
HAL Id: hal-02551047
https://hal.science/hal-02551047

Submitted on 22 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empowering Caregivers To Customizing The Assistive
Computing Support of Older Adults - An End-User

Domain-Specific Approach
Stéphanie Giraud, Nic Volanschi, Charles Consel

To cite this version:
Stéphanie Giraud, Nic Volanschi, Charles Consel. Empowering Caregivers To Customizing The As-
sistive Computing Support of Older Adults - An End-User Domain-Specific Approach. International
Journal of Human-Computer Interaction, 2020, �10.1080/10447318.2020.1752479�. �hal-02551047�

https://hal.science/hal-02551047
https://hal.archives-ouvertes.fr

Empowering Caregivers To Customizing The Assistive Computing Support

of Older Adults - An End-User Domain-Specific Approach

Stéphanie Girauda and Nic Volanschia and Charles Consela,b

aInria Bordeaux – Sud-Ouest; bBordeaux INP

ARTICLE HISTORY

Received: September 2019

Accepted: April 2020

ABSTRACT
Smart homes are a promising infrastructure to support assistive services that can prolong inde-
pendent living of older adults. However, smart homes are mostly developed using a technology-
centered approach, raising challenges for users to comprehend the purpose of smart home ser-
vices and anticipate their behavior. These challenges are more acute when services are to be
deployed in homes of older adults, preventing the expert knowledge of their caregivers to be
leveraged.

This paper presents a user study that assesses the comprehensibility of an end-user lan-
guage, named Maloya, dedicated to developing assistive services. Participants (9 professional
caregivers) are presented with services written in Maloya and must determine whether they
detect scenarios of daily living.

Our results show that Maloya is well-understood by participants; they successfully deter-
mine whether a service detects a scenario (success rate of 94%) and substantiate their answers
with consistent explanations. As such, Maloya should be effective in empowering caregivers
to select appropriate services for their care-receivers and to accurately anticipate the service
behavior.

KEYWORDS
Smart home, Ambient assisted living, Domain-specific language, User study, Readability.

1. Introduction

The rapidly growing population of older adults calls for the emergence of a research field,
dedicated to developing assistive technologies (ATs), which support independent living. ATs
must meet the needs of both older adults and their caregivers, and prevent the transition of
older adults to costly care-giving facilities (Tang & Venables, 2000). Concretely, the goal of
ATs is to assist older adults in all aspects of their daily life, including daily activities (e.g.,
meal preparation monitoring, appointment or medication reminder), user safety (e.g., stove or
entrance door monitoring), health management (e.g., medication management, exercise
coaching, meal tracker), and social participation (e.g., collaborative games, social networks,
video chat apps) (Baecker, Moffatt, & Massimi, 2012). Increasingly, the design of these ATs
takes into account the capabilities, limitations and motivations of older adults (Czaja, Rogers,
Fisk, Charness, & Sharit, 2009). When properly designed, developed and deployed, ATs have
the potential (1) to inform an older adult or their clinician about their status, (2) to detect
significant changes thereof, and (3) to suggest an intervention for addressing a problem
detected by such monitoring systems (Schulz et al., 2014).

However, in practice, older adults have heterogeneous capacities, needs and preferences.
Age-related changes vary across individuals, depending on a number of factors, including their
level of education, their socio-economic category, their past professional activities, their
lifestyle, and their diet. As a result, each older adult needs specific ATs, offering specific
functionalities and specific configuration capababilities. Addressing the specificities of older
adults, at the scale of a home, requires a highly customizable approach, as shown by Consel et
al. with their assisted living platform for aging in place, named HomeAssist (Consel, Dupuy,
& Sauzéon, 2017). Specifically, HomeAssist achieves customization via an open-ended catalog

CONTACT Charles Consel. Email: charles.consel@bordeaux-inp.fr

of assistive services, providing individual older adults and their caregivers with a mechanism
to selectively address the user’s needs and preferences. Their approach was validated with 129
deployments in the home of single, community-dwelling, older adults (Consel et al., 2017). In
practice, each service of the catalog was presented to the participants to determine whether it
was (1) useful, provided some parameterization, (2) useful, but required some adaptation, or
(3) inappropriate. A service in the first category is, for example, one that requires the time
interval of an activity (e.g., breakfast preparation) to be defined. The second category of
services is one that requires an adaptation that, for example, involves calling a caregiver if a
meal is not prepared after a given time interval. The last category of services often
corresponds to a mismatch with the user’s lifestyle. For example, a user eating most of their
meals out defeats the purpose of a service monitoring meal preparation. As illustrated by
these examples, the more services are interwoven into the user’s daily life, the more they need
to be customized to match their daily activities.

To produce a large and highly customizable catalog of services, existing approaches are
mostly programmatic. To address the many services that must be produced, software
engineering research has proposed software development methodologies (e.g., Alegre,
Augusto, & Clark, 2016; Cassou, Bruneau, Consel, & Balland, 2012), raised the level of
abstraction of mainstream programming languages with design languages (e.g., Cassou,
Balland, Consel, & Lawall, 2011; Chauhan, Patel, Sureka, Delicato, & Chaudhary, 2016), and
introduced software layers and tools dedicated to the domain of pervasive computing
(e.g., Bertran et al., 2014; Salber, Dey, & Abowd, 1999). HomeAssist’s catalog is a prime
outcome of this line of research; it proposes a large set of services, addressing a range of areas
of assistance for the daily life activities of older adults (Consel et al., 2017): night-time
wandering, stove and oven hazards, suspected falls, deviations from meal routines, etc. In fact,
each area of assistance often requires different services, depending on the needs and
preferences of users. For example, monitoring the meal routines of users may involve (1) a
simple weekly report on how well they followed their routines, (2) a notification reminding
them to initiate their routines, (3) an application to be launched to suggest and guide them
through a recipe, or even (4) the support of a caregiver that is called when a user does not
prepare their meal. Not only does a range of services need to be developed to address an area
of assistance, but each service needs to be configurable to account for fine-grained specificities
of users, as mentioned earlier (e.g., time interval of an activity).

Although the programmatic approach allows to address a range of user specificities, it is
not realistic in practice at full scale. Indeed, even if the development of services could be
sustained to cover the entire domain of aging in place, this approach is out of reach for users
because it requires them to first understand the behavior of available services for each
relevant area of assistance, then to try to match their behavior and configuration capabilities
against the specificities of a user, and to eventually deploy and validate the selected services.
These tasks need to be performed by the users and/or their caregivers because they are the
most knowledgeable about the user’s specificities, as showed by Dupuy, Sauzéon, and Consel
(2015), and thus whether a service is likely to be successfully interwoven into the users’ daily
life. The resulting burden on older adults and their caregivers can be significant because they
need to dive into a potentially heavy documentation, assuming the assistive service is
properly documented, to ensure that it is appropriate for a user, and if so, train them to
anticipate its behavior. If inappropriate and/or misunderstood, the assistance delivered by a
service eventually becomes ignored, often leading the older user to discouragement, loss of
confidence in the service, and the desire to discard other services (Brush et al., 2011).

So the question arises of how to bridge the gap between users and service developers, so
that the former accurately understand assistive services without requiring extensive
documentation from the latter. Our proposal is to provide service developers with a form of
programming language that is understandable by the users (i.e., caregivers). To achieve this
goal on the developer side, this language would need to be expressive enough to cover the
scope of assistive services without incurring an overhead in the development
process (Volanschi, Carteron, & Consel, 2018; Volanschi, Serpette, Carteron, & Consel, 2018).
On the user side, the understandability of the language would need to be evaluated by
end-users.

Our approach. We present the evaluation of a domain-specific language (DSL) dedicated
to assistive services by professional caregivers and demonstrate its comprehensibility by these
users. This language, named Maloya, allows developers to formulate assistive services with
everyday, domain-specific terms (Volanschi, Carteron, & Consel, 2018). At the heart of
Maloya is a layer devoted to extensively describing the contexts in which assistance must be
delivered, leveraging existing works on the design and development of context-aware assistive
systems (e.g., Consel et al., 2017; Mihailidis & Fernie, 2002; Nehmer, Becker, Karshmer, &
Lamm, 2006; Salber et al., 1999) and their potential benefits for aging in place (e.g., Dawadi,
Cook, & Schmitter-Edgecombe, 2013; Kaye et al., 2011; Rashidi & Mihailidis, 2013). Another
layer of the language is dedicated to defining the actions to be triggered when a context
requiring assistance has been detected. As such, Maloya can be viewed as a
user-understandable, domain-specific language, dedicated to developing context-aware

2

assistive services. To illustrate the language, consider a service aiming to monitor the entrance
door at night for older adults with night wandering disorders. The context in which an alert
should be triggered can be written in Maloya as follows.

Door is open occurs for 5 minutes while Night time

If such a context is detected, a typical action consists of triggering a notification to the
user and/or the caregiver.

Our approach to assessing the comprehensibility of Maloya consists of presenting
professional caregivers with assistive services written in Maloya and ask them to determine,
for each service, whether it detects a set of scenarios of daily living. This approach allows us
to assess whether participants comprehend and anticipate the behavior of services written in
Maloya.

Contributions. The contributions of this paper can be summarized as follows.

• We introduce professional caregivers to an end-user, domain-specific language, named Maloya and aimed
to be a vehicle for them to understand the behavior of assistive services written in this language, and to
best match their care-receivers’ needs with appropriate services.

• We conduct a user study involving professional caregivers to assess the comprehensibility of Maloya in the
context of realistic assistive services, applied to scenarios of daily living.

• This study reveals that participants successfully determine whether a service detects a scenario (success
rate of 94%) and substantiate their answers with consistent explanations.

An outcome of this paper is that an end-user language such as Maloya can be an effective
vehicle to empower caregivers to select appropriate services for their care-receivers, accurately
anticipating the service behavior. This outcome is a step toward facilitating technology
dissemination and adoption.

Outline. This paper is organized as follows. Section 2 discusses the related work,
addressing assistive technologies, end-user development, and smart homes. Then, Section 3
gives a short introduction to Maloya, making this paper self-contained. Next, Section 4
presents our user study, its design and its findings. Section 5 discusses our findings and their
limitations. Finally, Section 6 envisions the next step of our work, outlining how Maloya could
enable caregivers to choose assistive services from a catalog. Section 7 concludes and outlines
the future work.

2. Related Work

We first briefly review assistive technologies for aging. Then, we explore research works in
end-user development. Finally, we review approaches to application development for smart
homes, targeting either end-users or professional programmers.

2.1. Assistive technologies.

Exploring existing ATs for aging reveals that they are typically special purpose, addressing a
specific need (e.g., agenda reminder, pill dispenser, light path, fall detector) and offering
limited customization (Gillespie, Best, & O’Neill, 2012). However, because of their narrow
target, they may become ineffective or unusable as the user needs evolve with age-related
changes. When ATs are multi-purpose, they are usually hosted by a general-purpose
computing infrastructure, such as smartphones, tablets, computers, smart speakers, and
smart homes. Assistive services take the form of applications that leverage the capabilities of
the underlying infrastructure, such as sensing, actuating, user interaction, and
networking (Consel, 2018). Examples of such services include agenda reminders, collaborative
games, sleep monitor, and pedometer.

2.2. End-user development

End-User Development (EUD), sometimes called end-user programming, aims at empowering
users to develop or modify applications (Paternò, 2013). To do so, EUD provides users with
different programming approaches and models that make this activity amenable to
non-programmers. For example, languages can be textual or visual, programming can be done
by demonstration or example. Recent surveys examine a wide range of topics on EUD:
touring EUD research topics (Bolmsten & Dittrich, 2011), reviewing the EUD research
methods and user studies (Tetteroo & Markopoulos, 2015), examining EUD application

3

domains (e.g., web and mobile applications) (Paternò, 2013), and presenting tools supporting
EUD (e.g., programming environments, frameworks, spreadsheet) (Maceli, 2017).

One of the most widely known end-user programming language is Scratch (Resnick et al.,
2009). This language provides visual notations, mixing text and icons, for programming.
Because it is general purpose, Scratch does not provide users with domain-specific
abstractions that could ease the task of designing and building programs in our target
domain, namely assistive computing.

The need for domain-specific approaches has been gradually recognized, as illustrated by
the domain of mashups. Mashups are tools for building web pages or web information portals,
that aggregate information from different web sites and web services. An early EUD system
for mashups called Marmite introduced a visual dataflow language, which was evaluated in an
informal user study (Wong & Hong, 2007). Results were mixed in that only half of the users
succeeded in building the required applications. A subsequent EUD system called Cocoa Buzz
revealed that there exists a spectrum between end-user programming and end-user software
configuration; Eagan and Stasko introduced an approach that addresses this spectrum,
enabling complex configuration to be done by instantiating predefined domain abstractions
using menus (Eagan & Stasko, 2008). A more recent proposal of EUD for mashups proposed
to simplify EUD for mashups by narrowing the target even more. Specifically, it proposed
EUD dedicated to mashups for the domain of scientific conferences for researchers (Soi,
Daniel, & Casati, 2014).

Compared to the above approaches, ours is positioned between user programming and
user configuration, within a specific domain. It explores a new path for end-user development
in which users are destined to comprehend, select and configure, not only predefined domain
abstractions, but also an open-ended list of services. To achieve this goal, we need the logic of
services to be exposed to the users, without requiring them to be programmers. This approach
can be achieved by a DSL, whose comprehensibility must be validated with a user study.

2.3. EUD for smart homes

The domain of Smart Home (SH) applications has been a major domain of study in the
context of EUD for more than a decade. Early work on EUD for smart homes included such
systems as iCAP, CAMP, and MAPS. Dey et al. produced a seminal result that showed by
means of a user study that 95% of the smart-home services envisioned by users can be
expressed as simple if-then rules (Dey, Sohn, Streng, & Kodama, 2006). Based on this result,
they implemented a system called iCAP, which included a user interface for writing
SH-related if-then rules, mixing icons and text. Rules only allowed for rudimentary temporal
relations, e.g., sequences and durations. Another approach, pursued by Truong, Huang, and
Abowd (2004), allowed end-users to specify smart-home services by freely combining a small
set of English words, relevant for a very narrow sub-domain, namely sound/video
recording/playback applications. In this approach, services were specified using a system
named CAMP, which automatically translated them to executable form. Truong et al.
recognized that their approach did not scale for wider domains of services. Carmien and
Fischer developed a system named MAPS that allowed caregivers to define interactive
prompting services for users with cognitive disabilities, using a film scripting
interface (Carmien & Fischer, 2008). The services were not context aware and were limited to
prompting (e.g., no activity monitoring). Recent research on EUD for smart homes (e.g.,
AppsGate, Coutaz, Demeure, Caffiau, & Crowley, 2014; CCBL, Terrier, Demeure, & Caffiau,
2017a) suggests that if-then rules, as pioneered by iCap, are still the dominating paradigm in
EUD for smart homes. This paradigm consists of two variants: trigger-action programming
(TAP) and event-condition-action (ECA). TAP rules consist in actions triggered by a single
event of the form “ON event THEN action” (e.g., “when someone enters the house, turn on
the heating”). Sometimes the trigger is a boolean condition similar to a state (e.g. “when I
am talking on the phone, set the radio volume to low”). In this case, the action is triggered in
fact by the event, when the condition becomes true. Some users also expect the action to be
undone when the condition becomes false. Not surprisingly, this situation is a source of
ambiguity, as noted by researchers working on TAP rules. ECA rules slightly extend TAP
rules with a guarding condition; they are of the form “ON event IF condition THEN action”.

The typical example of TAP rules is the widely known IFTTT system (Ovadia, 2014).
IFTTT has been much used and studied, and has been shown to be accessible to general
users, even when rules are extended to allow combining several triggers (Ur, McManus, Pak
Yong Ho, & Littman, 2014). However, two user studies conducted by Huang and Cakmak
revealed that end-users encounter difficulties when programming IFTTT rules that involve
states and events because they are confusing these concepts (Huang & Cakmak, 2015a).
AppsGate (Coutaz et al., 2014) proposed to address these difficulties by clearly distinguishing
events from states in the rules. However, their approach limits expressiveness since they forbid
a condition to combine several events and/or states. This limitation severely restricts the kind
of assistive services that can be expressed where rich temporal relations between states and
events are common.

4

Recently, Terrier et al. extended the ECA model with their EUD language called CCBL
(Terrier et al., 2017a); they introduced a notion of state context, distinct from an event
context. State and event contexts can be embedded in other state contexts via a cascading
mechanism. Such an embedding entails that a state temporally includes its sub-states and/or
sub-events. A preliminary user study shows that end-users write CCBL rules more easily than
TAP rules, even when more complex rules are considered. However, no temporal relations
other than the ones expressed as temporal inclusion can be defined between states. This
limitation precludes sequences of states that are commonly expressed to detect user activities.
For instance, one cannot express a go-to-bed routine as the user being in the bedroom (short)
after being in the bathroom.

This limitation is partially relaxed in an extension of CCBL (Terrier, Demeure, & Caffiau,
2017b), which includes a subset of Allen temporal relations. Importantly, Allen’s temporal
logic (Allen, 1983) provides a comprehensive, semantically well-founded model, which covers
all the 13 possible, mutually exclusive, temporal relations between two time intervals, such as
precedence, inclusion, and overlapping. However, only a small subset of the Allen relations
close to temporal inclusion are fitted into CCBL, and not in conformance with the semantics
defined by Allen. Furthermore, no user study has been conducted on these extensions to
determine whether the usability of CCBL carries over when adding temporal relations.

In contrast, by leveraging Maloya (Volanschi, Carteron, & Consel, 2018), our work
includes all Allen relations relevant for the assistive computing domain. This DSL targets the
particular domain of assistive computing with domain-specific concepts, and allows to capture
realistic assistive services. The Maloya language has been validated in terms of expressiveness
and its implementation in terms of performance. Specifically, its expressiveness allowed to
encode a complete set of 53 assistive services, deployed in over 100 homes of seniors living
alone, while requiring moderate resource consumption. However, no user study was conducted
to assess the language with respect to caregivers (nor with developers). An issue yet to be
studied is whether caregivers understand assistive services written in Maloya to the extent of
building a mental model of these services and matching it against the needs of care-receivers.
This understanding is a key to enable caregivers to accurately select and configure assistive
services from a catalog. The goal of our work is to conduct a user study to assess whether
caregivers understand services written Maloya.

2.4. Other programming models

Other programming technologies, either for ubiquitous computing in general, or for smart
homes in particular, include general programming languages (GPL), complemented with
specific middleware, complex event processing (CEP), finite state automata, and timed
automata. More recently, a few more specific DSLs for professional developers have been used
for recognizing human activities within smart homes.

Specifically, a DSL based on a temporal logic called MCL has been recently used for
recognizing activities of daily living (ADLs) (Lago et al., 2017). MCL was initially designed
for verifying program properties using model checking, but the ContextAct@A4H experiment
showed that it could be successfully used for describing ADLs on logs of sensor events, using a
combination of temporal logic formulas extended with regular expressions and recursion. In
ContextAct@A4H, MCL has been exercised for monitoring ADLs on a 4-week log from a
smart home equipped with a dense, but non-intrusive, sensor infrastructure. The results are
convincing in terms of precision and recall of the recognized activities, but the formulation of
ADLs in MCL is highly technical, as it requires extensive knowledge of temporal logic, and it
is low level, as ADLs are expressed as sequences of events. Indeed, there is no notion of states
in this programming model.

Allen (Volanschi, Serpette, et al., 2018) is a recent DSL specifically designed for
developing applications based on binary sensors, in such domains as assistive services in a
smart home. Allen addresses the same domain as Maloya, but at an increased level of
generality. Thus, it includes the 13 Allen relations and other temporal operators, but is also
extensible with new user-defined operators. Allen has been validated by expressing a complete
set of assistive services for activity monitoring, and exercised on 10 sensor logs from real
homes, each spanning 1 year. Unlike Maloya, Allen exclusively targets software developers of
assistive service and thus offers a textual syntax similar to functional programming languages,
that is not adequate for non-programmers. No user study was conducted to assess the
usability of the language.

None of these programming languages or models are adequate for non-technical end users.
Indeed, non technical users are not necessarily interested in learning a GPL; expertise in CEP
and temporal logics is rare even among professional software developers; and coding SH
applications using finite-state automata has been shown to be difficult for non-technical
end-users (Terrier et al., 2017a).

Recently, Stefanidi, Korozi, Leonidis, and Antona (2018) introduced a new approach to
programming smart home environments, based on a conversational interface. In their
approach, end users engage in a textual conversation with a monitoring system called

5

ParlAmI to program smart home behaviors. Based on this conversation in natural language
(English), ParlAmI automatically defines If-Then rules (belonging to the TAP and ECA
programming models) for an underlying home monitoring system called LECTOR. The
system further questions the user, if some details are missing, or if some user requirements are
ambiguous. In an alternative implementation of the system, the conversational agent is
embodied by a humanoid robot (Stefanidi et al., 2019). This approach is very promising for
empowering end users to program smart-home automation rules with no explicit
programming involved. However, it has only been applied and tested to define comfort-related
automation rules. In comparison, our approach is less general and more focused on assistive
applications. Instead of using general-purpose natural language and prompting the user to
resolve inherent ambiguities, we use a restricted subset of natural language, which can be
assigned an unambiguous meaning. Furthermore, in our work, we conduct a user study to
check whether the intended target users – the professional caregivers – accurately understand
the meaning of the rules with no preliminary training.

Summary and aim of our research

Caregivers are the most knowledgeable to configure ATs for detecting the activity of older
adults, as they observe daily their habits, needs and preferences. In fact, it has been shown
that the declarations given by older adults about their own needs differ from those given by
caregivers, and are less linked to their sensorimotor and cognitive inabilities (Dupuy et al.,
2015). Thus, the observations of caregivers about older adults are essential.

However, caregivers often do not have computer skills. This is why they need a simple
end-user language to understand these ATs, without getting lost by a rich catalog of assistive
services. Indeed, a catalog of customized services may provide a large choice of services with
different versions, covering different needs of older adults and various home configurations. To
address this major obstacle, we propose to introduce caregivers to an end-user language,
namely Maloya, and use it as a vehicle for them to comprehend the logic of assistive services.
More specifically, our goal is to conduct a study involving professional caregivers and
evaluating their comprehension of assistive services written in Maloya with respect to
practical scenarios. As such, this approach can pave the way to empowering caregivers to
customize the assistive computing support of their care-receivers.

3. A Domain-Specific, End-User Language: Maloya

Because our user study revolves around the Maloya language, we first give an introduction to
this language and present its main concepts (Volanschi, Carteron, & Consel, 2018). We then
present a grammar for Maloya, which formalizes its syntax and outlines its scope. Finally, we
present several scripts, illustrating the language. These same scripts will then be used in our
user study, presented in Section 4.

3.1. Concepts of the Maloya language

Maloya is a DSL for defining contextual conditions for assistive services in a smart home. It
also aims to foster collaboration between the various stakeholders of assistive services, such as
software developers, aging experts, and caregivers. To do so, Maloya uses a restricted set of
natural-language style syntax; it is text-based and features concepts dedicated to the home
assistance domain. Building upon several user studies on end-user languages in the
home-automation domain (Coutaz et al., 2014; Huang & Cakmak, 2015b), Maloya provides
states and events as distinct concepts, which can only be combined in disciplined and
meaningful ways, using typed operators. Operators include all the operators in the Allen
logic (Allen, 1983) that are relevant for programming assistive services. These operators have
been generalized in two respects: (1) to accept events and/or states, where applicable, and (2)
to handle multiple occurrences of events and/or states. In constrast, the original relations in
the Allen logic only hold between two states, lasting over two time intervals, and do not
consider timepoint events.

The syntax and semantics of the Maloya language are defined in Figure 1, extracted from
Carteron et al.’s original article. The graphical representation visualizes events and states, as
well as how they are combined by operators. Both events and states are represented as
boolean signals: boolean functions of time. In practice, time is discrete, and is given by
standard Unix timestamps (number of milliseconds elapsed since some fixed date). Thus,
states correspond to rectangle-shaped signals, and events to spike signals.

Syntactically, events are expressed as “p becomes v” where p is a sensor and v is a binary
value, which can map to ‘open’ or ‘closed’ for a contact sensor, ‘on’ or ‘off’ for a smart plug
associated to an electric appliance, and ‘true’ or ‘false’ for other sensors, such as presence

6

Event:
p becomes v

p ⇒ v e

v

v′
p

State:
p is v
p = v s

e1

e2
Every time e1 immediately precedes e2

e1 precedes e2 ⇔ Precedes(e1, e2)

Variants: e1 precedes within t e2 ⇔ Precedes less(t)(e1, e2)
e1 precedes by t e2 ⇔ Precedes greater(t)(e1, e2)

e

s
Every time e occurs during state s

e during s ⇔ During(e, s)

s1

s2
Every time state s1 overlaps with state s2
s1 overlapping s2 ⇔ Overlapping(s1, s2)

Variants: s1 overlapping s2 within t ⇔ Overlapping less(t)(s1, s2)
s1 overlapping s2 for t ⇔ Overlapping greater(t)(s1, s2)

e

s
First occurrence of event e during state s

e occurs while s ⇔ Occurs(e, s)

s1

s2First occurrence of state s1
(partially) superposed with state s2

s1 occurs while s2 ⇔ Occurs(s1,s2)

Variants: s1 occurs within t while s2 ⇔ Occurs less(t)(s1, s1)
s1 occurs for t while s2 ⇔ Occurs greater(t)(s1, s1)

e1

en

Whenever any of the events happens

{e1 or . . . or en} ⇔ Or(e1, . . . , en)

As soon as every event happens

{e1 and . . . and en} ⇔ And(e1, . . . , en)

Figure 1. Informal syntax and semantics of Maloya (Volanschi, Carteron, & Consel, 2018)

detectors. States are expressed as “p is v”, and cover the time interval between “p becomes v”
and “p becomes v′”, where v′ is the negation of v.

Operators are used to express complex conditions, involving events and states. Although
operators are applied to events and/or states, they always return events. Operators are typed,
which means that every operator accepts only specific combinations of events or states as
arguments. For instance, ‘precedes’ only applies to two events, while ‘during’ only applies to
an event and a state. Among the 13 relations in the Allen logic, which cover all the possible
orderings between two time intervals, Maloya excludes the Allen relations that require
simultaneous events, such as ’starts’ (the two intervals starting simultaneously) and ‘meets’
(one interval ending simultaneously with the start of the other). These relations have been
excluded because events coming from independent sensors rarely occur simultaneously, given
that in most systems, events are timestamped with a precision of milliseconds (or less). Thus,
expressing such conditions is not useful for assistive applications. Moreover, in practice,
simultaneous events can be serialized before being handled. As a result, Maloya defines
operators corresponding to only 3 Allen relations (‘precedes’, ‘during’, and ‘overlapping’ (see
Figure 1), knowing that the inverse relations (‘follows’, ‘contains’, ‘overlapped by’) are also
covered by these 3 operators, by simply reversing the arguments (e.g., “e2 follows e1” can be
written as “e1 precedes e2”). To express time delays, some of these operators optionally take a
duration: “precedes by/within t”, which puts a lower, respectively upper, bound on the delay
between two events, and “overlapping for/within t”, which puts a lower/upper bound on the
overlapping time between two states. There also is an ‘occurs’ operator, which has been added
later on to the Allen logic (Ghallab & Alaoui, 1989) for existentially quantifying over a time
interval: “e occurs while s” means that there exists at least one occurrence of event e during
state s. When used between two states, “s1 occurs while s2”, this operator also admits a
lower/upper bound on the duration of the superposition between two states. Finally,
complementing the operators originating in the Allen logic, there is the conjunction and
disjunction between events, which produce an event when all of, respectively any of, the given
events have occurred.

When building complex conditions, operators can be nested, provided that the typing
constraints are satisfied for each operator. Thus, as operators always produce events, they can
be nested in any operator position accepting an event. For instance, an operator can be
nested as the first argument of an ‘occurs’ operator, but not as its second argument.

7

rule -> s | s "for" t | simple_event | complex_event

s -> ID "Time" | p "is" ("true" | "open" | "on" | "false" | "closed" | "off")

e -> simple_event | "(" complex_event ")"

simple_event ->

p "becomes" ("true" | "open" | "on" | "false" | "closed" | "off")

| "BatteryLevel(" (ID | "Any") ")" "becomes" ("more" | "less") "than" INT

complex_event ->

e "precedes" (("within" | "by") t)? e

| e "during" s

| s "overlapping" s (("within" | "for") t)?

| s "occurs" (("within" | "for") t)? "while" s

| e ("and" e)* "occurs" "while" s

| e ("or" e)* "occurs" "while" s

p -> ID | "Presence(" ID ")"

t -> INT ("seconds" | "minutes" | "hours")

Figure 2. Syntax of the Maloya language

3.2. The syntax of the Maloya language

The syntax of Maloya, informally expressed by the examples in Figure 1, can be formally
defined by the grammar given in Figure 2. The notation of the grammar is standard:
alternation is denoted by a vertical bar, keywords are quoted, terminals are in all capitals (ID,
INT), a question mark suffixes a construct appearing 0 or 1 time, a Kleene star suffixes a
construct appearing 0 or more times, and parentheses are used for grouping.

A complete Maloya rule is defined by non-terminal ‘rule’. States are defined by
non-terminal ‘s’, and are either the name of a calendar slot (e.g., “Night Time”), or a sensor
name having a specific value. Events are defined by non-terminal ‘e’, and are either simple or
complex, when produced by an operator. To avoid any ambiguity, while minimizing the
number of parentheses, complex events must be parenthesized only when embedded in other
complex events.

As can be seen, the grammar allows a term such as “Fridge is open for 5 minutes” to
occur at the top level via the non-terminal ‘rule’. In turn, the ‘and’ and ‘or’ operators are only
allowed to appear within an ‘occurs’ operator on a state, which explicits the fact that their
meaning is subordinated to a time slot. Note also that the grammar enforces the typing
discipline of each operator, so that, for example, a state is admitted as an argument only in
suitable positions of some operators. For instance, operator ‘during’ requires an event as its
first argument and a state as its second argument.

3.3. Example scripts

To illustrate the language with representative examples, Table 1 shows a subset of the
assistive services on which Maloya had been validated in (Volanschi, Carteron, & Consel,
2018). Out of the 13 services detailed in the original article, we extracted all the services that
could be of interest to caregivers. There were 10 such services, covering personal and home
security, monitoring of daily activities, and monitoring technical aspects that could be fixed
by caregivers. Three services were left out; they were exclusively intended for technicians:
they concerned deep technical monitoring of the sensor infrastructures, such as detecting
malfunctioning sensors or communication problems with the wireless network. For each
service, the table gives the script in Maloya implementing the context logic of the service,
that is, recognizing the situation monitored by the service. The action part of the services is
left out, as it involves no complexity: actions are as simple as displaying an alert on a tablet
installed in the home at a fixed position, or sending an SMS to some number.

In sum, Maloya offers a number of promising features for a user study in
comprehensibility of assistive services because of its natural-language style syntax, its
distinction between events and states, and its selection of the relevant Allen-temporal
relations for the domain of home assistance.

8

Table 1. Ten different assistive services and their encoding as Maloya scripts.

Name Description Script in Maloya

1 Long
inac-
tivity

Detect if no movement in Bedroom since 24 hours Presence(Bedroom) is false for 24
hours

2 Fridge
opened

Detect if fridge remains open at least 5 minutes Fridge is open for 5 minutes

3 Battery
alert

Detect battery level of any sensor that become less
than 5%

BatteryLevel(Any) becomes less
than 5

4 Depar-
ture
alert

Detect if entrance door is opened at least for 5 min-
utes during calendar night time

Door is open occurs for 5 minutes
while Night time

5 Door
alert

Detect if entrance door is opened at least for 5 min-
utes during which there is no presence in entrance

Door is open occurs for 5 minutes
while Presence(Entrance) is false

6 Break-
fast

Detect cupboard and coffeemaker opening (any or-
der) during breakfast period

Cupboard becomes open and Cof-
feeMaker becomes on
occurs while Breakfast Time

7 Dinner Detect fridge opening and microwave starting (any
order) during dinner period

Fridge becomes open and Microwave
becomes on
occurs while Dinner Time

8 Wake-
up

Detect end of presence in bedroom, then begin of
presence in kitchen in the following 10 minutes, dur-
ing go-to-bed period

(Presence(Bedroom) becomes false
precedes within 10 minutes
Presence(Kitchen) becomes true)
occurs while Wakeup Time

9 Go to
bed

Detect end of presence in bathroom, then begin of
presence in bedroom in the following 10 minutes,
during go-to -bed period

(Presence(Bathroom) becomes false
precedes within 10 minutes
Presence(Bedroom) becomes true)
occurs while Gotobed Time

10 Lunch
re-
heat

Detect freezer opening, then stove use in the follow-
ing 10 minutes, or freezer opening during stove use;
all during lunch period

(Freezer becomes open precedes
within 10 minutes Stove becomes
on)
or
(Freezer becomes open occurs
while
Stove is on)
occurs while Lunch Time

9

Figure 3. Number of correct answers for each script.

4. User Study

We conducted a study to assess the comprehensibility of the Maloya language by professional
caregivers through scenarios of daily life activities of older adults.

4.1. Study design

Nine professional caregivers participated to this study. Participants consisted of 9 women,
aged from 22 to 40 years (median = 26). Among the participants, there were five professionals
specifically trained to assist caregivers, two occupational therapists, one nurse, and one house
keeper. Their level of education ranged from vocational diploma to masters degree.
Participants were individually tested in a quiet room.

4.1.1. Material of quantitative study

The 10 scripts of assistive services written in Maloya, listed in Table 1, have been assessed.
Each participant had to determine whether a script allowed specific scenarios to be detected.
The order of the scripts submitted to the participants was counterbalanced. Five scenarios
were evaluated by participants for each script. Thus, a total of 50 scenarios were evaluated,
consisting of positive and negative situations. For each scenario, participants had to determine
whether the script detected it, and if so, explain why. In doing so, we were able to check that
participants provided the correct conditions for a script to detect the scenario. Participants
received no training prior to being tested; they had an unbiased view toward our language.
The collected data were the number of correct answers and the response time for each
scenario. Table 4.1.1 presents an example of scenario for each of the 10 scripts. Participants
were allowed one hour for evaluating the 50 scenarios.

4.1.2. Material of qualitative study

At the end of the study, participants answered six questions about their perception of this
end-user language for caregivers: two open questions and four questions using a 5-point Likert
scale (1 meaning “not agree at all” and 5 meaning “totally agree”). The collected data were
the participants’ answers to the six questions.

4.2. Findings of the study

4.2.1. Quantitative study

The scores (total number of correct answers) for each participant are presented in Table 3.
The scores for each script are displayed as a histogram in Figure 3. The results clearly show
that the end-user language is comprehensible by caregivers, and perceived as such by them.
Indeed, caregivers answered correctly to 94% of the scenarios they were submitted. For each

10

Table 2. Ten scripts of assistive services written in Maloya and examples of scenarios.

Name Script in Maloya Example of Scenario Activity
de-
tected

1 Long
inac-
tivity

Presence(Bedroom) is false for 24
hours

Ms. Hill wakes up in the middle of the night to go to
the bathroom. But when she comes back from the
toilet, she falls into the living room, unable to get
back on her feet. The next morning, her nurse sees
her on the floor, picks her up, and takes her back to
her bed.

No

2 Fridge
opened

Fridge is open for 5 minutes Mr. Smith comes back at home after shopping. He
puts the cheese in his fridge. The phone rings, inter-
rupting him in his task. He rushes to the phone with-
out taking the time to close the fridge. The phone
call takes less than a minute. He hangs up and then
closes the fridge.

No

3 Battery
alert

BatteryLevel(Any) becomes less
than 5

The battery level of the tablet shows 4% but Ms.
Jones puts it to charge immediately.

Yes

4 Depar-
ture
alert

Door is open occurs for 5 minutes
while Night time

Mr. William comes back home at 8:40 pm after shop-
ping. He opens the door without closing it to be able
to go back and forth between the car and his home.
The storage takes more than half an hour.

Yes

5 Door
alert

Door is open occurs for 5 minutes
while Presence(Entrance) is false

Ms. Brown comes back home after going to the doc-
tor. His dog welcomes her cheerfully, jumping on her
knees; she plays with him in the entrance for ten
minutes, leaving the door open.

No

6 Break-
fast

Cupboard becomes open and Cof-
feeMaker becomes on
occurs while Breakfast Time

Mr. Taylor wakes up. He gets dressed and takes out
his dog. He comes back and enters the kitchen at
8:30 am. He opens the cupboard to give a treat to
his dog. Then, He turns on the coffee machine to
make a coffee.

Yes

7 Dinner Fridge becomes open and Microwave
becomes on
occurs while Dinner Time

It is 6.30 pm. Ms. Evans is already hungry. She opens
her fridge, takes a ready-made dish and turns on the
microwave to warm it up.

No

8 Wake-
up

(Presence(Bedroom) becomes false
precedes within 10 minutes
Presence(Kitchen) becomes true)
occurs while Wakeup Time

It is 7:30 am. Mr. Wilson wakes slowly up, He
stretches in his bed. He turns on the radio on his
bedside table, listens to the news and the weather
forecast. It is 7:50 am. He gets up and prepares his
breakfast in the kitchen.

Yes

9 Go to
bed

(Presence(Bathroom) becomes false
precedes within 10 minutes
Presence(Bedroom) becomes true)
occurs while Gotobed Time

It is 21:40 pm. Ms. Roberts goes to her bedroom to
get into her pyjamas, before going to the bathroom
to wash up. Then, she goes into the living room to
turn off the TV and closes the shutters. She takes
her dog out for 10 minutes and goes to bed.

No

10 Lunch
reheat

(Freezer becomes open precedes
within 10 minutes Stove becomes
on)
or
(Freezer becomes open occurs
while
Stove is on)
occurs while Lunch Time

Mr. Thomas comes back home after his appointment
with the doctor. He waited a very long time there
and is now hungry. It is 12:55 pm. He opens his
fridge, takes a ready-made dish and turns on the
stove to preheat it. Ten minutes later, he puts the
ready-made dish into the stove.

Yes

11

Table 3. Scores for each participant (maximal score = 50).

P1 P2 P3 P4 P5 P6 P7 P8 P9
48 45 44 49 50 45 48 44 48

Table 4. Times (in minutes) for giving the answers for each script, including all its 5 scenarios.

Script # Participants Average
P1 P2 P3 P4 P5 P6 P7 P8 P9

Script 1 5 10 5 4 1 3 2 3 2 3,9
Script 2 4 2 3 2 2 3 5 2 2 2,8
Script 3 3 2 2 5 1 2 3 2 2 2,4
Script 4 3 2 8 3 2 2 5 2 2 3,2
Script 5 5 4 5 4 6 3 7 4 2 4,4
Script 6 3 2 9 3 2 4 4 4 2 3,7
Script 7 4 4 6 2 2 4 3 6 2 3,7
Script 8 5 4 5 3 2 6 5 5 2 4,1
Script 9 6 8 10 3 3 5 5 3 9 5,8
Script 10 6 9 5 3 4 9 5 5 4 5,6
Total 44 47 58 32 25 41 44 36 29 39,6
Average 4,4 4,7 5,8 3,2 2,5 4,1 4,4 3,6 2,9 4,0

correct answer, participants provided the correct conditions of a script to detect the target
activity.

The response times for each script are given in Table 4. Each time is represented in
minutes and includes the answers for all 5 scenarios associated to the script. Scripts are
numbered 1 to 10 (first column), and participants, named P1 to P10, correspond to the
subsequent columns. Average response times for each script are given in the last column.
Finally, the last two lines in the table give the total response time and the average response
time for each participant, when all 10 scripts are considered. For each participant, the shaded
cell of the column represents the first script submitted to them; it changes across participants
to counterbalance the script order.

The average response time across all participants and all scenarios was 4.0 minutes (see
the last column of the bottom line). We notice that the majority of participants (8/9)
answered more slowly for their first script (7.1 minutes on average, which is 3 minutes slower
than the overall mean response time), regardless of the script, since their order changed for
each participant. This result suggests the need of an introductory presentation of the
language. We also note that Script 10 (Lunch Reheat) required longer response times (5.6
minutes on average, which is 1.5 minutes slower than the overall mean response time). This
situation can be explained by the fact that this script has two alternatives to carry out the
activity. As a result, it requires more cognitive resources, and thus more time for the
participants to produce an answer. Despite these alternatives, participants correctly
understood the script since it generated as many correct answers as the others. In fact, the
scripts that caused the most errors are Scripts 8 (Wake-up) and 9 (Go to bed). These two
scripts include the notion of duration (less than 10 minutes to change the room), which
creates a level of confusion in some participants. Another potential source of confusion might
be the room changes included in some scenarios associated to these scripts.

4.2.2. Qualitative study

While at the beginning of the test, most participants were questioning their comprehension of
the scripts, at the end, they felt that they had well understood the ten scripts written in
Maloya (mean = 4). They appreciated that the scripts were written in a natural-language
style without complicated symbols. They also reported that Maloya adequately meets the
needs of both the older adults and the caregivers (mean = 4). Indeed, the participants
emphasized the importance of the flexibility of the language to account for the specificities of
each older adult, and they noted that Maloya provided the required flexibility. They

12

estimated that Maloya should allow to cover a large set of daily life activities, matching the
needs of older adults. They estimated that all caregivers could easily understand this language
(mean = 4), but they should initially receive a short training (mean = 4). This result seems
consistent with the longer response times needed for the first script and argues for the
introduction of some training to familiarize caregivers with the end-user language.

Some participants found that two expressions of Maloya were unusual (“Fridge becomes
open” and “Presence(Bedroom) is false”), even though they could understand their meaning.
Moreover, a script including a time slot as a condition to meet seemed inadequate for some
participants because they reported that older adults can occasionally change their routine to
eat earlier or later, for example. In this situation, the older adult will indeed receive a
notification asking whether he/she ate. Such notifications, if repeated, should suggest that the
corresponding changes in the user routines are not occasional and should require the
caregiver’s attention. When a user routine does not apply anymore, the caregiver can adapt
the configuration of relevant assistive services. For example, an older adult may subscribe a
service that delivers meals, requiring the microwave to be used to monitor meal preparation,
instead of the stove. For another example, if an older adult changes his lunch habits, eating
home or out, depending on social opportunities, it may be preferable to deactivate any service
that monitors this activity.

5. Discussion

The results of our user study show that we met our aim to empower caregivers to customize
the assistive support of older adults using an end-user language. This language allows
caregivers to understand a catalog of services, select the ones that are appropriate for their
care-receiver, and determine parameter values for the selected services. Specifically, Maloya is
well understood by caregivers, who produce 94% of correct answers to our test. Moreover, we
checked that each correct answer was not produced ramdomly because we asked the
caregivers to explain the conditions under which a script detected a scenario. From a
qualitative perspective, the results are also positive: caregivers found that Maloya was easily
understandable, especially because it uses a natural-language style. Furthermore, they valued
the flexibility that the language provides by allowing the detection of an activity to be
customized with respect to the situation of each individual; they noticed that this capability
covers a large set of older adults needs. As a consequence, Maloya should give caregivers the
confidence to understand available services and anticipate their behavior, allowing them to
support their care-receivers during service deployment.

While participants perceived the end-user language positively, they found that users
needed to receive a short initial training. This finding is confirmed by the results of our
quantitative study where our participants were slower to produce an answer for the first
script, regardless of which script was picked first. Participants seem to need a startup time to
get accustomed to the language; an initial training could address that need.

The understanding of Maloya has been tested over a wide range of real context-aware
services, revolving around the key dimensions of daily activities, home/user security and
simple maintenance issues. As such, it is a promising vehicle to provide assistive support to
older adults that is customized with respect to the expert knowledge of caregivers.

Our study has a number of limitations. First, the sample of participants is small: 9
participants. However, all of them were professionals with expertise in the domain of aging.
Second, four participants knew the HomeAssist platform before taking our test. Thus, this
situation may have facilitated their understanding of the scripts. Third, we assessed the
comprehensibility of the end-user language with only ten scripts. Nevertheless, these scripts
were representative of the catalog of existing services and their comprehensibility was assessed
with fifty scenarios.

A more general limitation of our study is that it only covers the comprehension of scripts
expressed in our language by end users, and does not address the production of such scripts.
Nevertheless, the comprehension part is a useful intermediate step towards empowering
caregivers, as explained previously. More details about the potentials of this intermediate step
are given in the next section. Finally, our user study did not include interviews of older
adults. Addressing the production of scripts by caregivers, and gathering feedback from older
adults are promising avenues for future work.

6. Selection-Based Customization

In this section, we sketch a method for customizing assistive services, enabled by the Maloya
language. The method, applicable by caregivers, would consist in selecting a set of services in a
catalog that match the profile and needs of a care-receiver. More precisely, we show by means
of examples, how Maloya can support the different forms of service selection which were used

13

in the HomeAssist project. Recall from the Introduction that, in that project, each service of
the catalog was presented to the participants to determine whether it was (1) useful, provided
some parameterization, (2) useful, but required some adaptation, or (3) inappropriate.

6.1. Recognizing useful services needing parameterization

In the simplest case, the caregiver may directly recognize a service that is useful without any
parameterization. For example, the “Fridge opened” service is probably useful for most
care-receivers as it addresses a common situation, and uses a reasonable delay parameter.
Note that the primary goal of this assistive service is to prevent food from degrading and
cause health problems; a secondary goal could be to avoid wasting electricity.

Other services may need some parameterization to address the needs of a care-receiver.
For instance, consider the “Long inactivity” service, detecting an absence from the bedroom
during an entire day and night. While this service may be suitable for most users, consider
the case of Ms. Hill, who has a condition keeping her in bed virtually all the time. She only
gets up a few times a day for short activities around the house, risking a fall. Such a situation
is covered by the sample scenario for script 1 in Table 4.1.1. To address this risk, the caregiver
may decide to customize the service by shortening the delay during which she is not in her
bedroom to an hour or less, say. This parameterization should result in a service raising alerts
that are more relevant to Ms. Hill’s situation.

Parameterization may also concern more complex service logic, as illustrated by the
“Departure alert” service. This service detects a night wandering episode when the entrance
door remains open for a long period of time during the night. This rule is more complex in
that it combines a contact sensor (on the entrance door), a time interval (to delimit the
night), and a duration (5 minutes). Each of these temporal dimensions may need to be
parameterized for specific cases. Consider, for instance, the case of Mr. William, whose Night
interval is between 9PM and 6AM, declaring in effect never to go out during that time.
However, his son regularly comes late in the evening to bring his groceries while he sleeps, and
usually leaves the door open for more than 5 minutes while unloading the car. This situation
was covered by the sample scenario of script 5 in Table 4.1.1, involving Mr William (jr).
Knowing this situation, Mr. William’s caregiver may recognize that the declared Night
interval has to be shortened, starting later (e.g., say 12AM). Otherwise, false alerts may be
raised that can wake him up, disturbing his sleep, and hence doing more harm than good.

In order to take such decisions, the caregiver must correctly understand the impact of a
time parameter on the context logic, such as a minimal or maximal duration, or a time
interval. The overwhelming correct answers of our study participants matching scripts with
scenarios are encouraging in this regard.

6.2. Recognizing useful services needing adaptation

Some assistive services require some adaptation instead of, or in addition to,
parameterization. Let us consider once again the “Fridge opened” service. As explained above,
its parameterization should be suitable for most users, but the action triggered by this service
may need to be customized. For instance, the service is useful for Mr. Smith, but the default
action of issuing an alert notification on the home tablet is inappropriate because it can wake
up Mr. Smith during the night or a nap. Knowing this situation, the caregiver may decide to
replace this alert by a more discrete text message to Mr. Smith. This change could actually be
performed by the caregiver in the Maloya-written service. Alternatively, the catalog could
consist of two versions of this service: one triggering an alert and the other sending a text
message.

Such adaptation requires an extensive knowledge of the care-receiver routines and
preferences to refine the behavior of assistive services to that level of detail.

6.3. Recognizing inappropriate services

Deciding whether a service is appropriate may require a shallow or deep understanding of
assistive service logic. As a simple example, the “Lunch reheat” service would be useless for a
person who usually goes out for lunch. In this case, to reject this service, the caregiver only
needs to understand that its goal is to detect a lunch preparation routine, unconditionally.

A deeper examination is needed to discard the same service for a person not equipped
with a freezer. In this case, the catalog may offer a more appropriate version of the service
where a refrigerator is used instead of a freezer.

Finally, an even deeper examination of the “Go to bed” service logic is necessary to
recognize that it is inappropriate for Ms. Roberts. This service detects the sleep preparation
routine as a room transition between the bathroom and the bedroom. Discarding this service
requires her caregiver to take into account the fact that this service logic does not apply to

14

Ms. Roberts’s routine because she usually does other activities, of variable length, on her way
from the bathroom to the bedroom, such as watching TV, closing shutters, etc. This situation
was covered by the sample scenario for script 9.

Similarly, deciding whether a service is appropriate for a care-receiver also requires a
detailed understanding of its logic. For instance, the “Door alert” service detects an entrance
door left open and unattended for some time. This logic is still applicable to Mr. Brown, who
is usually welcomed by his dog at the entrance, which causes the door to be left open for long,
but not unattended. This situation was covered by the sample scenario for script 5.

Again, the largely correct answers for the various scenarios and scripts are encouraging
for the perspective of relying on caregivers to recognize and discard services.

7. Conclusions and Future Work

Our study shows that Maloya can be disseminated to caregivers as a tool that empowers them
to customize the assistive computing support of older adults. The range of assistive services
examined in our work builds upon the services developed for the HomeAssist platform. This
platform and its catalog of services have already been deployed and assessed in a real life
setting; the results have showed a positive experience of users in terms of effectiveness,
efficiency, acceptability, self-determination dimensions (autonomy, self-regulation,
empowerment, and self-realization), and user experience (see Consel et al., 2017; Dupuy,
Froger, Consel, & Sauzéon, 2017).

This paper has shown that Maloya is a pivotal tool to bridge the gap between caregivers
and an assistive computing platform because of its ability to make assistive service
comprehensible to caregivers.

In the future, we plan to further this line of work on Maloya and develop an authoring
environment for caregivers, not only to configure services, but also to define them. This
environment could use textual and graphical elements to enhance usability and guide the
service developer. This work would need to be assessed by a usability study.

Another line of work may include extending the textual syntax of Maloya with more
operators that are useful in the target domain, on a by-need basis, in cooperation with
caregivers. It is likely that, at some point, when more and more operators are added, the
comprehension of the language tends to decrease. Exploring these limits should contribute to
strike a balance between expressivity and comprehensibility, without sacrificing the
empowerment of the caregivers.

References

Alegre, U., Augusto, J. C., & Clark, T. (2016). Engineering context-aware systems and applications: A
survey. Journal of Systems and Software, 117 , 55–83.

Allen, J. F. (1983, November). Maintaining knowledge about temporal intervals. Commun. ACM ,
26 (11), 832–843.

Baecker, R. M., Moffatt, K., & Massimi, M. (2012). Technologies for aging gracefully. interactions,
19 (3), 32–36.

Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., & Consel, C. (2014). Diasuite: A tool
suite to develop sense/compute/control applications. Science of Computer Programming , 79 , 39–51.

Bolmsten, J., & Dittrich, Y. (2011). Infrastructuring when you don’t–end-user development and organi-
zational infrastructure. In International symposium on end user development (pp. 139–154).

Brush, A., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., & Dixon, C. (2011). Home automation in
the wild: challenges and opportunities. In proceedings of the sigchi conference on human factors in
computing systems (pp. 2115–2124).

Carmien, S. P., & Fischer, G. (2008). Design, adoption, and assessment of a socio-technical environment
supporting independence for persons with cognitive disabilities. In Proceedings of the sigchi conference
on human factors in computing systems (pp. 597–606).

Cassou, D., Balland, E., Consel, C., & Lawall, J. (2011). Leveraging software architectures to guide and
verify the development of sense/compute/control applications. In Proceedings of the 33rd international
conference on software engineering (pp. 431–440).

Cassou, D., Bruneau, J., Consel, C., & Balland, E. (2012). Toward a tool-based development methodology
for pervasive computing applications. IEEE Transactions on Software Engineering , 38 (6), 1445–1463.

Chauhan, S., Patel, P., Sureka, A., Delicato, F. C., & Chaudhary, S. (2016). Iotsuite: a framework to
design, implement, and deploy iot applications: demonstration abstract. In Proceedings of the 15th
international conference on information processing in sensor networks (p. 37).

15

Consel, C. (2018). Assistive computing: A human-centered approach to developing computing sup-
port for cognition. In 2018 ieee/acm 40th international conference on software engineering: Software
engineering in society (icse-seis) (pp. 23–32).

Consel, C., Dupuy, L., & Sauzéon, H. (2017). Homeassist: An assisted living platform for aging in place
based on an interdisciplinary approach. In International conference on applied human factors and
ergonomics (pp. 129–140).

Coutaz, J., Demeure, A., Caffiau, S., & Crowley, J. L. (2014). Early lessons from the development of spok,
an end-user development environment for smart homes. In Proceedings of the 2014 acm international
joint conference on pervasive and ubiquitous computing: Adjunct publication (pp. 895–902).

Czaja, S. J., Rogers, W. A., Fisk, A. D., Charness, N., & Sharit, J. (2009). Designing for older adults:
Principles and creative human factors approaches. CRC press.

Dawadi, P. N., Cook, D. J., & Schmitter-Edgecombe, M. (2013). Automated cognitive health assessment
using smart home monitoring of complex tasks. IEEE transactions on systems, man, and cybernetics:
systems, 43 (6), 1302–1313.

Dey, A. K., Sohn, T., Streng, S., & Kodama, J. (2006). icap: Interactive prototyping of context-aware
applications. In International conference on pervasive computing (pp. 254–271).

Dupuy, L., Froger, C., Consel, C., & Sauzéon, H. (2017, September). Everyday Functioning Benefits
from an Assisted Living Platform amongst Frail Older Adults and Their Caregivers. Frontiers in
Aging Neuroscience, 9 , 1-12. Retrieved from https://hal.inria.fr/hal-01597680

Dupuy, L., Sauzéon, H., & Consel, C. (2015). Perceived needs for assistive technologies in older adults
and their caregivers. In Womencourage 15’.

Eagan, J. R., & Stasko, J. T. (2008). The buzz: supporting user tailorability in awareness applications.
In Proceedings of the sigchi conference on human factors in computing systems (pp. 1729–1738).

Ghallab, M., & Alaoui, A. M. (1989). Managing efficiently temporal relations through indexed spanning
trees. In Proceedings of the 11th international joint conference on artificial intelligence - volume
2 (pp. 1297–1303). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
http://dl.acm.org/citation.cfm?id=1623891.1623963

Gillespie, A., Best, C., & O’Neill, B. (2012). Cognitive function and assistive technology for cognition:
A systematic review. Journal of the International Neuropsychological Society , 18 (01), 1–19.

Huang, J., & Cakmak, M. (2015a). Supporting mental model accuracy in trigger-action programming.
In Proceedings of the 2015 acm international joint conference on pervasive and ubiquitous computing
(pp. 215–225).

Huang, J., & Cakmak, M. (2015b). Supporting mental model accuracy in trigger-action
programming. In Proceedings of the 2015 acm international joint conference on pervasive
and ubiquitous computing (pp. 215–225). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2750858.2805830

Kaye, J. A., Maxwell, S. A., Mattek, N., Hayes, T. L., Dodge, H., Pavel, M., . . . Zitzelberger, T. A.
(2011). Intelligent systems for assessing aging changes: home-based, unobtrusive, and continuous
assessment of aging. Journals of Gerontology Series B: Psychological Sciences and Social Sciences,
66 (suppl 1), i180–i190.

Lago, P., Lang, F., Roncancio, C., Jiménez-Guaŕın, C., Mateescu, R., & Bonnefond, N. (2017). The
contextact@ a4h real-life dataset of daily-living activities. In International and interdisciplinary con-
ference on modeling and using context (pp. 175–188).

Maceli, M. G. (2017). Tools of the trade: A survey of technologies in end-user development literature.
In International symposium on end user development (pp. 49–65).

Mihailidis, A., & Fernie, G. R. (2002). Context-aware assistive devices for older adults with dementia.
Gerontechnology , 2 (2), 173–188.

Nehmer, J., Becker, M., Karshmer, A., & Lamm, R. (2006). Living assistance systems: an ambient
intelligence approach. In Proceedings of the 28th international conference on software engineering
(pp. 43–50).

Ovadia, S. (2014). Automate the internet with “if this then that”(ifttt). Behavioral & social sciences
librarian, 33 (4), 208–211.

Paternò, F. (2013). End user development: Survey of an emerging field for empowering people. ISRN
Software Engineering , 2013 .

Rashidi, P., & Mihailidis, A. (2013). A survey on ambient-assisted living tools for older adults. IEEE
journal of biomedical and health informatics, 17 (3), 579–590.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . others
(2009). Scratch: programming for all. Communications of the ACM , 52 (11), 60–67.

16

Salber, D., Dey, A. K., & Abowd, G. D. (1999). The context toolkit: aiding the development of context-
enabled applications. In Proceedings of the sigchi conference on human factors in computing systems
(pp. 434–441).

Schulz, R., Wahl, H.-W., Matthews, J. T., De Vito Dabbs, A., Beach, S. R., & Czaja, S. J. (2014).
Advancing the aging and technology agenda in gerontology. The Gerontologist , 55 (5), 724–734.

Soi, S., Daniel, F., & Casati, F. (2014). Conceptual development of custom, domain-specific mashup
platforms. ACM Transactions on the Web (TWEB), 8 (3), 14.

Stefanidi, E., Foukarakis, M., Arampatzis, D., Korozi, M., Leonidis, A., & Antona, M. (2019). Parlami:
a multimodal approach for programming intelligent environments. Technologies, 7 (1), 11.

Stefanidi, E., Korozi, M., Leonidis, A., & Antona, M. (2018). Programming intelligent environments in
natural language: an extensible interactive approach. In Proceedings of the 11th pervasive technologies
related to assistive environments conference (pp. 50–57).

Tang, P., & Venables, T. (2000). ’smart’homes and telecare for independent living. Journal of
Telemedicine and Telecare, 6 (1), 8–14.

Terrier, L., Demeure, A., & Caffiau, S. (2017a). Ccbl: A language for better supporting context centered
programming in the smart home. Proceedings of the ACM on Human-Computer Interaction, 1 (1),
14.

Terrier, L., Demeure, A., & Caffiau, S. (2017b). Ccbl: A new language for end user development in the
smart homes. IS-EUD 2017 , 82.

Tetteroo, D., & Markopoulos, P. (2015). A review of research methods in end user development. In
International symposium on end user development (pp. 58–75).

Truong, K. N., Huang, E. M., & Abowd, G. D. (2004). Camp: A magnetic poetry interface for end-
user programming of capture applications for the home. In International conference on ubiquitous
computing (pp. 143–160).

Ur, B., McManus, E., Pak Yong Ho, M., & Littman, M. L. (2014). Practical trigger-action programming
in the smart home. In Proceedings of the sigchi conference on human factors in computing systems
(pp. 803–812).

Volanschi, N., Carteron, A., & Consel, C. (2018). A domain-specific approach to unifying the many
dimensions of context-aware home service development. In 2018 ieee smartworld, ubiquitous intelli-
gence & computing, advanced & trusted computing, scalable computing & communications, cloud &
big data computing, internet of people and smart city innovation (smartworld/scalcom/uic/atc/cbd-
com/iop/sci) (pp. 480–489).

Volanschi, N., Serpette, B., Carteron, A., & Consel, C. (2018). A language for online state processing
of binary sensors, applied to ambient assisted living. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2 (4), 192.

Wong, J., & Hong, J. I. (2007). Making mashups with marmite: towards end-user programming for the
web. In Proceedings of the sigchi conference on human factors in computing systems (pp. 1435–1444).

Short biographies

Stéphanie Giraud is a cognitive ergonomist with a Ph.D. in cognitive and ergonomic
psychology whose interests lie in Human-Computer Interaction, especially the usability of
computer interfaces for impaired people. She is a teacher-researcher in the laboratory of
clinical, cognitive, and social anthropology and psychology at the University of Côte d’Azur.

Nic Volanschi is an associate researcher at Inria Bordeaux. His research concerns using
programming language technologies for automating various aspects of software engineering,
such as: IoT applications development (Ambient Assisted Living, Smart cities), software
maintenance (migration, mass refactoring), and software development (pattern matching). His
research resulted in various domain-specific languages.

Charles Consel is a Professor of Computer Science at Bordeaux INP (School of
Engineering). He served on the faculty of Yale University, Oregon Graduate Institute and
University of Rennes. His research contributions include assistive computing, pervasive
computing, software engineering, and HCI with 100+ articles in major journals and
conferences.

17

