), with β = 1.6, γ = 1, m12 = m13 = 1,
K = 1000 (top) and K = 0.03 (bottom).

It appears that these models are a natural extension of recently pro-
posed models, and are consistent with the current concepts in use in
epidemiology, that should only be modified with care, since they are
the outcome of the comparison of theory and observations for over a
century (Serfling (1952), Hethcote (2000)). The class of models in this
paper enables one to plan a progressive deconfinement, that can be
controlled in real time according to the evolution of the disease, while
avoiding excessive restrictions on citizens’ freedom.
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[2] M. Choisy, J.-F. Guégan,2 and P. Rohani, “Mathematical Modeling of In-
fectious Diseases Dynamics,” Chapter 22 of the Encyclopedia of Infectious
Diseases: Modern Methodologies, (M.Tibayrenc, ed.), Wiley, 2007.

[3] Herbert W. Hethcote, “The Mathematics of Infectious Diseases,” SlAM Re-
view, 42 : 4 (2000), 599-653.

[4] Matt J. Keeling and Bryan T. Grenfell, “Understanding the persistence of
measles: reconciling theory, simulation and observation,” Proc. of the Royal
Society of London, B (2002) 269, 335343.

[5] Alun L. Lloyd, “Destabilization of epidemic models with the inclusion of real-
istic distributions of infectious periods,” Proc. of the Royal Society of London,
B (2001) 268, 985-993.

[6] Robert E. Serfling, “Historical review of epidemic theory,” Human Biology,
Vol. 24, No. 3 (September, 1952), pp. 145-166
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