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Biophysical parameters and more specifically the leaf area index provide an abso-20

lute quantification of the biomass of vegetation allowing an overview of the devel-21

opment status of a plant. However, the estimation of the leaf area index requires22

sophisticated and complex algorithms. This paper proposes a new procedure to23

estimate the leaf area index using Sentinel-2 data. The proposed procedure relies24

on the 2-D convolutional network known as the UNet algorithm for regression.25

The architecture of the UNet algorithm is adapted to account for the processing of26

large chunks of Sentinel-2 data. Moreover, the adopted procedure makes use of the27

dropout as a Bayesian approximation at the inference step in order to allow estimat-28

ing the algorithm confidence interval, which is a very important quality indicator29

for the production of biophysical parameters. The proposed procedure is validated30

on multiple Sentinel-2 tiles and years and compared to the multilayer perceptron31

algorithm and the Sentinel Application Platform of the European Space Agency,32

also known as SNAP. The UNet and multilayer perceptron algorithms provide co-33

herent results when compared to the results obtained using the SNAP software with34

an average correlation of 0.99 for both algorithms. However, the UNet algorithm35

provides better results in terms of average Euclidean distance, mean squared error36

and R2 score. One main advantage of the UNet algorithm is the vast reduction of37

inference time when compared to the SNAP software and the multilayer perceptron38
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regressor. The estimation of the leaf area index of a Sentinel-2 tile at 20 m requires39

18 seconds, 13.5 minutes and 15 minutes using the UNet, multilayer perceptron40

and SNAP, respectively. This advantage allows a massive production of temporal41

sequences of leaf area index based on Sentinel-2 images that will be ready to use42

for land cover/use applications. Furthermore, experiments conducted on multiple43

crop types prove that the proposed approach can serve as a generic procedure to44

estimate the leaf area index regardless of the crop type.45

46

1. Introduction47

Biophysical parameters derived from remote sensing images have well defined signature depen-48

dent on the growth stage of a crop. Examples of these parameters are the fraction of green vegetation49

cover (fCover), the fraction of absorbed photosynthetically active radiation (FAPAR), the chlorophyll50

content (CHL) and leaf area index (LAI). The characteristics of these biophysical parameters have51

made them of great interest for many agricultural and land use applications such as crop growth moni-52

toring (Albughdadi et al., 2017) and crop/land cover classification (Waldner et al., 2015). Furthermore,53

the fact that the biophysical parameters are not sensor-specific allows increasing the satellite observa-54

tion frequency by using data extracted from different sensors (Waldner et al., 2015). The free access55

to Sentinel-2 (S2) images, characterized by a spectral richness and a fine temporal and spatial resolu-56

tion has fostered the development of image processing applications, in particular those related to crop57

development. Nonetheless, this vast stream of data requires the existence of efficient, fast and accurate58

techniques to estimate the corresponding biophysical parameters.59

60

LAI is a biophysical parameter that measures the total area of leaves per unit ground area and is61

directly correlated with the amount of intercepted light by the plant. This parameter has many uses62

∗Corresponding author
mohanad.albughdadi@terranis.fr (M. Albughdadi); guillaume.rieu@terranis.fr (G. Rieu);

sylvie.duthoit@terranis.fr (S. Duthoit); alswaitti.mohammed@xmu.edu.my (M. Alswaitti)
ORCID(s):

M. Albughdadi et al.: Preprint submitted to Elsevier Page 2 of 39



Fast LAI Estimation

such as the prediction of photosynthetic primary production, monitoring crop growth and yield estima-63

tion (Waldner et al., 2019). Moreover, the LAI is required by many global models of climate (Bonan64

et al., 2002), ecosystem productivity and ecology (Asner et al., 2003; Running and Coughlan, 1988;65

Sellers et al., 1997; Yan et al., 2016). Hence, this paper focuses on the retrieval of the LAI biophysical66

parameter using an efficient approach that allows fast estimation of this parameter at the level of S2 tile.67

68

Different approaches have been studied to estimate biophysical parameters in general and the LAI69

in particular. One can divide them into three main approaches, namely, physical, parametric and non-70

parametric machine learning techniques (Verrelst et al., 2015).71

The physical methods apply physical laws and specific knowledge to infer model variables. A well-72

known example of these models is the inversion of radiative transfer models (RTMs) (Knyazikhin73

et al., 1998; Weiss et al., 2000). The estimation of the biophysical parameters is then reduced to an74

ill-posed inverse problem which is non-trivial to be solved. Two popular approaches have been used75

to solve this inverse problem. The first approach relies on lookup-tables (LUT) inversion strategies.76

These strategies require the simulation of spectral reflectance for a large range of RTM variable val-77

ues. Hence, the inversion problem is transformed into searching the set of simulated reflectance set for78

the value that most resembles the measured one (Liang, 2007). Additional challenges might be faced79

when using LUT-based physical models such as selecting the cost function to perform LUT queries. A80

thorough comparison was performed in (Verrelst et al., 2015) between the different methods in terms81

of accuracy, computational time and the ability to provide model uncertainty. This study concluded82

that physical-based models relying on LUT are cumbersome in terms of computational time. The sec-83

ond approach to perform the inversion of the RTMs is through using neural networks. Contrary to the84

LUT approach, the simulated database is used only once during the training phase where the weights of85

the network are estimated (Bacour et al., 2006). Indeed, neural networks are computationally efficient86

algorithms that aim at approximating the non-linear relations between input and output variables. It87
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is worth mentioning that the performance of a neural network-based approach relies on the quality of88

the simulated database and their architecture. In this context, the SNAP software (Weiss and Baret) of89

the European Space Agency includes operational modules that estimate biophysical parameters such90

as the LAI, FAPAR and fCover from S2 images. The training of these neural networks is performed91

offline and the operational models are only integrated to the SNAP software. Although the neural92

networks are used to generate these modules, they work at the pixel-level, i.e., the estimation of the93

biophysical parameters is performed for each pixel separately, which makes the production of periodic94

biophysical products a time consuming process.95

The parametric methods aim at explicitly parameterizing the relationship between spectral bands and96

the biophysical parameters (Glenn et al., 2008). This is mainly performed using vegetation indices97

regressed with the biophysical parameters using a regression function. An extensive review on the98

selection of spectral bands and vegetation indices is provided in (Le Maire et al., 2004). This kind of99

methods has been the choice in remote sensing community since it is very fast. However, the perfor-100

mance of such methods is influenced by the choice of spectral bands, vegetation indices and the fitting101

function (Rivera et al., 2014; Verrelst et al., 2015).102

Finally, the non-parametric methods make use of machine learning regression techniques to establish103

a mapping function from input variables represented in the spectral bands and the output biophysical104

parameters through a training phase (Verrelst et al., 2011, 2012). These models use the full spectral105

bands to infer the non-linear relationship between these bands and the biophysical parameters. The106

comparison provided in (Verrelst et al., 2015) found that these models are effective in terms of accu-107

racy, inference time and the ability of some of them (those based on Bayesian inference) to provide the108

model uncertainty. These models are very adapted to operational production since they are also trained109

offline on ground truth measurements and then used for production. However, their performance is af-110

fected by the scarcity of ground measurement and the fact that they also work at the pixel-level, which111

means they are not very adapted to large scale production.112
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113

The need of the scientific and industrial communities to have access to temporal LAI products114

has been first answered with the MODerate resolution Imaging Spectroradiometer (MODIS) instru-115

ments (Yan et al., 2016; Yang et al., 2006). The latest collection (C6) contains the LAI products from116

February 2000 to this day at a spatial resolution of 500m (Myneni et al.). Additionally, the LAI is117

retrieved using Terra MODIS, Aqua MODIS and Terra MODIS+Aqua MODIS allowing a high tem-118

poral frequency of 4 and 8 days. In this context the S2 mission comprises a constellation of two119

polar-orbiting satellites over land and costal water with a high visit frequency. Additionally, the spec-120

tral and spatial resolutions of S2 images are higher than those associated with MODIS data. These121

advantages of S2 images can be exploited to generate temporal LAI products similar to the MODIS122

ones that cover large parts of the globe and will be ready to use for land cover applications.123

The S2 toolbox in the SNAP software provides many features such as atmospheric correction and124

the biophysical parameter processor. This biophysical parameter processor was tested and validated125

in many studies (Brown et al., 2019; Djamai et al., 2019; Vinué et al., 2018; Weiss and Baret) us-126

ing ground truth measurements of biophysical parameters. These studies proved that the biophysical127

parameter processor in the SNAP software is able to provide comparable results with ground truth128

measurements and can serve as a generic model for biophysical parameter estimation without any cal-129

ibration using the crop type. Nonetheless, estimating LAI products using the SNAP software on a130

large scale is not practical as the biophysical parameter processor takes around 15 to 20 minutes to131

estimate the LAI of one S2 tile at 20m resolution. The bottleneck of the procedure adopted in the132

SNAP software is that it relies on pixel-wise processing to estimate the biophysical variables, which133

limits its performance. One solution to this performance challenge is to adopt a strategy that allows134

processing large amount of data in a very short time. Recent advances in machine learning and more135

specifically deep learning have fostered computer vision applications. Deep learning techniques allow136

machines to understand images, extract pertinent features and hence perform sophisticated computer137
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vision tasks such as semantic classification, object detection and regression among others.138

139

The first contribution of this paper is to provide a scalable, fast and accurate estimation of LAI prod-140

ucts at the S2 tile-level using 2-D convolutional neural networks. The use of these networks speeds141

up the processing of a whole tile to multiple seconds. Since the biophysical processor in the SNAP142

software has been validated multiple times and it provides a good performance in estimating the LAI143

biophysical parameter (Brown et al., 2019; Djamai et al., 2019; Vinué et al., 2018; Weiss and Baret),144

LAI products derived from the SNAP software along with the corresponding S2 images are used at145

the training phase (which is performed offline). Once the model is trained, it is used at the operational146

mode to provide the estimates. It is worth noting that solutions to problems faced by 2-D convolutional147

networks are adopted in the proposed structure such as the border problem and overfitting. The sec-148

ond contribution of this work is the proposition of using dropout as a Bayesian approximation, which149

allows providing a confidence interval representing the model uncertainty. This an important aspect150

in the estimation of biophysical parameters as it is considered as a quality indicator. Additionally, as151

in the procedure adopted in the SNAP software, quality indicators from the acquired image can also152

be propagated to the final product (Weiss and Baret).153

154

The rest of the paper is organized as follows. Section 2 describes the training and testing datasets155

used through this paper. The competing algorithms including the adopted 2-D convolutional networks156

are illustrated in Section 3. The adopted strategy of generating the training datasets, training the algo-157

rithms and testing them for operational uses are discussed in Section 4. Results and discussions are158

depicted in Section 5. Finally, some conclusions and future work are presented in Section 6.159
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2. Datasets160

This paper studies the estimation of LAI biophysical parameter using S2 Copernicus data. The S2161

mission aims at acquiring high resolution optical images (10 m to 60 m) over land and coastal waters.162

This mission consists of two constellation satellites (Sentinel-2A and Sentinel-2B), hence allowing a163

high temporal resolution of the acquired sites. S2 data are characterized by a fine spectral resolution164

as the acquired multispectral images consist of 13 bands in the visible, near infrared (NIR) and short165

wave infrared (SWIR) part of spectrum. Table 1 summarizes the different characteristics of each of166

these bands.
Table 1
S2 band characterstics. CWL and BW denote the central wavelength and bandwidth, respectively and are expressed
in nm.

Band Sentinel-2A Sentinel-2B ResolutionCWL BW CWL BW
Band 1-Coastal aerosol 442.7 21 442.2 21 60
Band 2-Blue 492.4 66 492.1 66 10
Band 3-Green 559.8 36 559.0 36 10
Band 4-Red 664.6 31 664.9 31 10
Band 5-Vegetation red edge 704.1 15 703.8 16 20
Band 6-Vegetation red edge 740.5 15 739.1 15 20
Band 7-Vegetation red edge 782.8 20 779.7 20 20
Band 8-NIR 832.8 106 832.9 106 10
Band 8A-Narrow NIR 864.7 21 864.0 22 20
Band 9-Water vapour 945.1 20 943.2 21 60
Band 10-SWIR-Cirrus 1373.5 31 1376.9 30 60
Band 11-SWIR 1613.7 91 1610.4 94 20
Band 12-SWIR 2202.4 175 2185.7 185 20

167

2.1. Training Data168

Multi-temporal sequences of S2 satellite images were used to train the algorithms in this study.169

More specifically, 14, 5 and 5 images of T30TYS, T30TYQ and T31TCJ S2 tiles, respectively, were170

used resulting in a dataset of 24 S2 images. These images were acquired in the period between October171

2016 and November 2017 and characterized by a low cloud cover. The dates of image acquisition172

associated with each tile are summarized in Table 2. Moreover, the training S2 tiles are depicted in173

red in Fig. 1. The selected S2 tiles contain a variety of crops, which allows the algorithm to capture174

different vegetation characteristics. For instance, the dominant vegetation surfaces in the T30TYS are175
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Table 2
Acqusition dates of the training dataset.

T30TYS T30TYQ T31TCJ
11th October 2016 6th April 2017 16th May 2017
30th November 2016 26th May 2017 26th May 2017
10th December 2016 5th July 2017 5th July 2017
19th January 2017 14th August 2017 14th August 2017
18th February 2017 22nd November 2017 24th August 2017
27th March 2017
30th March 2017
9th April 2017
19th April 2017
29th April 2017
18th June 2017
18th July 2017
7th August 2017
27th August 2017

associated with grassland with around 28% of the parcels. The tile also contains varieties of wheat,176

corn, sunflower, rapeseed, barley and fallow, which represent around 50% of the agricultural parcels177

in this tile. The geographical zone covered by the T30TYQ S2 tile is known for its vineyards, where178

they occupy around 17% of the agricultural surfaces. The T30TYQ tile also contains multiple crop179

types such as wheat, corn, sunflowers, grassland and fallow. Finally, the T31TCJ tile contains similar180

crop types such as wheat, barley, soy beans, sunflower, fruits and vegetables. For all these images, the181

pixel-wise LAI biophsyical parameters were estimated using the SNAP software in order to train the182

regression algorithms. Note that the parameter extraction for the training dataset is explained in detail183

in Section 4.2.184

2.2. Testing Data185

Images associated with multiple S2 tiles (T31TCK, T30TYM and T30TYT) were used test the186

capability of the competing models in estimating the pixel-wise LAI values (depicted in blue in Fig. 1).187

The selection of the images insures the variability of the acquisition period as it covers multiple months188

and years. Table 3 summarizes the acquisition dates of the testing images. Note that the LAI estimates189

derived from the SNAP software (see Section 4.2) were considered as ground truth data in order to be190

compared to the LAI estimations obtained using the competing regression models.191
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Table 3
Acqusition dates of the testing dataset.

T31TCK T30TYM T30TYT
16th May 2017 6th April 2017 14th January 2018
26th May 2017 16th April 2017 20th March 2018
25th June 2017 6th May 2017 19th April 2018
5th July 2017 26th May 2017 24th April 2018
4th August 2017 15th June 2017 23rd June 2018
14th August 2017 5th July 2017 18th July 2018

14th August 2017 2nd August 2018
13th September 2017 22nd August 2018

21st October 2018
20th December 2018

Figure 1: The training (red) and testing (blue) S2 tiles used in the conducted experiments.

3. Network Architecture192

3.1. Convolutional Neural Network Regression193

The convolutional neural network (CNN) presented in this paper adopts the UNet architecture in-194

troduced in (Ronneberger et al., 2015) for biomedical image segmentation. The architecture of this195

network allows working with few training samples and yielding more precise results in a classifica-196

tion task. The UNet architecture uses a contracting network followed by successive layers that replace197
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pooling operators with upsampling ones with a large number of feature maps that allow enhancing the198

output resolution and propagating context information to higher resolution layers. The localization is199

improved by concatenating high resolution features from the contracting path with upsampled feature200

maps. Fig. 2 shows the adopted UNet architecture used for the LAI regression problem with some201

modifications introduced to adapt to the LAI estimation problem. Similar to the original UNet archi-202

tecture, the left and the right sides represent the contracting and expansive paths, respectively. On the203

one hand, the contracting path consists of multiple contraction blocks. Each block comprises two 3×3204

convolution layers that use a rectified linear activation (ReLU) followed by a 2 × 2 max pooling. In205

this modified network, a batch normalization layer is added after each convolutional layer in order to206

speed-up the training process and add some regularization to the network. After each block, a spatial207

dropout layer is added in order to avoid overfitting and allow estimating the model uncertainty (see208

Section 4.5.1). Each of the aforementioned blocks double the number of feature maps and reduces the209

x− y size by half. The resulting architecture of this contracting path allows the network to learn com-210

plex structures. On the other hand, the expansive path consists of multiple expansion blocks. Each211

block consists of two 3 × 3 convolutional layers that uses a ReLU activation followed by 2 × 2 up-212

sampling layer. Similar to the contracting path, a batch normalization layer after each convolutional213

layer and a spatial dropout layer after each block are added. After each block, the number of feature214

maps reduces to the half and the x− y size doubles. Additionally, a concatenation step is applied with215

the corresponding feature maps in the contracting path. This concatenation procedure insures that the216

features learned during the contracting path are used to reconstruct the image. The last hidden layer is217

cropped to avoid the local boundary effect of the CNN that perturbs predictions at the image border.218

Finally, a 1 × 1 convolution is used to map the 32-channel feature vector to one-channel output that219

corresponds to the estimated LAI values of the input image. The output layer uses a linear activation220

function for this regression problem.221
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Figure 2: The UNet architecture used in this paper to estimate pixel-wise LAI values. Boxes represent multichannel
feature maps. The number of feature maps is provided at the top of each box while the x−y dimensions are provided
at the lower left side of each box.The right blue, down black, right red, green up and gray arrows represent 3 × 3
conv2D, maxpool2D, 1 × 1 conv2D, upsampling2D and copy operations, repecively.

3.2. Multilayer Perceptron Regression222

Multilayer perceptron (MLP) networks (Rumelhart et al., 1986; Werbos, 1974) are the simplest223

kind of feed-forward networks that consist of neuron-like processing units. These units are arranged224

into a set of layers such that each layer contains a certain number of identical neurons. Each neuron in225

the layers is an input to every neuron in the proceeding layer, i.e., fully connected network. In MLP226

networks, the first layer is the input one where the input features are fed to the neural network. Hence,227

this layer has the size of the input features. The last layer of the MLP networks is the output layer228

where each output value is associated with one neuron. In the case of regression problems, the output229

layer has one neuron. The layers between the input and output layers are known as the hidden layers.230

The depth of anMLP network is defined by the number of layers in the network. Given a set of features231

x = x1, ..., xb and an output y, the MLP networks approximates a function f (.) ∶ Rb → Ro using x232

and y, where b is the number of input features and o is the output dimension. Neurons in the hidden233
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layers transform the values from the previous layer with a weighted linear summation !1x1+ ...+!bxb234

followed by a non-linear activation function g(.)R → R. Finally, the output layer receives the values235

of the last hidden layer and transforms them into output values. The MLP network used in this paper236

consists of 5 layers, namely, the input layer, three hidden dense layers and the output layer. The input237

layer consists of 10 units that correspond to the dimension of the input feature vector (see Section 4.4.2).238

The first, second and third hidden layers consist of 256, 128 and 64 units, respectively with a ReLU239

activation for the first two hidden layers and a linear activation for the last one. A dropout is also used240

in the MLP network after each hidden layer to avoid overfitting. The output layer maps a feature vector241

of size 64 to a feature vector of size 1, which corresponds to the estimated LAI value.242

4. Adopted Strategy243

The adopted strategy is a five-step procedure that includes all the steps required to reproduce this244

work. These steps are detailed in what follows.245

4.1. Data Preprocessing246

S2 level-2A products were downloaded using the Peps (d’Etudes Spatiales , CNES) platform of the247

French National Center of Space Studies (CNES). The L2A products provide Bottom of Atmosphere248

(BOA) reflectance images derived from the associated Level-1C products. These products were then249

resampled to a 20 m resolution to be further processed. To be more specific, bands 2, 3, 4 and 8 were250

downsampled using the mean method while bands 1, 9, and 10 were upsamlped using the bilinear251

interpolation method. Bands 5, 6, 7 and 8A kept the same resolution (20 m). The cloud and shadow252

masks provided with the L2A products were used to mitigate cloud and shadow pixels.253

4.2. Pixel-wise LAI Estimation Using SNAP254

The SNAP software uses neural networks to estimate multiple biophysical variables (Weiss and255

Baret). These networks are trained using simulated data generated by radiative transfer models. Once256

these models are trained, they are provided in the operational mode to compute LAI estimates and257
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some quality assessment indicators. These indicators include the consistency of the input reflectance258

values with those used in the training dataset, the consistency of the outputs generated using the neural259

networks with those biophysical parameters in the training datasets and quality indicators that include260

information regarding the reliability of the atmospheric correction and cloud filtering. The latter qual-261

ity indicators are replicated from the input images.262

The SNAP software was used to generate pixel-wise LAI estimates associated with the S2 tiles de-263

scribed in Section 2.1. The resulting LAI products and their corresponding S2 images and were then264

used to train and test the competing algorithms. Note that the cloud and shadow masks of the S2265

images were used to mask invalid pixels in the obtained LAI products before further processing.266

4.3. Training Data Preparation267

Temporal sequences of 3 S2 tiles, namely, T30TYS, T30TYQ and T31TCJ and their corresponding
LAI products were used to generate the training samples (See Table 2). At this stage, bands 1, 9 and
10 of each image were discarded and only bands with a potential of giving information on vegetation
were used. In a second step, the 2nd and 98th percentile pixel values of each band in each image
were calculated resulting in a set of pseudo-minimum and pseudo-maximum for each band. Using
the percentile instead of the minimum and maximum allows to discard pixels with erroneous values
after the atmospheric correction. The minimum and maximum values of these sets were then used to
normalize the training images between 0 and 1 using the following equation

xli,j =
xli,j −minl
maxl −minl , (1)

where a pixel in the i-th row and j-th column of band l is denoted as xli,j , maxl, minl denote the268

minimum and maximum values, respectively and l = {1,… , b} where b is the number of bands.269

Once the images were normalized, patches of size 128 × 128 were cropped of the S2 images and the270

corresponding SNAP LAI estimates. It is worth noting that when estimating the LAI using SNAP, a271
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flag raster is also generated that indicates the validity of the pixel-wise LAI estimates. This flag raster272

was used to discard erroneous SNAP estimates from the training dataset.273

The aforementioned steps resulted in a dataset of size d × m × n × b = 17554 × 128 × 128 × 10 S2274

patches and their corresponding LAI estimates of size 17554 × 128 × 128 × 1. This dataset was then275

used to train the two algorithms described in Section 3.276

4.4. Training Procedure277

The UNet and MLP algorithms were trained on a machine with Ubuntu 16.04 LTS OS, 32 GB of278

RAM, Intel Xeon W-2123 CPU with 8 processors that clock at 3.60GHz and a GeForce RTX 2080279

GPU associated with 8 GB of memory. One can notice that the training of the UNet algorithm was280

much faster than the training of theMLP regressor on the same dataset. Additionally, the conducted ex-281

periments in Section 5 show the huge gain of performance when using the UNet algorithm to estimate282

the pixel-wise LAI values.283

4.4.1. UNet training284

The UNet algorithm is a 2D convolutional network which means that its input is a 4-D dataset285

organized as d × m × n × b. The dataset described in Section 4.3 was divided into two subsets, i.e.,286

75% and 25% of the total number of patches were used for training and validation, respectively. The287

training dataset described in Section 4.3 was fed to the algorithm as an input and the corresponding288

LAI dataset was used as an output. Nonetheless, a cropping step to the LAI dataset was added in289

order to adapt for the cropping layer added to the UNet architecture. This cropping step discards 16290

pixels from the borders of the patches resulting in an LAI patch of size 96 × 96 × 1. The RMSprop291

optimization algorithm proposed in (Hinton et al.) with a learning rate of 0.001 was used to estimate292

the parameters of this algorithm. The batch size was set to 64 and the maximum number of epochs293

to 500. Additionally, the dropout ratio was set to 0.5. Since the estimation of the LAI is a regression294

problem to estimate a continuous variable, the mean square error (MSE) was used as a loss function.295
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Fig. 3 depicts the training and validation losses of the UNet algorithm for 100 epochs. It is clear that296

both the training and validation losses stabilize around 40 epochs. The model used on the test data is297

the one that minimized the validation loss.

Figure 3: Training and validation loss of the UNet algorithm for 100 epochs.

298

4.4.2. MLP training299

On the contrary of 2-D convolutional networks that are well adapted for image data, the MLP300

regressor is a generic algorithm that works with all kinds of data and does not consider the spatial301

properties of an image. Hence, the dataset described in Section 4.3 was flattened such that the size of302

the dataset is p×b = 287604736×10where p and b denote the number of pixels and bands, respectively.303

Similar to the training of the UNet algorithm, 75% of the pixels were considered for training and 25%304

of them for validation. The RMSprop optimization algorithm was also used to estimate the model305

parameters with a learning rate of 0.001. The dropout was set to 0.5 and the MSE was used as a loss306

function. The number of epochs was set to 500. Fig. 4 shows the training and validation loss of the307

MLP regressor for 100 epochs. Note that the training and validation losses stabilize around 40 epochs.308

309
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Figure 4: Training and validation loss of the MLP algorithm for 100 epochs.

4.5. Prediction Procedure310

4.5.1. UNet prediction311

The prediction procedure using the UNet algorithm took the full S2 image as an input. The input
image was then normalized using the minimum and maximum values of each band derived from the
training dataset. The normalized image was cut to patches of size 96×96×10, and a padding strategy
was adopted by adding a mirror reflection to the borders of the patches resulting in a patch size of
128 × 128 × 10. The performed padding allowed adapting to the added 2-D cropping layer in the
architecture of the UNet. The prediction was then performed on d ×128×128×10 dataset, where d is
the number of patches in an S2 image. After the inference step, the cutting and padding processes were
inversed in order to construct the full LAI product of the input S2 image. This strategy allows a fast
estimation of LAI values for S2 images in terms of seconds (see the performance analysis in Section 5).
It is worth noting that the dropout was enabled during the inference step. Indeed, deep neural networks
with dropout cast as approximate Bayesian inference in deepGaussian processes (Gal andGhahramani,
2016; Kwon et al., 2018). This allows capturing model uncertainty when performing classification and
regression tasks using deep neural networks. When dropout is allowed at the inference step, randomly
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selected neurons in the architecture of the UNet do not fire, hence Monte Carlo simulations can be
performed. The mean of the simulations was then computed along with the standard deviation in
order to compute the confidence interval of the algorithm. Denoting the number of Monte Carlo
simulations as T , the mean of these runs as ȳ, the standard deviation as �, a 95% confidence interval
can be constructed using

ȳ ± t �
√

T
(2)

where t is derived from the T-Distribution table. Knowing that T = 30, the degrees of freedom312

df = 30 − 1 and � = 1 − 0.95 = 0.05, then t = 1.699.313

4.5.2. MLP prediction314

The prediction procedure of the MLP regression algorithm consisted of flattening the S2 images315

into a 2-D array of size p × b. The 2-D array was then normalized using the minimum and maximum316

values of the training dataset. After the inference, the output LAI values were then reshaped to the317

original size of the S2 image. This procedure requires longer time when compared to the prediction318

procedure of the modified UNet algorithm as it requires flattening the input image and hence working319

on image pixels instead of patches (see Section 5). It should be pointed out that the model uncer-320

tainty can also be captured using the MLP algorithm and the strategy adopted in the UNet algorithm321

(Section 4.5.1). However, this would require a very long time.322

5. Results and Discussion323

The competing algorithms were evaluated on real S2 images using different evaluation metrics.324

These metrics as well as the experiments are described and discussed in what follows.325
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5.1. Evaluation Metrics326

• PearsonCorrelationCoefficient is ameasure of the linear correlation between two variables (Ben-
esty et al., 2009). This coefficient has a value between+1 and−1. On the one hand, a coefficient
of 1 indicates a total positive linear correlation. On the other, a coefficient of −1 indicates a total
negative correlation. A coefficient of 0 implies no linear correlation between the two variables.
Denoting the estimated and SNAP LAI vectors as yes and ysnap, respectively, the Pearson cor-
relation r coefficient can be estimated using

r =
∑

c
(

ysnapc − ȳsnap
) (

yesc − ȳes
)

√

∑

c
(

ysnapc − ȳsnap
)2
√

∑

c
(

yesc − ȳes
)2

(3)

where ȳsnapc and ȳesc are the mean values of ysnap and yes, respectively and c ∈ [1, p] is an index327

that runs over p pixels in a flattened image array.328

• Euclidean Distance is a similarity measure of two variables (Danielsson, 1980). Assuming
that each pixel estimation is a point vector, the Euclidean distance Distp is calculated for two
corresponding pixel values using

Distc =
√

(

ysnapc − yesc
)2. (4)

The mean of these distances is then calculated to estimate a similarity measure between LAI
estimates using SNAP and one of the competing algorithms, i.e.,

AvgDist = 1
p

p
∑

c=1

√

(

ysnapc − yesc
)2. (5)

• Mean Squared Error (MSE) evaluates the quality of an estimator by measuring the average of
squared difference between the estimated values yesc and the actual ones ysnapc for c ∈ [1, p] and
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p is the total number of pixels in an image using

MSE = 1
p

p
∑

c=1

(

ysnapc − yesc
) (6)

• Determination Coefficient (R2) measures how observed variables are replicated by the model
using the proportion of total variation of variables explained by the model. This score takes a
value in the range [0, 1], where it equals 1 when the model predictions perfectly fit the data.
Using the same notion as before and knowing that the mean of the LAI estimates using SNAP
is ȳsnap, the variability of the dataset can be measured using

R2 = 1 −
SSres
SStot

, (7)

where

SSres =
p
∑

c=1

(

ysnapc − yesc
)2 , (8)

and

SStot =
p
∑

c=1

(

ysnapc − ȳsnap
)2 . (9)

5.2. Experiments329

This section consists of four main experiments. The first one aims at comparing the UNet andMLP330

algorithms to the SNAP software. The second experiment further investigates the performance of the331

UNet algorithm compared to SNAP using more datasets acquired on different dates and geographi-332

cal coverage. Additionally, the experiment demonstrates the performance of the UNet algorithm on333

different crop types. Then, the third experiment compares the LAI estimates obtained using the UNet334
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algorithm to ground truth data obtained using field measurements. Finally, the last experiment demon-335

strates the importance of considering the spatial characteristics of the image when estimating the LAI336

provides some insights on the feature extracted using the UNet algorithm.337

5.2.1. UNet and MLP Compared to SNAP338

A first analysis was conducted by comparing the LAI estimates obtained using the MLP and UNet339

regressors to those obtained using the SNAP software on a temporal series of images associated with340

the T31TCK S2 tile (see Section 2.2). Firstly, 20000 randomly selected pixel-wise LAI estimates from341

each image in the temporal series were used to compare the performance of these algorithms to the342

SNAP software. Figs 5 and 6 show the scatter plots associated with the selected pixels from each343

image for the MLP and UNet compared to SNAP, respectively. In these figures, the x-axis represents344

SNAP LAI estimates while the y-axis represents the MLP/UNet LAI estimates. These plots show a345

good agreement between the results obtained using the MLP and UNet algorithms and those obtained346

using the SNAP software.347

To further investigate these results, the LAI estimates obtained using theMLP andUNet algorithms348

were compared to those obtained using the SNAP software in terms of their correlation, Euclidean349

distance, MSE, R2 and inference time metrics (see Table 4). Although the reported results are close350

for the two algorithms, it is clear that the UNet algorithm obtained better results in all the evaluation351

metrics when compared to the MLP algorithm. Additionally, there is a noticeable difference between352

the MLP and the UNet algorithms in terms of inference time. Indeed, the UNet algorithm took less353

than 2 minutes to process all the temporal series of the T31TCK tile. On the other hand, around 14354

minutes were needed to obtain the LAI estimates of a single S2 image using the MLP algorithm. This355

comparison demonstrates that the UNet algorithm is very adapted to tackle the challenge of processing356

large amounts of S2 data in order to estimate the corresponding LAI.357
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(a) 16-th May 2017 (b) 26-th May 2017 (c) 25-th June 2017

(d) 5-th July 2017 (e) 4-th August 2017 (f) 14-th August 2017

Figure 5: Scatter plot of the LAI estimates obtained using the SNAP software (x-axis) and the MLP algorithm
(y-axis) of images of the T31TCK tile. The gradient colors show the concentration of the points on the scatter
plot.

Table 4
Evalution metrics of the MLP and UNet algorithms compared to the SNAP software using pixel-wise LAI estimates
derived from the images of the T31TCK tile.

Image Correlation Euclidean distance MSE R2 Inference time (s)
MLP UNet MLP UNet MLP UNet MLP UNet MLP UNet

16-th May 2017 0.992 0.995 0.140 0.089 0.053 0.017 0.961 0.988 809.9 16.9
26-th May 2017 0.992 0.995 0.156 0.089 0.065 0.021 0.950 0.983 810.0 16.8
25-th June 2017 0.993 0.994 0.146 0.107 0.044 0.022 0.961 0.982 809.9 16.9
5-th July 2017 0.991 0.994 0.138 0.100 0.062 0.034 0.951 0.973 810.8 16.8
4-th August 2017 0.991 0.995 0.104 0.078 0.034 0.017 0.968 0.984 812.2 16.9
14-th August 2017 0.993 0.996 0.106 0.069 0.030 0.011 0.960 0.988 812.8 16.7

5.2.2. UNet Compared to SNAP358

This section is dedicated to further explore the performance of the UNet algorithm when compared359

to the SNAP software. Indeed, two types of comparisons were carried out. The first one is a pixel-360

level comparison where the LAI estimates obtained using the UNet are compared to those obtained361

using the SNAP software for multiple S2 tiles and different years. This comparison aims at evaluating362

the model for different geographical locations and image acquisition periods. The uncertainty of the363
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(a) 16-th May 2017 (b) 26-th May 2017 (c) 25-th June 2017

(d) 5-th July 2017 (e) 4-th August 2017 (f) 14-th August 2017

Figure 6: Scatter plot of the LAI estimates obtained using the SNAP software (x-axis) and the UNet algorithm
(y-axis) of images of the T31TCK tile. The gradient colors show the concentration of the points on the scatter
plot.

model is also introduced in this comparison. The second comparison aims at investigating the UNet364

algorithm performance at the parcel-level where different crop types are studied.365

• Pixel-level comparison366

Two additional S2 tiles were used for this comparison, namely, T30TYT and T30TYM (see Sec-367

tion 2.2). In order to compare the performance of the UNet on these tiles with the performance368

of the SNAP software, scatter plots of LAI estimates of 20000 randomly selected pixels were369

used. Figs 7 and 8 show these scatter plots for the T30TYT and T30TM tiles, respectively. One370

can notice the good agreement of the LAI estimates obtained using the SNAP and the UNet371

algorithm. In these figures, the LAI estimates range between 0 and 8, which is reasonable from372

an agronomic point of view. One can notice that there is some level of disagreement between373

the estimates of SNAP and UNet algorithms on the 14th January and 20th December 2018 (see374
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Fig. 8). Moreover, SNAP produced some negative LAI values for these two days. Indeed, the375

two images are associated with a high cloud cover, which may perturb the estimation of LAI. A376

further analysis was conducted by estimating the evaluation metrics described in Section 5.1 as377

well as the inference time and the confidence interval of the algorithm. For instance, the correla-378

tion, Euclidean distance, MSE andR2 criteria confirm the ability of the UNet model to estimate379

LAI values that are very similar to those obtained using the SNAP software (see Tables 5 and380

6). Additionally, these results are coherent with the observation derived from the scatter plots in381

Figs 7 and 8, where a relatively lowR2 values were obtained for 14th January and 20th December382

2018.383

As discussed in Section 4.5.1, activating dropout during the inference step allows estimating384

the standard deviation (�) and the confidence interval using Monte Carlo simulations. In these385

experiments, 30 Monte Carlo simulations were run where � and the confidence interval were386

estimated. This experiment shows that the proposed strategy is able to provide the model un-387

certainty as a quality indicator for the obtained LAI products. Additionally, the reported values388

of � are relatively low, which confirms the repeatability of the obtained results. Moreover, the389

inference time, which was estimated for a singleMonte Carlo run, is also very short and coherent390

with the results obtained in Section 5.2.1.391
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(a) 6th April 2017 (b) 16th April 2017 (c) 6th May 2017

(d) 26th May 2017 (e) 15th June 2017 (f) 5th July 2017

(g) 14th August 2017 (h) 13th September 2017

Figure 7: Scatter plot of the LAI estimates obtained using the SNAP software (x-axis) and the UNet
algorithm (y-axis) of images of the T30TYM tile. The gradient colors show the concentration of the points
on the scatter plot.
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(a) 14th January 2018 (b) 20th March 2018 (c) 19th April 2018

(d) 24th April 2018 (e) 23rd June 2018 (f) 18th July 2018

(g) 2nd August 2018 (h) 22nd August 2018 (i) 21st October 2018

(j) 20th December 2018

Figure 8: Scatter plot of the LAI estimates obtained using the SNAP software (x-axis) and the UNet
algorithm (y-axis) of images of the T30TYT tile. The gradient colors show the concentration of the points
on the scatter plot.
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• Parcel-level comparison392

Although the previous sections proved that the UNet algorithm is able to provide comparable393

pixel-wise LAI estimates to those obtained using the SNAP software, studying the performance394

of the algorithm on different crop types is still mandatory. This comparison was conducted at395

the parcel-level for different crop types extracted from the French Parcel Registration (RPG)396

database (Géographique National , IGN). The RPG is an open access database that identifies397

agricultural parcels covering the French territory of metropolitan France and overseas. This398

database is useful for agricultural applications, land management services, etc.399

For this comparison, the S2 images associated with the T31TCK tile were used (see Section 2).400

These images were associated with low cloud covers in order to avoid missing data in the LAI401

estimates and the perturbation caused by clouds. Additionally, the parcels of interest were ex-402

tracted from the RPG database such that they intersect with the region of interest (ROI). To be403

more specific, 17 crop types resulting in a total of 52154 parcels, were studied. The distribution404

of these parcels by crop type is depicted in Table 7. The selection of these crop types was not405

random. Indeed, these types cover summer, winter, spring and permanent crop types. Table 8406

shows the distribution of crop types on annual seasons.

Table 7
Distribution of the analyzed crop types.

Crop #parcels Crop #parcels Crop #parcels
Winter durum wheat 85 Sweet corn 36 Winter rye 37
Spring durum wheat 5 Silage corn 1659 Sorghum 691
Winter soft wheat 5609 Corn 4199 Soybeans 849
Spring soft wheat 13 Winter barley 3556 Sunflower 2326
Winter rapeseed 553 Spring barley 435 Fallow 4002
Spring rapeseed 5 Grassland 28094

407

Table 8
Distribution of the crop types by season.

Spring Summer Winter Permanent
Spring durum wheat Sweet corn Winter durum wheat Grassland
Spring soft wheat Silage corn Winter soft wheat Fallow
Spring rapeseed Corn Winter rapeseed
Spring barley Sorghum Winter barley

Soybeans Winter rye
Sunflower
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To analyze the results at the parcel-level, the mean statistic was calculated using the vector408

dataset containing the parcel delineations and the LAI estimates of the T31TCK tile obtained409

using the UNet and the SNAP software. This allowed obtaining a parcel-wise LAI estimate at410

a given time instant. Concatenating all the time instances of these LAI estimates for each par-411

cel resulted in temporal LAI indicators that can be compared. Figs 9, 10, 11 and 12 show the412

resulting temporal LAI indicators using the UNet algorithm and the SNAP software for spring,413

summer, winter and permanent crops, respectively. A visual comparison between these parcel-414

wise LAI estimates proves the good performance of the UNet algorithm as a generic model for415

LAI estimation on different crop types.416

417

(a) Spring durum wheat (b) Spring soft wheat

(c) Spring rapeseed (d) Spring barley

Figure 9: Parcel-wise temporal LAI indicators of the spring crops estimated using the UNet algorithm(red)
and the SNAP software (black).

The parcel-wise LAI estimates were further compared by computing the evaluation metrics il-418

lustrated in Section 5.1. Table 9 reports these evaluation metrics for each crop type. It is worth419
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(a) Sweet corn (b) Silage corn (c) Corn

(d) Sorghum (e) Soybeans (f) Sunflower

Figure 10: Parcel-wise temporal LAI indicators of the summer crops estimated using the UNet algo-
rithm(red) and the SNAP software (black).

noting that the metrics were calculated for each parcel separately and then averaged for each420

crop type. One can notice that the UNet algorithm provided very similar results when compared421

to those obtained by the SNAP software. Moreover, it is clear the UNet algorithm can perform422

well for different crop types regardless of the season, which is consistent with the previous visual423

observation.424
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(a) Winter durum wheat (b) Winter soft wheat (c) Winter rapeseed

(d) Winter barley (e) Winter rye

Figure 11: Parcel-wise temporal LAI indicators of the winter crops estimated using the UNet algorithm(red)
and the SNAP software (black).

(a) Grassland (b) Fallow

Figure 12: Parcel-wise temporal LAI indicators of the permanent crops estimated using the UNet algo-
rithm(red) and the SNAP software (black).
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5.3. Visualization of of LAI estimates and the UNet feature maps425

This section is dedicated to visualize the LAI estimates of two image patches from the validation426

dataset as well as their corresponding feature maps extracted from the different layers of the UNet427

algorithm, where we try to explain how filters in the layers of the UNet architecture react to specific428

land cover classes in the input image and the resulting activation. For instance, Figs 13 and 14 show429

two image patches [a], the corresponding SNAP LAI estimates [b] and UNet LAI estimates [c]. One430

can notice the similarity between the LAI and UNet estimates, which is consistent with the previous431

comparisons. Note that there is a difference between the size of the input image and the size of the UNet432

LAI estimates due to the added cropping layer before the output layer in the proposed architecture.

(a) Image patch (b) LAI estimates using SNAP (c) LAI estimates using the UNet

Figure 13: An image patch (patch#2) from the validation datasets [a] along with its corresponding LAI estimates
using the SNAP software [b] and the UNet algorithm [c].

433

The first convolutional and activation layers when estimating the LAI using these two patches are434

depicted in Figs 15 and 16. Visualizing the UNet layers allows understanding how the UNet algorithm435

learns the different features from the input image. For instance, the first filter in the convolutional layer436

(at row 1 and column 1 in Figs 15[a] and 16[a]) reacts to the soil land cover in these patches. This437

becomes clearer in the output of the first ReLU activation layer (at row 1 and column 1 in Figs 15[b]438

and 16[b]). Similarly, another convolutional filter (at row 3 and column 8) reacts to vegetation in these439

patches. It is worth noting that these filters do not only learn features associated with the land cover440

class but also border features (e.g., at row 3 and column 2 in Figs 15 and 16). These learned features441
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(a) Image patch (b) LAI estimates using SNAP (c) LAI estimates using the UNet

Figure 14: An image patch (patch#2) from the validation datasets [a] along with its corresponding LAI estimates
using the SNAP software [b] and the UNet algorithm [c].

for different land covers can be of interest to develop corp-specific algorithm for LAI estimation.442

6. Conclusion and Future Work443

In this paper, we proposed a new procedure to estimate the LAI using S2 images at 20 m resolution.444

This procedure is based on the UNet algorithm, a 2-D convolutional network architecture. The pro-445

posed procedure allows an accurate, fast and scalable estimation of the LAI. The architecture of UNet446

was modified to include dropout layers that allow overcoming overfitting. Moreover, these dropout447

layers can be activated at the inference step in order to be used as a Bayesian approximation. Hence,448

the uncertainty of the model can be estimated and provided as a quality indicator of the obtained re-449

sults.450

It is worth noting that the proposed procedure was trained using LAI estimates of the SNAP software,451

where the quality indicators provided with these estimates were used for the selection of the valid sam-452

ples.453

In order to justify the algorithm selection, two competing algorithms, the UNet and the MLP, were454

compared to the SNAP software to estimate the LAI in terms of the MSE, Euclidean distance, R2
455

score and inference time. Although the values of some of these metrics were close for the competing456

algorithms, the UNet algorithm obtained better values in all metrics. Moreover, the UNet algorithm457
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(a) 1st convolutional layer

(b) 1st activation layer

Figure 15: Feature maps of the first layers for a patch from the validation dataset.

reduced the inference time to 18 seconds when compared to the MLP regressor (13.5minutes) and the458

SNAP software (15minutes). This time reduction makes the UNet algorithm a good fit for processing459

large amount of S2 images in order to provide LAI products that are ready to use for other applications.460

The proposed procedure was also validated on multiple crop types that contain Spring, Summer, Win-461

M. Albughdadi et al.: Preprint submitted to Elsevier Page 34 of 39



Fast LAI Estimation

(a) 1st convolutional layer

(b) 1st activation layer

Figure 16: Feature maps of the first layers for a patch from the validation dataset.

ter and permanent crops. To carry out the latter validation, parcel delineations from the French Parcel462

Registration database were used to estimate the mean statistic of the LAI at the parcel-level, which463

allows constructing a temporal LAI indicator for each parcel. The obtained temporal LAI indicators464

using the UNet algorithm were compared to those obtained using the SNAP software, where the MSE465
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values between these estimates were very low. This confirmed the capacity of the proposed procedure466

as a generic LAI estimator regardless of the crop type. Future work will focus on enriching the LAI467

training dataset by including other geographical extents that contain other vegetation and soil types,468

which will improve the performance of the model. In a second step, additional models can be devel-469

oped for other biophysical parameters such as the fCover. It can also be of interest to investigate a deep470

learning model with multiple outputs that allows estimating multiple biophysical parameters at once.471
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