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Abstract Human action recognition in video is one of the key problems in vi-
sual data interpretation. Despite intensive research, the recognition of actions
with low inter-class variability remains a challenge. This paper presents a new
Siamese Spatio-Temporal Convolutional Neural Network (SSTCNN) for this
purpose. When applied to table tennis, it is possible to detect and recognize
20 table tennis strokes. The model has been trained on a specific dataset, so
called TTStroke-21, recorded in natural conditions at the Faculty of Sports of
the University of Bordeaux. Our model takes as inputs a RGB image sequence
and its computed residual Optical Flow. The proposed siamese network archi-
tecture comprises 3 spatio-temporal convolutional layers, followed by a fully
connected layer where data are fused. Our method reaches an accuracy of
91.4% against 43.1% for our baseline.
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1 Introduction

Action recognition in video is one of the key problems in visual data inter-
pretation. Despite intensive research, the recognition and differentiation of
similar actions remains a challenge. The target application of our research is
fine grained action recognition in sports with the aim of improving athletes’
performances. Without loss of generality, we are interested in recognition of
strokes in table tennis. The low inter-class variability makes the task more
difficult than recognizing actions contained in more general datasets, such as
UCF-101 [23], DeepMind Kinetics [12] or AVA [8], which are widely used in
literature for action recognition. Twenty stroke classes and an additional rejec-
tion class are considered according to the table tennis rules. We are working
on videos recorded at the Faculty of Sports at the University of Bordeaux.
Students of the faculty are filmed and the teachers are supervising exercises
conducted during the recording sessions. Recordings are markerless and allow
the players to perform in natural conditions. The objective of this classifica-
tion method is to help the teachers to focus on particular strokes performed
by students. In the near future, we plan to build an automatic quality metric,
measuring the similarity between an individual stroke compared to a reference
one. The teacher could use this metric to efficiently correct strokes performed
by students, and to help them improving their performances.

There exists nowadays quite a few video datasets for action recognition,
some of which contain sport actions. We can mention the UCF-101 dataset
[23] with scenes shot for different sports or the Olympic Sports dataset [18]
with 16 classes and 50 sequences per class, both downloaded from YouTube.
For UCF-101 the source of their annotation is unknown, sometimes it is semi
- automatic as stated by the authors of [8]. In our case, the coesidernd video
dataset is complex for classification task as some stoke classes have only weak
differences in their visual appearance leading to a low inter-class variability.
Moreover, annotations are fulfilled by professional athletes, who use quite a
rich terminology. The linguistic analysis of annotations shows that for the
same video and the same stroke, professionals do not employ the same degree
of details in their annotations. This cannot be considered as a noise, but shows
ambiguity and complexity of real-life data. This dataset is the first contribution
of this paper.

The goal of our research is thus video indexing through the classification of
strokes performed by an athlete. Our second contribution is the introduction
of a new siamese 3D CNN architecture for this purpose. Our siamese architec-
ture similarly processes RGB images and Optical Flow through a succession of
spatio-temporal convolutions. A middle fusion is done before the calculation
of the class scores. We use data augmentation in a spatial and temporal way
during the training phase and compare performances with models using only
RGB images or Optical Flow data and also with early and late fusion ap-
proaches. Additionally, we compare performances using our dataset with the
Two-Stream I3D method recently proposed in [3] as a baseline.
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The remainder of the paper is organized as follows: in section 2, related
works using deep learning approaches are presented. Section 3, introduces our
dataset and the way it has been recorded and annotated. Section 4 exposes
the proposed classification method and results are presented in section 5. Con-
clusion and perspectives are drawn in section 6.

2 Related Works

The first deep learning breakthrough in image classification with AlexNet [13]
has led to many improvements such as GoogLeNet [25], VGG-Net [22] and
ResNet [9]. The next step was to extend these methods to the spatio-temporal
domain for video classification. The main challenge in this task is to adapt
existing works by taking into account temporal features. However, a direct
extension of these methods to 2D+T presents some difficulties. The required
space for training these models is indeed far greater, necessitating a reduction
of the batch size for training neural networks. This leads to a greater com-
putational time, especially if models are trained from scratch. Therefore, the
temporal dimension must be taken into account in a careful way.

In the work of [27] on multimodal gesture recognition, a first approach is
to use 2D convolution and 3D Max Pooling on RGB-Depth images fused with
Deep Belief Network using skeleton joint information. They obtain a score of
81% for the ChaLearn LAP gesture spotting challenge [7]. Inspired by [22], a
so-called Tube Convnet (T-CNN) [15] feeds the VGGNet-16 architecture with
a stack of motion-frames built with Faster R-CNN, the DBSCAN algorithm
and optical flow fields. A second T-CNN introduced in [10] uses 3D convolu-
tions and pooling. It takes as inputs 8-frame video clips performing 94.4% of
accuracy on 24 classes of UCF-101. Another method [2] uses dynamic images
as input for a CNN. Fused with the two stream networks [21], their results
are promising, reaching 96% of accuracy on the UCF-101 dataset using pre-
training on the ImageNet ILSVRC 2012 dataset [20]. Similary, PoTion [4] uses
the movement of the human joints as features to improve the classification
score of our baseline I3D [3] on UCF-101, HMDB [14] and JHMDB [11]. In [6],
the temporal dimension is taken into account through a channel of 3D tensor.

The state of the art method in action recognition from videos is the Two-
Stream I3D method [3], which reaches 98% and 93.5% of accuracy on UCF-
101 dataset, respectively with and without pre-training on the miniKinetics
dataset [12]. They follow the architecture of the two stream networks [21]
but modify some of the convolutional layers with inception modules along
with transfer learning. They proceed by classifying temporal sliding windows,
which is a common approach for action classification [24]. In their work, the
temporal window size is 64 frames which may not be long enough to classify
long-term actions. To overcome this limitation, [26] use Long-term Temporal
Convolutions (LTC) considering as input video clips of 100 frames which im-
proves the recognition of long-lasting actions. It uses a temporal window of
100 frames, at the expense of a less effective recognition of short term actions.
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As pointed out in their article, this might be due to the repetition of the last
frame to fill the required time window length. Our proposed model was in-
spired by their method, as we also use a temporal window of T = 100 frames,
but with a frame rate of 120 per second (against 25 fps in UCF-101 dataset
[23]). The choice of this window length is suitable, because actions in table
tennis are fast (see statistics in section 3) and temporal aliasing should be
avoided.

Note that video-based monitoring of athletes’ performance is quite different
from measuring fine movement. In [1] and [19], body worn inertial sensors are
used. However, the use of invasive tools for monitoring might influence the
performances of athletes. We recall that our goal is to develop a monitoring
system based on vision only.

3 The TTStroke-21 dataset

Our dataset, the so-called TTStroke-21, is composed of videos of table tennis
games. This dataset is continuously enriched with videos of different play-
ers at different frame rates, spatial resolutions and camera viewpoints (table
1). These sequences are recorded indoors without markers using artificial light.
The player is filmed in two situations: performing repetition of the same stroke
for training or in a match context. These videos have been annotated by table
tennis players and experts at the Faculty of Sports, University of Bordeaux
(France). The annotation process was designed as a crowdsourcing method.
The sessions are supervised by professional table tennis players and teachers.
A user-friendly web platform has been developed by our team for this pur-
pose, see Fig 1, where the annotator spots and labels strokes in videos: its
starting and ending frames and the stroke class. The taxonomy is built upon
a shake-hand grip of the racket. In order to avoid annotation errors as much
as possible, one recorded video was supposed to be annotated by at least 2
annotators. Unfortunately, this condition was hard to meet for all videos, and
despite efforts for cleaning the datasets build from crowdsourced annotations
like EPIC-KITCHENS[5], errors still remain.

For our first experiment,129 videos have been considered, representing 94
minutes of table tennis game at 120 fps, totaling 675 000 video frames. They
represent a total of 1387 annotations. To obtain an exploitable dataset, an-
notations had to be processed by different filters to remove annotation errors
such as i) too long or too short duration, ii) mislabeling, iii) lack of labels.
After that, each annotated stroke was considered as a positive example of its

Table 1 TTStroke-21 description

Videos Frames Minutes Players Annotators Annotations

241 2 219 225 369 17 18 2152



Fine grained sport action recognition with SSTCNN applied to Table Tennis 5

Fig. 1 Annotation platform

class, and negative examples were generated (see section 3.3). We describe
here the cleansing process in details.

3.1 Crowdsourcing filtering

In all crowdsourced applications, possible errors of the annotators should be
taken into account. As the annotators were not familiar with the annotation
platform at the beginning of the annotation sessions, there were some mis-
labelled portions of the videos. These mislabels have been filtered out auto-
matically by considering only annotations not starting at first frame (default
parameter), annotations ending after the end of the video and annotations out
of the time range (set between 0.6 and 2.3 seconds). The length of the time
range was set up accordingly to the domain knowledge of professional table
tennis players of the Faculty of Sports. This allowed the isolation of strokes
ranging from a fast hit to a long serve. After filtering, 1074 annotations were
retained. The peak statistics of stroke duration are min = 0.64s, max = 2.27s
and the average duration is of 1.46s ± 0.36s.

3.2 Data labelling

Since a video can be annotated by several annotators, a stroke detection over
all the annotations has been done. Our dataset is player-centered, with only
one player in each video. In the case of two players in one video, we allow an
overlap between each annotation of 25% of stroke duration to take into account
the overlap of the strokes. Above this overlap, the annotations are considered
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to be part of the same stroke and are temporally fused. A last filter is applied
by checking if labels of the same stroke are consistent. If not, this portion of
video is not considered in our classification task. Thus, a total of 1048 strokes
were conserved with a min duration of 0.83s,a max duration of 2.31s and an
average duration of 1.47s ± 0.36s. This filtering, based on multiple annotations
for the same recorded video, can still leave some labeling errors since multiple
labeling of the same clip by different annotators was not always easy to meet
in practise.

3.3 Selection of negative samples

Negative samples are created from video with more than 10 strokes detected.
The other videos are not fully annotated most of the time and would lead
to incorporation of strokes in the negative samples. The negative samples are
video sub-sequences between each stroke detected. We allow the overlap with
the previous and the subsequent stroke of 10% of our target window length
T used for classification. However, this approach was still selecting wrong
negative samples because of videos that were only partially annotated. This
has been manually cleared to avoid the incorporation of strokes in negative
samples. After these steps, 681 negative (non-stroke) samples with a mean
duration of 2.34s ± 2.66s have been selected from the whole dataset. This high
standard deviation comes from the non game activity of long period between

Serve Forehand Sidespin (1.2s)

Offensive Backhand Hit (1.2s)

Defensive Forehand Backspin (1.7s)

Negative (1.3s)

Fig. 2 Samples of TTStroke-21 after extractions. In respective order the first frame, frames
at 1/3 and 2/3 of the sample duration, and the last frame of the sample.
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strokes, which can be due to a ball lost or talks between the players between
games. Dataset TTStroke-21, with samples visible on Fig. 2, is available under
request for research purposes.

4 Proposed method

To be able to classify highly similar actions, table tennis strokes in our case, a
siamese 3D convolutional network model has been used to incorporate tempo-
ral features along with spatial ones. The stroke is predicted from RGB video
frames and their estimated motion vectors V = (Vx, Vy).

We address two problems: i) classification of actions, ii) detection by clas-
sification. The classification problem (i) consists in assigning a label to a tem-
poral segment corresponding to a stroke with known temporal borders in a
given video recording. The detection by classification problem (ii) consists in
labelling of strokes in the given video recording without knowing their tempo-
ral borders. In this case simultaneous partitioning of the recorded video into
strokes is fulfilled. In both tasks we have to classify temporal windows of sev-
eral frames. In one case the classification is done inside temporal borders, in
the other case we need to slide a window with some step along the temporal
axis and classify. In both cases, a deep convolution neural network classifier is
proposed and we present the proposed architecture below.

4.1 Architecture of the proposed network

Our Siamese Spatio-Temporal Convolutional Neural Network (SSTCNN), Fig.
3, is constituted of 2 branches with three 3D convolutional layers with 30,
60, 80 filter response maps, followed by a fully connected layer of size 500.
All 3D convolutional layers use 3 × 3 × 3 space-time filters with stride and
padding of 1 in all directions. The two branches are combined using a bilinear
interpolation of features form both branches in a second fully connected layer of
size 21 (corresponding to the number of considered classes). A Softmax layer
is finally applied at the end of our network to obtain a classification score.

Fig. 3 Siamese Spatio-Temporal Convolutional Neural Network (SSTCNN) architecture
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Strictly speaking, our network is not totally siamese since the sub-network
are not entirely identical. Indeed we decided not to share the same weights
because the types of the input data are heterogeneous, but the configuration
in each of the branches remains the same.

4.2 Input data

Branches of the network take RGB images and optical flow field of size (W ×
H×T ). The optical flow is computed using method [16]. The extracted frames
from the video (size 1920× 1080), are resized to 320× 180 for computing the
optical flow field.

4.2.1 Optical flow filtering

Due to flickering caused by artificial light during recording sessions, some
artifacts appear. To keep Regions-of-Interest (ROIs) only, we filter the Optical
Flow using the Hadamard product between the foreground extracted with the
method of Zivkovic and Van der Heijden [28] and the optical flow previously
computed (Fig 4).

4.2.2 Spatial segmentation

The ROI center Xroi = (xroi, yroi) is estimated from the maximum of the
optical flow norm and the center of gravity of all pixels with non-null optical
flow norm as follows:

a. RGB image b. Optical Flow magnitude

c. Estimated foreground d. Optical Flow after filtering

Fig. 4 Optical Flow filtering
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Xmax = (xmax, ymax) = argmax
x,y

(||V||1)

Xg = (xg, yg) = 1∑
δ(X)

X∈Ω

∑
Xδ(X)
X∈Ω

with δ(X) =

{
1 if ||V(X)||1 6= 0
0 otherwise

xroi = α fωx(xmax, W ) + (1− α) fωx(xg, W )

yroi = α fωy (ymax, H) + (1− α) fωy (xg, H)

(1)

with parameters α = 0.6, Ω = (ωx, ωy) = (320 × 180) the size of video
frames. Function fω(u, V ) = max(min(u, V − ω

2 ), ω
2 ) allows to have data

inputted to our network within the boundaries of our data. To avoid jittering
within our cuboids of size (W × H × T ), we apply a Gaussian filter using a
kernel of size ksize with scale parameter σblur = 0.3∗ ((ksize−1)∗0.5−1)+0.8
along the temporal dimension to average the center position.

4.3 Data Augmentation

For each stroke, we extract one video sample of size (W ×H × T ). Without
data augmentation, the T frames from the RGB and Optical Flow are centrally
extracted in the temporal and spatial dimension according respectively to the
duration of the stroke ∆t and our spatial segmentation.

For spatial augmentation we apply random rotation in the range ±10◦, a
random translation in x and y direction respectively in range ±0.1 ∗W and
±0.1 ∗H, and a random homothety in the range 1± 0.1. Transformations are
applied and centered on the ROI computed with our spatial segmentation.

To perform temporal augmentation we extract T successive frames fol-
lowing a normal distribution around the center of our stroke with standard
deviation of σ = ∆t−T

6 , which represents more than 99% of chance to be in
the temporal boundaries of the stroke (Fig. 5). However, if the frames are not
in the temporal boundaries, another random draw is done until the condition
is satisfied.

4.4 Training step

Estimation of network parameters is fulfilled using Stochastic Gradient De-
scent with Nesterov Momentum. We use a momentum of 0.5 and decrease it
to 0.1 and 0.05 at epoch 1000 and 1500 respectively, as the momentum meth-
ods are known to oscillate at the beginning of the iterative process. We use a
weight decay of 0.005. The maximum number of epochs is set to 2000. Cross-
entropy loss is used as objective function. The batch size is relatively low for
memory matter and is set to 10. The number of negative samples is chosen
twice bigger than the mean of the number of strokes per class. The dataset is



10 Pierre-Etienne Martin et al.

split into training, validation and testing sets with the respective proportions:
70%, 20% and 10% and is describe in table 2.

We use different architectures: i)the Siamese architecture introduced in
section 4.1 to train our ”Siamese model”, and ii)a convolution architecture
using only one branch of the previous architecture form each input: RGB
or Optical Flow. In the latter case, the last fully connected layer takes, as
an input, only the output of the branch used. Three other models have been
trained using the latter architecture to compare performances. The first model
which uses RGB images only will be denoted ”RGB model”. The second model
which is built upon Optical Flow only, will be called ”Optical Flow model”
and the last one using RGB images and Optical Flow concatenated together
(5 channels) in the input layer of the network will be referred as ”Early Fusion
model”. Finally, we also apply a late fusion operator such as sum of the scores,
on the one-branch models ”RGB” and ”OptFlow”. For the Siamese model we
use a learning rate of 0.001 and for the other models the learning rate is set
to 0.01.

We use data augmentation on our training set for all the models and eval-
uate them at each epoch with the accuracy on the validation dataset without
augmentation. Models with the best accuracy are saved for the next evalua-
tions on the test set.

4.5 Evaluation methods

Classification task To compare the performances of our models on the classi-
fication task, we use the Two-Stream I3D model introduced by Carreira and
Zisserman in [3] as our baseline and apply it to our dataset following their
instructions for training. The first max polling layer has been discarded be-
cause of the size of our input data which are twice smaller than theirs. The
RGB images and Optical Flow models of I3D are trained separately. Also, a
late fusion by summing up the class scores is applied to classify the stroke.
These models are referenced as ”I3D (RGB)”, ”I3D (OptFlow)” and ”I3D
(RGB+OptFlow)” respectively.

Fig. 5 Representation of 7 draw of the same stroke using temporal augmentation
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Table 2 Datasets Taxonomy

# Samples # Frames

Table tennis strokes Train Val Test Sum Min Max Mean

Def. Backhand Backspin 22 6 3 31 121 233 189 ± 25
Def. Backhand Block 19 5 3 27 100 261 131 ± 37
Def. Backhand Push 6 2 1 9 121 229 155 ± 31

Def. Forehand Backspin 29 8 4 41 129 229 177 ± 25
Def. Forehand Block 8 2 2 12 100 137 115 ± 14
Def. Forehand Push 23 7 3 33 105 177 143 ± 19
Off. Backhand Flip 25 7 3 35 100 265 195 ± 49
Off. Backhand Hit 28 8 4 40 100 173 134 ± 21

Off. Backhand Loop 21 6 3 30 100 229 155 ± 32
Off. Forehand Flip 31 9 5 45 113 269 186 ± 44
Off. Forehand Hit 45 13 6 64 100 233 158 ± 34

Off. Forehand Loop 23 7 3 33 101 277 177 ± 43
Serve Backhand Backspin 56 16 8 80 133 261 188 ± 31

Serve Backhand Loop 43 12 6 61 100 265 186 ± 42
Serve Backhand Sidespin 60 17 9 86 129 269 193 ± 33
Serve Backhand Topspin 57 16 8 81 100 273 175 ± 48
Serve Forehand Backspin 58 17 8 83 125 269 182 ± 35

Serve Forehand Loop 56 16 8 80 100 273 171 ± 51
Serve Forehand Sidespin 57 16 9 82 101 273 192 ± 39
Serve Forehand Topspin 67 19 9 95 100 273 184 ± 52

Non strokes samples 74 21 11 106 100 1255 246 ± 154

Total 808 230 116 1154 100 1255 182 ± 65

We stress that in this evaluation, the goal is to recognize the class of already
localized stroke. To evaluate our models on the test set, three methods have
been used. The first one, used also for the validation evaluation, consists in
classifying the strokes only by considering the T frames temporally centered in
each stroke. This method does not take into account the whole stroke duration
and is based on the hypothesis that the main features are centered in time.
Two further methods consider all the frames of a stroke. For both of these
methods, we perform a sliding window classification along the time dimension
of the stroke with a step of δt = 0.1T frames. We then obtain class scores for
each window in the stroke. Our second method uses majority vote whereas our
third method uses the average score of the obtained class scores. The three
methods are respectively referred as ”Test”, ”TestVote”, and ”TestAvg” and
the performances are shown in table 3.

Detection by classification To evaluate the performances of our method for
detection and classifications in videos, we compare our predictions with the
ground truth which is built from the crowdsourced annotations of TTStroke-21
dataset. Since the videos are limited in the diversity of strokes, experiments
for this task have been conducted with the whole dataset which incorporates
strokes and negative samples that were in the training, validation and test
datasets.
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The joint detection and classification is done through the classification
of segments of video using a sliding window of size T with step 1. Different
decision has been experimented to integrate classification results along the time
and thus predict a label for the given time interval. The majority vote and
max average decision - which average the probabilities over the classes - use a
window decision of size 1.5T = 150 and are denoted as ”Vote” and ”Average”.
Another decision is experimented which filter the predictions using a Gaussian
kernel of size 2T + 1 with scale parameter σ = 0.5T . Because the detection
may not be exact in time according to the crowdsourcing annotations, the
prediction is considered correct at the boundaries of strokes if it is classified
as negative stroke or as one of the stroke that are overlapping. This overlap
of label is set to 20% of the stroke duration. The performances are shown in
table 4.

5 Experiments and Results

Our deep learning models have been trained using PyTorch framework on GPU
NVIDIA Tesla P100. The size of the input data have been set to (W ×H×T )
= (120×120×100). As explained in section 1, T has been chosen with respect
to the rapidity of strokes and represents the minimum stroke duration: 0.83s
as described in section 3.2.
W and H have been set according to the distance of the players to the camera,
and thus to their visual appearance size in frames. The kernel size of the
temporal Gaussian filter on the regions of interest is set to 1

3 s which represents,
at 120 fps, a size of ksize = 41.

5.1 Comparison of performances

As it can be seen in Fig. 3, the average score method performs the best. A
gain of 12.9 % on the late fusion method and of 3.5 % on the siamese model

Table 3 Performance comparison of the different models

Accuracies

Models Val Test TestVote TestAvg

I3D (RGB) 40 40.5
I3D (OptFlow) 37.4 30.2

I3D (RGB + OptFlow) 41.7 43.1

RGB 88.7 78.5 78.5 81.9
Optical Flow 47.8 44 44 44.8
Early Fusion 84.4 73.3 74.1 75
Late Fusion 62.2 57.7 59.5 70.7

Siamese (without data aug) 90.43 87.9 88.8 91.4
Siamese 91.3 87.9 88.8 89.7
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with central window only is obtained. One can conclude that strokes need to
be entirely considered to be better classified since the main stroke features
might not always be temporally centered.

Furthermore, our models have outperformed the recent baseline model [3]
which we have trained from scratch on our dataset, exactly as we did it with all
our models. The maximum accuracy obtained on our dataset with our method
is 91.4% against 43.1% with the I3D from [3]. One hypothesis to explain this
behavior is that the Two-Stream I3D model is deeper than ours, and may over-
fit our dataset (which is more limited than UCF-101 and HMDB-51 datasets
they report their results on). Our second hypothesis is that the parameters
suggested by the authors may not fit to our problem. Finally, our dataset is
more challenging than the UCF-101 dataset used in their experiments. Indeed,
the low inter-class variability makes the task more difficult than usual. Yet, Fig
6 shows an overfitting since the beginning of the training, that supports the
first hypothesis. Moreover, a hundred frames are used as input of our model
against 64 for Two-Stream I3D [3]. This has already been proven to obtain
better performances for classification of long and similar actions [26], which is
our case for table tennis strokes using a frame rate of 120 per second.

According to table 3, our Siamese model outperforms all the other models,
even though our RGB model performs quite similarly. The RGB model also
outperformed the late fusion method, meaning the training of our Optical Flow

Fig. 6 Training process of the Two-Stream I3D models
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model could still be improved when combined with RGB model, as it has been
done in [26].

5.2 Analysis of the classification results

As it can be seen from the confusion matrix (Fig. 7), some classes are en-
tirely wrongly predicted. This must be due to the lack of training data in
those classes. As shown in table 2, the presence of the ”Defensive Forehand

Block” class is poor within the dataset. Moreover, since the annotations are
crowdsourced, some wrongly labeled strokes are still present in the dataset
leading to mislearned strokes. We noticed afterwards that this is the case with
the ”Defensive Backhand Push” stroke, some of which being annotated as
”Defensive Forehand Push”.

However, according to Fig. 8, it can be noticed that our model does not
overfit the training dataset in contrast to the I3D models (see Fig. 6). Data
augmentation did not improve our scores. This is certainly due to the length

Fig. 7 Confusion Matrix on the test dataset using our Siamese model
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Fig. 8 Training process of our Siamese model

of the strokes (maximum 2.3s i.e. 276 frames) compared to our time window
(T = 100) which leads our model to learn non representative features.

5.3 Joint stroke detection and classification

In the first part of table 4, we reached 79.6% of accuracy for detection and
classification in videos with the siamese model. However, a video can be mostly
constituted of negative samples (none stroke class), which can make our per-
formance evaluation biased. This is why in the second part of Table 4 we show
performances without counting the Negative labels or their overlaps, making
the evaluation method much more discriminant since even the overlap will not
be considered. Results are lower but still very satisfying since we reach 75.6%
of accuracy for stroke detection and classification with the RGB model. Addi-
tionally, in the second part of the table 4, we can notice the weighted method
using Gaussian kernel can be useful for decision when we are not taking into
account the negative samples in videos. This is certainly due to the part of
the video where an action is started but not ended because the ball do not
reach the player, leading to high probability of stroke presence for short video
samples. Surprisingly, we can also notice how the performances decrease for
the Optical Flow and Siamese model, whereas RGB model maintain a cor-
rect score. We can explain this behavior by the composition of the dataset
and the presence of negative samples in the videos. Negative samples will be
much more easier to classify for our Siamese and optical Flow model since the
motion is lower than in the strokes samples and may lead to slow learning of
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Table 4 Performance of stroke detection and classification

Accuracies

Models Vote Average Gaussian

RGB 76.6 78.4 77.9
Optical Flow 75 75.1 75

Siamese 79.1 79.6 79.2

without taking into account negative labels

RGB 71.4 73.4 75.6
Optical Flow 19.3 20.1 22.1

Siamese 66.5 67.1 72.2

the strokes. It also underlines the influence of the optical flow field on features
computed for classification in the siamese model.

6 Conclusion and Perspectives

In the challenging task of action recognition in sport video, with a weak inter-
class variability, this paper presented a Siamese spatio-temporal convolutional
neural network (SSTCNN) to complete this task. With an accuracy of 91.4%,
our SSTCNN model has performed the best on a new dataset of table tennis
strokes, TTStroke-21, recorded in real-world conditions and annotated with
crowdsourcing. The dataset has also been used to test the performance of our
models on the detection and classification of the stroke through classification
of cuboids of videos. Our SSTCNN performs the best when considering all
the classes but if the negative samples are not taken into account, our RGB
model takes the lead. Furthermore in recent work [17], we show the effects of
the Optical Flow normalization on the performance and recent results proves
Siamese model to be more effective on the classification and detection task.
Experimentation are still being conducted to understand and improve our
results. The dataset is continuously enriched with new acquisitions, different
players and camera viewpoints, in order robustify the model with respect to
the acquisition conditions. We plan to develop pedagogical tools using our
model to help students and teachers in the training sessions.
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