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Abstract

In a paper, recently published in Mechanical Systems and Signal Processing,

a multiplicative mixed-norm regularization has been introduced for solving

space-frequency force reconstruction problems. Originally, the solution is

obtained from an Iteratively Reweighted Least-Squares (IRLS) algorithm.

However, as shown in this communication, such an algorithm exhibits a lack

of robustness regarding the measurement noise level. For this reason, a novel

iterative resolution algorithm, based on the first-order optimality condition,

is introduced. From a numerical experiment, it is shown that the proposed

algorithm exhibits a better robustness than the IRLS algorithm initially im-

plemented for solving force reconstruction problems in the frequency domain.
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1. Introduction

Mixed-norm regularization are used in the inverse problems community

to promote several features of a signal to recover1 and introduce an explicit

coupling its component. Such a regularization technique has been widely

studied in signal and image recovery applications [1–9]. In the context of

force reconstruction, Rezayat et al. first derive a mixed `2,1-regularization

to reconstruct broadband point forces [10, 11] from G-FISTA (Grouped Fast

Iterative Shrinkage-Thresholding Algorithm). This particular mixed-norm

regularization has then been applied by Wambacq et al. using an interior

point method [12] and by Qiao et al. using an accelerated gradient descent

method [13]. However, these particular forms of additive regularization are

based on the assumption that the regularization parameter can be adequately

selected. A proper choice of the regularization parameter is all the more

crucial as it conditions the quality of the reconstructed solutions. In the

abovementioned papers, the regularization parameter is either determined

using expensive a posteriori procedure (i.e. computation of the solution for

predefined values and choosing the best one) or manually tuned (with a non

negligible risk of mistuning).

To circumvent the problems associated to the selection f the regularization

parameter, we have recently proposed a multiplicative mixed-norm regular-

ization for solving space-frequency force reconstruction problems based on

a general `p,q-regularization term [14]. Theoretically, the main advantage of

such a regularization strategy is to simultaneously exploit one’s prior knowl-

1The term signal has to be understood in a wide sense.
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edge of the spatial distribution of the sources to identify (located/distributed)

as well as any prior information about their frequency content (broadband

/narrow-band). From the mathematical standpoint, the proposed space-

frequency multiplicative regularization consists in defining the target excita-

tion vector F̂ as the solution of the following minimization problem:

F̂ = argmin
F\{0}

‖X−HF‖22 · ‖F‖qp,q, (1)

where

• X is the global vibration vector, including the measured vibration fields

for all the frequencies of interest. If nm is the number of measurement

points and nf the number of frequencies considered, X has dimension

(nm · nf )× 1;

• F is the global force vector, built by stacking the force vectors at each

studied frequency. If nr is the number of reconstruction points, F has

dimension (nr · nf )× 1;

• H is the global transfer functions matrix. It is a block diagonal matrix

including all the transfer functions matrices in the frequency range of

interest. Considering the respective dimensions of X and F, H has

dimension (nm · nf )× (nr · nf ).

• ‖•‖p,q is the mixed `p,q-norm defining the space-frequency regularization

term.

In the definition of the space-frequency regularization term, q is the tuning

parameter describing one’s prior knowledge of the spatial distribution of the
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sources, while p is the tuning parameter related to prior information about

the spectral content of the excitation sources. Practically, the value of p

and q must be set so as to properly reflect available prior information. In

this regard, q ≤ 1 for promoting sparse sources, while q ≥ 2 for distributed

sources. In the same vein, p ≤ 1 if the excitation signal is rather narrow

band, while p ≥ 2 if the excitation signal is supposed to be broadband.

Although defining adapted values of p and q is far from obvious for non-

experienced user, they can actually be wisely chosen from a careful analysis

of the mechanical system under consideration.

In the original paper, the resolution of the space-frequency multiplica-

tive regularization defined in Eq. (1) is performed through the implementa-

tion of an adapted Iteratively Reweighted Least-Squares algorithm [14–16].

However, it has recently been shown that, for force reconstruction prob-

lems, IRLS-like (a.k.a IR`2) algorithm could be less robust than Iteratively

Reweighted (IR) algorithm, built from the direct application of the first-order

optimality condition, w.r.t. the measurement noise level [17].

In the light of these results, the aim of this paper is twofold: first derive a

novel IR algorithm based on the direct application of the first-order optimal-

ity condition and second demonstrate that the proposed algorithm is more

robust than the IRLS version w.r.t the measurement noise level. To reach

these goals, this communication is divided into two parts. In section 2, the

novel IR algorithm, referred to as IR`p,q algorithm in the rest of the paper,

is introduced in parallel with the original IRLS algorithm, in order to bet-

ter highlight the main differences between both resolution algorithms. Sec-
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tion 3 is devoted to the detailed comparison of the above-mentioned algorithm

through a numerical experiment, demonstrating that each algorithm exhibit

a different behavior w.r.t. the measurement noise level. More specifically,

the novel IR`p,q algorithm allows obtaining more consistent reconstructions

for a wider range of Signal-to-Noise ratios (SNR).

2. Novel resolution algorithm - IR`p,q algorithm

The mathematical formulation at the basis of the space-frequency multi-

plicative regularization implies the implementation of an iterative procedure.

In our original paper, an adapted IRLS algorithm have been proposed [14].

Here, an alternative IR`p,q algorithm, based on the direct application of the

first-order optimality condition, is presented. Basically, the resolution pro-

cess is divided into three main steps whatever the algorithm considered:

1. Set k = 0 and initialize F̂
(0)

2. while convergence is not reached

a. Main iteration - Compute F̂
(k+1)

b. Monitor the convergence

end while

3. return F̂

In the present contribution, the initialization process as well as the con-

vergence monitoring are not described and the interested reader can refer to

Refs. [14, 18] for further information. Actually, the main difference between

both algorithms lies in the main iteration when computing the force vector

at iteration k + 1 (step 2.a).
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The basic idea behind the IRLS algorithm is to define a fixed-point itera-

tion having a unique and explicit solution, so as to recover the solution of the

minimization problem given by Eq. (1) after convergence of the iterative pro-

cess. To this end, the regularization term is recast into a squared weighted

`2-norm regularization term. In doing so, the solution vector at iteration

k + 1 is sought as the solution of the following minimization problem:

F̂
(k+1)

= argmin
F\{0}

‖X−HF‖22 ·
∥∥∥W(k+1)1/2F

∥∥∥
2

2
, (2)

where W(k+1) is the diagonal global weighting matrix defined as a function

of F̂
(k)

.

On the contrary, the main iteration of the IR`p,q algorithm relies on the

direct application of the first-order optimality condition to the functional:

J(F) = ‖X−HF‖22 · ‖F‖qp,q. (3)

In other words, the solution vector at iteration k + 1 is derived from the

relation:
∂J(F)
∂F

∣∣∣∣
F=F̂

(k+1)
= 0. (4)

However, whatever the algorithm considered, the force vector at iteration

k + 1 is written:

F̂
(k+1)

=
(
HHH + α(k+1) W(k+1)

)−1
HHX, (5)
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where the adaptive regularization parameter α(k+1) is defined such that:

α(k+1) =





∥∥∥X−HF̂
(k)
∥∥∥
2

2∥∥∥W(k+1)1/2F̂
(k)
∥∥∥
2

2

for IRLS

∥∥∥X−HF̂
(k)
∥∥∥
2

2∥∥∥F̂(k)
∥∥∥
q

p,q

for IR`p,q

. (6)

Regarding the global weighting matrix W(k+1), its coefficients are expressed:

w
(k+1)
I = w

s (k+1)
i · wf (k+1)

ij , (7)

where I = j + nf (i − 1) is a global index, while ws (k+1)
i and w

f (k+1)
ij are

the weighting coefficients related to the space (superscript s) and frequency

(superscript f) domains. Formally, ws (k+1)
i and w

f (k+1)
ij are written (see

Appendix A for a detailed derivation):

w
f (k+1)
ij =

[
max

(
εf ,
∣∣∣F̂ (k)

ij

∣∣∣
)] p−2

(8)

and

w
s (k+1)
i =





[
max

(
ε2s,
∑nf

j=1w
f (k+1)
ij

∣∣∣F̂ (k)
ij

∣∣∣
2
)] q

p
−1

for IRLS

q
2

[
max

(
εps,
∑nf

j=1

∣∣∣F̂ (k)
ij

∣∣∣
p)] q

p
−1

for IR`p,q

. (9)

where F̂ (k)
ij is the force at reconstruction point i and frequency fj identified at

iteration k2, while εf and εs are damping parameters avoiding infinite weights

when p < 2 and q < p. Practically, it has been chosen to set εf = εs = ε,

2To perform the calculation of the weighting coefficients detailed in Appendix A, the

gloabal force vector must be recast into a matrix beforehand.
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whose value is calculated so that 5% of the values
∣∣∣F̂(0)

∣∣∣ are less than or equal

to ε.

All in all, the derivation of the IRLS and IR`p,q algorithms given above

clearly points out the main differences between these algorithms. More specif-

ically, the only difference lies in the calculation of the adaptive parameter

α(k+1) and the weighting coefficient ws (k+1)
i . Consequently, the implementa-

tion of the IR`p,q algorithm is straightforward, since it only requires a slight

modification of the original IRLS algorithm. As a side note, it is worth noting

that both algorithm are strictly identical for p = q = 2.

3. Numerical experiment

The present numerical experiment intends to assess the performances of

both IRLS and IR`p,q algorithms w.r.t. the measurement noise level. It allows

evaluating the intrinsic behavior of each algorithm by eliminating all the

uncertainties related to any experimental set-up. The results of this study

also make possible to investigate the applicability of the novel resolution

algorithm for solving force reconstruction problems.

3.1. Problem description

The structure under consideration is a simply supported steel beam of

length 1 m and cross-sectional area 1×10−4 m2. The beam is excited by a

broadband unit point force from 50 Hz to 500 Hz (Frequency resolution: 1

Hz – nf = 451). The point force is applied at x0 = 0.6 m from the left end

of the beam.
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To synthesize the measured vibration field, the exact global displacement

vector Xexact is first computed from a modal expansion based on the analyt-

ical modes of the beam on a set of 21 points evenly-spaced from the left to

the right end of the structure (nm = 21). For this calculation, a structural

damping ratio of 1% has been considered. Then, a Gaussian white noise

with some prescribed SNR has been added to the exact data to simulate the

unavoidable errors in the measurement process. At this stage, the five first

resonance frequencies of the structure are listed in Table 1 for the sake of

completeness.

Table 1: Five first resonance frequencies of the beam

ID 1 2 3 4 5

Value (Hz) 23.45 93.81 211.08 375.25 586.33

Regarding now the computation of the global transfer functions matrix

H of the structure, the finite element method has been used to avoid the

so-called inverse crime [19]. Practically, it has been computed from a FE

mesh made up with 20 plane beam elements, designed for perfectly matching

the measurement mesh (nr = 21). More specifically, a FE model of the

beam with free boundary conditions has been employed, assuming that only

the transverse forces acting on the structure are of primary interest. In

doing so, it is possible to identify both the external and reaction forces over

the beam3. From a mechanical perspective, this can be easily explained by

3Formally, it is possible to compute H from a FE model having the same boundary

conditions. In this case, however, the reaction forces cannot be directly identified.

9



recalling that the system considered for the reconstruction corresponds to

the beam without its supports. It results that the reaction forces stemming

from the mechanical connection of the beam to its support appear as external

forces in the considered reconstruction model. More specifically, the intention

is to illustrate the ability of the proposed approach to reconstruct a spatially

sparse excitation field composed of functionally dependent sources.

For the sake of clarity, an overview of the numerical experiment described

above is proposed in Fig. 1.

Xexact

Exact displacement field
(Analytical calculation)

Gaussian white noise
with prescribed SNR

(FEM)

Global transfer functions matrix

H
Noisy displacement field

X

Solve the multiplicative mixed-norm problem
from IRLS or IRℓp,q algorithms

F̂

Figure 1: Overview of the numerical experiment

Finally, it is important to define the force vector, that will serve as ref-

erence for comparison, as well as the indicators, that will help us to analyze
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the behavior of both algorithms in terms of computational performance and

reconstruction quality.

In the present paper, the reference force vector Fref is obtained from the

following relation:

Fref = H−1 Xexact. (10)

Fig. 2 presents the reference force vector as a space-frequency plot. As ex-

pected from the problem description, the reference excitation field is indeed

spatially sparse, while the excitation signal is broadband. Regarding the def-
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Figure 2: Space-frequency plot of the reference force vector Fref – (a) Full plot and (b)

Zoomed portion of the plot excluding the reaction forces

inition of a set of indicators measuring the solution accuracy, we have chosen

to implement three particular indicators: the global relative error (GRE),

the relative error on the reaction forces (RERF) and the global peak error

(GPE). Basically, GRE is a global indicator of the reconstruction quality and
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is expressed as:

GRE =

∥∥∥F̂− Fref

∥∥∥
1

‖Fref‖1
. (11)

Similarly, RERF is an indicator of the reconstruction quality of the reaction

forces, defined such that:

RERF =

∥∥∥F̂(rf)
− F(rf)

ref

∥∥∥
1∥∥∥F(rf)

ref

∥∥∥
1

, (12)

where F̂
(rf)

is the force vector of the identified reaction forces, while F(rf)
ref is

the corresponding reference force vector.

Finally, GPE is an indicator defining the reconstruction quality of the point

force spectrum. This indicator is mathematically written:

GPE =

∥∥∥F̂(pf)
− F(pf)

ref

∥∥∥
1∥∥∥F(pf)

ref

∥∥∥
1

, (13)

where F̂
(pf)

is the point force spectrum identified at point x0, while F(pf)
ref is

the corresponding reference point force spectrum.

3.2. Application

In this section, the overall reconstruction performances of both IRLS and

IR`p,q algorithms are analyzed and compared. Before that, it remains to

define the tuning parameters (p, q) to be able to apply the space-frequency

regularization. To this end, one has to exploit one’s prior knowledge of the

sources to identify. From the description of the test and the analysis of

Fig. 2, one has to identify a broadband sparse excitation. Practically, this

observation leads us to promote the spatial sparsity of the solution and the
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continuity of its spectral content. Hence, following the recommendations

given in the introduction of this paper and our previous work on this topic

[14], one chooses to set (p, q) = (2, 0.5) for the rest of the paper.

3.3. IRLS algorithm

To have a fair point of comparison, the space-frequency regularization is

first solved from the IRLS algorithm for three different measurement noise

levels, namely SNR = 35, 25, 15 dB. The corresponding results are presented

in Fig. 3 and Table 2. Several comments can be made. First of all, very

good reconstructions are obtained for high SNR values. For moderate SNR

values, the results are more contrasted, since the reaction forces are satisfy-

ingly identified, as well as the point force location. However, the point force

amplitude is globally underestimated, since the identified amplitude tends to

decrease with frequency. Finally, for low SNR values, the IRLS algorithm

diverges and no solution is obtained.

Table 2: Performances of the IRLS algorithm with respect to the measurement noise level

corrupting the data – Nit: Number of iterations of the algorithm

SNR (dB) GRE (%) RERF (%) GPE (%) Nit

35 2.1 1.5 3.6 19

25 13.8 7.6 27.7 27

15 – – – –

3.4. IR`p,q algorithm

Contrary to what has been observed in the previous section, more consis-

tent reconstructions are obtained from the IR`p,q algorithm as shown by the
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Figure 3: Space-frequency plot of the force vector F̂ identified from the IRLS algorithm –

Left column: Full plot, Right column: Zoomed portion – (a) and (b) SNR = 35 dB, (c)

and (d) SNR = 25 dB, (e) and (f) SNR = 15 dB
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results given in Fig. 4 and Table 3. Indeed, consistent reconstructions are

obtained for high and moderate SNR values, even if some discrepancies can

be observed around the resonance frequencies. For low SNR values, the pro-

posed algorithm does not diverge anymore, since a solution can be computed.

However, the quality of the reconstructed solution is not as good as excepted,

but a careful analysis of the results allows obtaining useful information. In

particular, it should be noted that the reaction forces and the point force

location are rather well identified, while the point force amplitude is largely

underestimated and decreases with the frequency.

Table 3: Performances of the IR`p,q algorithm with respect to the measurement noise level

corrupting the data – Nit: Number of iterations of the algorithm

SNR (dB) GRE (%) RERF (%) GPE (%) Nit

35 1.2 1.0 1.6 21

25 4.9 3.1 8.9 20

15 25.0 14.3 48.8 26

3.5. Summary

The two previous sections allows demonstrating that the proposed IR`p,q

algorithm exhibits a better robustness with respect to the measurement noise

level than its IRLS counterpart. More specifically, the GRE, RERF and GPE

indicators allows confirming the qualitative conclusion drawn from the visual

inspection of Figs. 3 and 4. They indeed show that reconstruction errors are

consistently less for the IR`p,q algorithm than for the IRLS algorithm. Un-

fortunately, this observation is not supported by any theoretical argument.
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Figure 4: Space-frequency plot of the force vector F̂ identified from the IR`p,q algorithm

– Left column: Full plot, Right column: Zoomed portion – (a) and (b) SNR = 35 dB, (c)

and (d) SNR = 25 dB, (e) and (f) SNR = 15 dB
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Indeed, finding a mathematical proof of convergence for the proposed algo-

rithms is far from easy task and remains an open issue, especially because

the value of the regularization parameter changes at each iteration. It results

that proving mathematically that the IR`p,q converges to a better solution

than that obtained from the IRLS algorithm is all the more difficult.

It is, however, possible to explain why the algorithms leads to different

solutions. To this end, it is interesting to analyze the convergence path of

both algorithms by analyzing the evolution of the adaptive regularization

parameter and the condition number throughout the iterations. The results

presented in Fig. 5 show that the IRLS and IR`p,q have different dynamics,

even if both algorithms share some similarities in the definition of the weight-

ing coefficients. In particular, this highlights the central role of the adaptive

regularization parameter in the trajectory of the convergence path and the

resulting solutions.

To get further insights into the algorithms behavior, it is interesting to

study the existence of local minimizers for the proposed multiplicative mixed-

norm regularization. As shown in Ref. [18], the multiplicative functional has,

at least, three minimizers: (i) the least-squares solution when α̂ = α1 → 0,

(ii) the zero vector when α̂ = α2 → +∞ and (iii) a local minimizer when α̂ ∈

[α1, α2] (α̂: value of the adaptive regularization parameter at convergence).

Because the convergence paths of the IRLS and IR`p,q algorithms are different

and result in different reconstructed excitation fields, this suggests that the

existence of a local minimizer is not necessarily guaranteed especially for very

noisy measurement data. To formalize a finding method, one has to note that
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Figure 5: Evolution of the adaptive regularization parameter and condition number

throughout the iterations – Left column: adaptive regularization parameter, Right col-

umn: condition number – (a) and (b) SNR = 35 dB, (c) and (d) SNR = 25 dB, (e) and (f)

SNR = 15 dB – (—) IRLS algorithm and (−−) IR`p,q algorithm (the ordinate are scaled

logarithmically using the common logarithm)18



Eqs. (5) and (6) imply that [20]:

α̂
∥∥∥Ŵ

1/2
F̂
∥∥∥
2

2∥∥∥X−HF̂
∥∥∥
2

2

≈ 1 (14)

for the IRLS algorithm and:

α̂
∥∥∥F̂
∥∥∥
q

p,q∥∥∥X−HF̂
∥∥∥
2

2

≈ 1 (15)

for the IR`p,q algorithm. In previous equations, Ŵ and F̂ are, respectively,

the weighting matrix and the force vector obtained at convergence of the

considered algorithm. The previous observation suggests the definition of an

indicator that allows determining the existence of local minimizers. Formally,

this indicator is written for any α:

φ(α) =





α
∥∥∥Ŵ

1/2

α F̂α

∥∥∥
2

2∥∥∥X−HF̂α

∥∥∥
2

2

for IRLS

α
∥∥∥F̂α

∥∥∥
q

p,q∥∥∥X−HF̂α

∥∥∥
2

2

for IR`p,q

, (16)

where Ŵα and F̂α are, respectively, the weighting matrix and the force vec-

tor obtained at convergence of the considered algorithm for a fixed given α4.

It results from the previous definition that a minimizer (local or global) is

found when φ(α) = 1.

4F̂α is obtained by solving Eq. (5) by fixing the adaptive regularization parameter to a

constant value α for all the iterations until convergence of the IRLS and IR`p,q algorithms.

19



The plots of φ(α) obtained from the IRLS and IR`p,q algorithms for SNR

= 35, 25, 15 dB are presented in Fig. 6. This figure shows that the appli-

cation of the IR`p,q algorithm leads to only three minimizers whatever the

SNR considered. More specifically, the solution associated to the smallest

α corresponds to the least-squares solution, the solution associated to the

largest α is the zero vector, while the last one is the solution obtained for α̂

computed from Eq. (6) (indicated by the marker ∗ in Fig. 6). On the con-

trary, the IRLS algorithm behaves rather differently. Indeed, its application

for high and moderate SNR leads to five minimizers. Actually, only the sec-

ond one, corresponding to the solution obtained for α̂, leads to a consistent

solution, since the first minimizer corresponds to the least-squares solution,

while the last three correspond to the zero vector. Unfortunately, in case of

low SNR, the IRLS algorithm leads to only one minimizer associated to the

least-squares solution. It should be emphasized here that both algorithms

converge to a value of α̂ greater than that used to initialize the iterations.

In any case, the initial value is greater than that leading to the least-squares

solution, which explains why the IRLS algorithm diverges for low SNR.

Another interesting observation is related to the low-pass effect of the

algorithms on the reconstruction of the forces spectra observed and com-

mented in the previous sections (see Figs. 3 and 4)5. Actually, we are prone

to think that this effect is somewhat related to the behavior of Tikhonov-

like regularizations that lead to the definition of the so-called filter factors

5It should be be mentioned that this problem has not been observed experimentally

(see Ref. [14])
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Figure 6: Plots of φ(α) for (a) the IRLS algorithm and (b) the IR`p,q algorithm – (—)

SNR = 35 dB, (−−) SNR = 25 dB, (− · −) SNR = 15 dB and (∗) φ(α̂) (the abscissa and

the ordinate are scaled logarithmically using the common logarithm)

[21, 22], that damp or filter the singular values much smaller than the reg-

ularization parameter. In this regard, one can infer that the singular values

associated to the higher frequencies of the system are the most affected by

this filtering effect. This is probably an immediate consequence of the defini-

tion of a unique regularization parameter induced by the formulation. Two

potential alternative can be imagined to compensate this effect. The first one

consists in defining one regularization parameter per frequency or group of

frequencies. Such an approach does not involve a mixed-norm regularization

term anymore and could be directly solved using the extended multiplicative

regularization proposed by the authors in Ref. [17]. The second possibility

consists in slightly modifying the regularization term as proposed by Regińska

or Viloche Bazán et al. in Refs. [23, 24]. However, their applicability to the

present problem is left for future works.
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Finally, even if the comparison of the space-frequency and the ordinary

multiplicative regularizations is outside the scope of this paper, the results

obtained from the ordinary multiplicative regularization, which solves the

inverse problem frequency by frequency, are given in Appendix B for the

sake of completeness. In this appendix, interested readers will find useful

information regarding the application of both regularization strategies in a

similar context, as partially done in Ref. [14].

4. Conclusion

This short communication can be viewed as an extension to our previous

work on the space-frequency multiplicative regularization, since it introduces

a novel iterative algorithm, called IR`p,q, to solve mixed-norm regularization

problems. As pointed out by the numerical experiment we carried out, the

proposed IR`p,q offers a better robustness than the original IRLS algorithm

w.r.t. the measurement noise level. This contribution also shows that the

resolution algorithm is the key for a successful force reconstruction and sug-

gests that the research efforts must be continued. Finally, it is worth noting

that, even if the IR`p,q algorithm has been derived and applied in the con-

text of force reconstruction, it is actually very general, since it can directly

be applied to the wider class of linear inverse problems.

Appendix A. Calculation of the weighting matrix W

The purpose of this appendix is to detail the calculation of the weighting

coefficients wfij and wsi given in Eqs. (8) and (9) for both IRLS and IR`p,q

algorithms.
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To establish the mathematical expression of the weighting coefficients for

IRLS and IR`p,q algorithms, one has to remind that the mixed `p,q-norm is a

matrix norm. In other words, the global force vector F must be recast into

a matrix, whose coefficient Fij = Fi(fj) is the force at reconstruction point

i and frequency fj, to perform the derivation of the weighting coefficients.

It results that the regularization term of the space-frequency multiplicative

regularization is explicitly written:

‖F‖qp,q =
nr∑

i=1

(
nf∑

j=1

|Fij| p
) q

p

. (A.1)

Appendix A.1. IRLS algorithm

The basic idea of the IRLS algorithm consists in recasting the mixed

`p,q−norm to the power of q into a squared weighted `2−norm. From this

definition, the weighting coefficients wfij and wsi are determined as follows:

‖F‖qp,q =
nr∑

i=1

(
nf∑

j=1

|Fij| p
) q

p

=
nr∑

i=1

(
nf∑

j=1

|Fij| p−2 |Fij|2
) q

p

=
nr∑

i=1

(
nf∑

j=1

wfij |Fij|2
) q

p

=
nr∑

i=1



(

nf∑

j=1

wfij |Fij|2
) q

p
−1

·
nf∑

j=1

wfij |Fij|2



=
nr∑

i=1

nf∑

j=1

wsi w
f
ij |Fij|2 =

∥∥∥W1/2F
∥∥∥
2

2
.

(A.2)

The previous equation clearly shows that the weighting coefficients wfij
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and wsi are theoretically defined by:

wfij = |Fij| p−2 and wsi =

(
nf∑

j=1

wfij |Fij|2
) q

p
−1

. (A.3)

However, to avoid infinite weights when p < 2 and q < p, two damping

parameters, εf and εs, must be introduced so that:

wfij = [max (εf , |Fij|)] p−2 and wsi =

[
max

(
ε2s,

nf∑

j=1

wfij |Fij|2
)] q

p
−1

(A.4)

Finally, Eq. (A.2) allows also demonstrating that the coefficients of the

global weighting matrix W are written:

wI = wsi · w
f
ij, (A.5)

where I = j + nf (i− 1).

Appendix A.2. IR`p,q algorithm

For the IR`p,q algorithm, the weighting coefficients wfij and wsi result from

the direct application of the first-order optimality condition to the functional:

J(F) = ‖X−HF‖22 · ‖F‖qp,q. (A.6)

By definition, the first-order optimality condition consists in taking the

gradient of the functional J(F) w.r.t. F and setting the gradient to zero [see

Eq. (4)]. In doing so, one finds:

2 (HHH−HHX) · ‖F‖qp,q + 2 ‖X−HF‖22 ·
(
1

2

∂‖F‖qp,q
∂F

)
= 0. (A.7)
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Consequently, the desired weighting coefficients are obtained by calculat-

ing 1
2

∂‖F‖qp,q
∂F . To render this derivation more straightforward, let us carry out

this calculation component-wise, namely:

1

2

∂‖F‖qp,q
∂Fij

=
1

2

nr∑

k=1

∂
(∑nf

l=1 |Fkl|p
) q

p

∂Fij

=
nr∑

i=1

q

2p

(
nf∑

l=1

|Fkl|p)

) q
p
−1

·
∂
∑nf

j=1 |Fkl|p

∂Fij

=
nr∑

k=1

nf∑

l=1

q

2

(
nf∑

l=1

|Fkl|p)

) q
p
−1

|Fkl|p−2Fkl δik δjl

=
q

2

(
nf∑

j=1

|Fij|p)

) q
p
−1

|Fij|p−2 Fij

= wsi w
f
ij Fij.

(A.8)

The previous equation clearly shows that the weighting coefficients wfij
and wsi are theoretically defined by:

wfij = |Fij| p−2 and wsi =
q

2

(
nf∑

j=1

|Fij|p
) q

p
−1

. (A.9)

As for the IRLS version, two damping parameters, εf and εs , must be

introduced to avoid infinite weights when p < 2 and q < p. In doing so, the

definition of the weighting coefficients wfij and wsi becomes:

wfij = [max (εf , |Fij|)] p−2 and wsi =
q

2

[
max

(
εps,

nf∑

j=1

|Fij|p
)] q

p
−1

.

(A.10)

As a side note, it is worth noting that, in matrix notation, Eq. (A.8) is

expressed as:
1

2

∂‖F‖qp,q
∂F

= WF, (A.11)
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where W is a diagonal matrix and F is here expressed as a column vector.

The latter relation implies that Eq. (A.7) is written:

2 (HHH−HHX) · ‖F‖qp,q + 2 ‖X−HF‖22 ·WF = 0. (A.12)

The previous relation allows obtaining the expression of the global force

vector at iteration k + 1 of the IR`p,q algorithm, that is:

F̂
(k+1)

=
(
HHH + α(k+1) W(k+1)

)−1
HHX, (A.13)

where the adaptive regularization parameter α(k+1) is defined such that:

α(k+1) =

∥∥∥X−HF̂
(k)
∥∥∥
2

2∥∥∥F̂(k)
∥∥∥
q

p,q

. (A.14)

Appendix B. Comparison with the ordinary multiplicative regu-

larization

This appendix aims at providing some reconstruction results obtained

from the application of the ordinary multiplicative regularization (OMR),

that solves the inverse problem frequency by frequency. Basically, the for-

mulation of the identification problem at frequency fj is given by:

F̂(fj) = argmin
F(fj)\{0}

‖X(fj)−H(fj)F(fj)‖22 · ‖F(fj)‖
q
q , (B.1)

where H(fj), X(fj) and F(fj) are, respectively, the transfer functions ma-

trix, the measured vibration field and the excitation vector at frequency fj.
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Practically, the previous formulation is solved from an IR`q algorithm,

whose description can be found in Ref. [17]. As done in section 3.2, the re-

construction problem is solved for three SNR values, namely 35 dB, 25 dB and

15 dB. The results presented in Fig. B.7 and Table B.4 shows that, for high

and moderate SNR values, the space-frequency multiplicative regularization,

solved from the IR`p,q algorithm, performs better than the ordinary multi-

plicative regularization, which exhibits reconstructions artifacts around the

resonance frequencies of the beam. On the contrary, for low SNR values, the

ordinary multiplicative regularization allows obtaining a better reconstruc-

tion of the point force spectrum outside the resonance frequencies. However,

reconstruction artifacts are still observed around the resonance frequencies,

while the reconstructed excitation field computed by the space-frequency

multiplicative regularization is cleaner. This last observation highlights the

practical interest in exploiting prior information on the excitation signals to

identify.

Table B.4: Performances of the IR`q algorithm (OMR) with respect to the measurement

noise level corrupting the data – Nit: Number of iterations of the algorithm

SNR (dB) GRE (%) RERF (%) GPE (%)

35 5.4 1.4 3.3

25 10.7 2.5 9.6

15 29.7 8.4 29.3
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(a) (b)

(c) (d)

(e) (f)

Figure B.7: Space-frequency plot of the force vector F̂ identified from the IR`q algorithm

(OMR) – Left column: Full plot, Right column: Zoomed portion – (a) and (b) SNR = 35

dB, (c) and (d) SNR = 25 dB, (e) and (f) SNR = 15 dB
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