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In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb

Hamiltonians by adding potentials (functions depending only on the base point). This

led to the definition of Mañé genericity [8]: a property is generic if, given a Hamiltonian

H, the set of potentials g such that H + g satisfies the property is generic. This notion

is mostly used in the context of Hamiltonians that are convex in p, in the sense that

∂2
ppH is positive definite at each point. We will also restrict our study to this situation.

There is a close relation between perturbations of Hamiltonians by a small additive

potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians

H + g and H/(1 − g) have the same level one energy surface, hence their dynamics

on this energy surface are reparametrisation of each other, this is the Maupertuis

principle. This remark is particularly relevant when H is homogeneous in the fibers

(which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds

to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian

correspond, up to parametrisation, to conformal perturbations of the metric. One of the

widely studied aspects is to understand to what extent the return map associated to a

periodic orbit can be modified by a small perturbation. This kind of question depends

strongly on the context in which they are posed. Some of the most studied contexts are,

in increasing order of difficulty, perturbations of general vector fields, perturbations

of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of

Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations
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2 S. Aslani and P. Bernard

of convex Hamiltonians. It is for example well known that each vector field can be

perturbed to a vector field with only hyperbolic periodic orbits, this is part of the

Kupka–Smale Theorem, see [5, 13] (the other part of the Kupka–Smale Theorem states

that the stable and unstable manifolds intersect transversally; it has also been studied

in the various settings mentioned above but will not be discussed here). In the context

of Hamiltonian vector fields, the statement has to be weakened, but it remains true that

each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic

orbits (including the iterated ones), see [11, 12]. The same result is true in the context

of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian

metric with only non-degenerate closed geodesics, this is the bumpy metric theorem,

see [1, 2, 4]. The question was investigated only much more recently in the context of

Mañé perturbations of convex Hamiltonians, see [9, 10]. It is proved in [10] that the same

result holds: if H is a convex Hamiltonian and a is a regular value of H, then there exist

arbitrarily small potentials g such that all periodic orbits (including iterated ones) of

H +g at energy a are non-degenerate. The proof given in [10] is actually rather similar to

the ones given in papers on the perturbations of Riemannian metrics. In all these proofs,

it is very useful to work in appropriate coordinates around an orbit segment. In the

Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case,

appropriate coordinates are considered in [10,Lemma 3.1] itself taken from [3, Lemma

C.1]. However, as we shall detail below, the proof of this Lemma in [3], Appendix C, is

incomplete, and the statement itself is actually wrong. Our goal in the present paper is

to state and prove a corrected version of this normal form Lemma. Our proof is different

from the one outlined in [3], Appendix C. In particular, it is purely Hamiltonian and does

not rest on the results of [7] on Finsler metrics, as [3] did. Although our normal form is

weaker than the one claimed in [10], it is actually sufficient to prove the main results of

[6, 10], as we shall explain after the statement of Theorem 1, and probably also of the

other works using [3, Lemma C.1].

1 Introduction.

When studying Mañé generic properties of convex Hamiltonians, a natural group

of changes of coordinates to consider is the group of symplectic diffeomorphisms

preserving the vertical fibration, that is, those symplectic diffeomorphisms of the form

ψ(q, p) = (ϕ(q), G(q, p)). We call such transformations fibered. It is well known that such
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Normal Forms Near Orbit Segments 3

a diffeomorphism is symplectic if and only if the 2nd coordinate G(q, p) is of the form

G(q, p) = αq + p ◦ (dϕq)−1

for some closed one-form α. We will say that the fibered symplectic diffeomorphism ψ

is homogeneous if it preserves the zero section, which is equivalent to the existence of

a diffeomorphism ϕ of the base such that

ψ(q, p) = (ϕ(q), p ◦ (dϕq)−1).

We will say that the above diffeomorphism is vertical if it is of the form (q, p) �−→ (q, p+
αq), that is, if it preserves the 1st coordinate. Each fibered symplectic diffeomorphism

is thus the composition of a vertical and of a homogeneous symplectic diffeomorphisms

(in any order). Note that fibered symplectic diffeomorphisms preserve convexity, since

their restrictions to fibers is affine.

If ψ is a fibered symplectic diffeomorphism and g(q) is a potential, then (H◦ψ)+
g = (H + g ◦ ϕ−1) ◦ ψ . So if a property is invariant under symplectic diffeomorphisms,

for example having only non-degenerate periodic orbits on a given energy level, then

this property is satisfied by H + g for arbitrarily small g if and only if it is satisfied by

g + H ◦ ψ for arbitrarily small g.

These considerations allow us to enlarge the group of transformations con-

sidered in [3, Lemma C.1], where only homogeneous symplectic diffeomorphisms are

considered. Although it is natural to restrict to homogeneous transformations in the

case where H is homogeneous, there is no reason to do so in general, and we will

actually see that it is not possible to do so: allowing vertical symplectic transformations

is necessary to obtain a nice normal form.

Since all considerations are local, we will always work on the manifold R
1+d and

on its cotangent bundle R
1+d × (R1+d)∗. We will use the notations q = (q0, q∗) ∈ R × R

d

and similarly p = (p0, p∗) ∈ R
∗ × R

d∗. We denote by e0, e1, . . . , ed both the standard base

of R1+d and R
(1+d)∗.

If (Q, P) is an orbit segment such that Q̇(0) �= 0, then there exists a local

diffeomorphism ϕ of the base that sends the orbit segment Q(t), t ∈ [−δ, δ] to the

straight line segment te0, t ∈ [−δ, δ]. Once this reduction has been performed, we only

consider fiber-preserving symplectic diffeomorphisms ψ , which have the property that

their horizontal component ϕ is the identity on the segment [−δ, δ]e0. We call such
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4 S. Aslani and P. Bernard

diffeomorphisms admissible. This implies that

dϕte0
· e0 = e0 , (p ◦ (dϕte0

)−1)0 = p0, (1)

where the 2nd equality is obtained by applying the linear form p ◦ dϕ−1
te0

to the 1st

equality, and where p0 is the 1st coordinate p0 = p·e0. In other words, the 1st component

p0 of the momentum is not changed by applying an admissible homogeneous symplectic

diffeomorphism.

Theorem 1. Let H : T∗
R

1+d −→ R be a smooth Hamiltonian convex in p in the sense

that ∂2
ppH is positive definite at each point. Let (Q(t), P(t)) be an orbit of H such that

Q̇(0) �= 0. Then there exists a smooth local fibered symplectic diffeomorphism ψ and

δ > 0 such that the new Hamiltonian H = H ◦ ψ and the new orbit (Q(t), P(t)) =
ψ−1(Q(t), P(t)) satisfy, for all t ∈ [−δ, δ],

Q(t) = te0, (2)

P(t) = 0, (3)

∂2
p0p∗H(te0, P(t)) = 0, (4)

∂2
qp∗H(te0, P(t)) = 0, (5)

∂2
p∗p∗H(te0, P(t)) = Id. (6)

If ∂2
q∗p0

H(te0, 0) does not identically vanish, then this quantity cannot be reduced to zero

by applying an admissible change of coordinates preserving the other equalities.

Note that equality (3) can obviously not be obtained using only homogeneous

changes of coordinates, since they preserve the zero section. Moreover, it follows

from (1) that the 1st coordinate P0(t) is invariant under the action of homogeneous

admissible diffeomorphisms. As a consequence, it is not true that orbits of general

convex Hamiltonians can be reduced to (Q(t), P(t)) = (te0, e0) by such diffeomorphisms,

as is claimed in [3, Lemma C.1]. This becomes possible (and easy) once vertical changes

of coordinates are allowed, as we shall verify below.

Contrarily to [3, Lemma C.1], the last claim of the theorem implies that (5) can’t

be strengthened to ∂2
qpH(te0, 0) = 0, even if vertical symplectic diffeomorphisms, in
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Normal Forms Near Orbit Segments 5

addition to homogeneous ones, are permitted. See however Section 3 where this equality

is proved in the homogeneous case.

If H satisfies all the conclusions of Theorem 1, it is of the form

H(q, p) = f (q) + w(q)p0 + 1

2
a(q0)p2

0 + 1

2
〈p∗, p∗〉 + O3(q∗, p), (7)

where f and w are smooth functions from R
1+d to R satisfying f (q0, 0) = f (0, 0) and

w(q0, 0) = 1 for each q0 ∈ [−δ, δ]. Setting H̃(q, p) := (H(q, p) − H(0))/w(q), we thus have

H̃(q, p) = f̃ (q) + p0 + 1

2
ã(q0)p2

0 + 1

2
〈p∗, p∗〉 + O3(q∗, p), (8)

with f̃ (q0, 0) = 0. This means that the additional conclusion ∂2
qpH(te0, 0) = 0 can

be achieved provided we translate H so that our orbit has energy 0 (which does not

change anything to the dynamics), and then multiply H by a function of q (which is

a reparametrisation of the dynamics on the energy surface H̃−1(0) = H−1(H(0))). This

fact seems sufficient to derive most of the applications of [3,Lemma C.1] existing in the

literature.

Let us illustrate for example how the results of [10] can be obtained. We denote

by Et the space {q0 = t} ∩ {p0 = 0}, which projects isomorphically to R
d × R

d∗. Let

L : E0 −→ Eδ be the differential at zero of the transition maps between the sections

{q0 = 0} ∩ {H̃ = 0} and {q0 = δ} ∩ {H̃ = 0}, seen as a symplectic 2d × 2d matrix. Since the

dynamics of H and H̃ in restriction to H̃−1(0) are reparametrisations of each other, they

have the same transition map hence LH = LH̃ . The main statement of [10] is that, if X is

a dense set of symplectic 2d × 2d matrices, there exist arbitrarily small potentials g(q)

such that LH+g ∈ X. This statement is proved in [10] for Hamiltonian having the form

(8) above, and the normal form is invoked, to reduce each Hamiltonian to this form.

However, as we have explained, one can only obtain the normal form (7) in general. The

missing step is to deduce the statement for H from the statement for H̃, which turns out

to be easy: applying the statement to H̃ gives small potentials g̃(q) such that LH̃+g̃ ∈ X.

We now observe that H̃ + g̃ = (H − H(0) + wg̃)/w, hence

LH+wg̃ = LH̃+g̃ ∈ X.

Since the function w depends only on q, wg̃ is a potential, which can be made arbitrarily

small by taking g̃ arbitrarily small. We have proved the statement for H.
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6 S. Aslani and P. Bernard

2 Proof of the Normal Form.

We will always work in coordinates such that (2) holds and consider only admissible

changes of coordinates (i.e., changes of coordinates whose horizontal component fixes

the axis Re0). Our proof is purely Hamiltonian and does not rest on [7, Lemma 3.1].

Actually, a small modification of the proof also implies this Lemma, as will be explained

in the next section. We will apply several admissible diffeomorphisms. At each step, we

will denote by H the initial Hamiltonian and by H = H ◦ψ the transformed Hamiltonian.

In the matrix computations below, we most of the time consider the momenta p as line

matrices hence denote by pM what might also be denoted by Mtp.

Proof of (3). Let P0(t) be the 1st component of P(t) (the orbit before the change

of coordinates). We consider a function v(t) : R −→ R such that v′ = P0 and the

function u(q0, q∗) := v(q0) + P∗(q0) · q∗. We have dute0
= P(t), hence applying the vertical

diffeomorphism ψ(q, p) = (q, p+duq), the new orbit (Q(t), P(t)) = ψ−1(Q(t), P(t)) satisfies

P(t) = 0. �

Proof of (4). We assume that (3) and (2) are already satisfied for H and prove that (4)

can be obtained by a further change of coordinates. We consider a base diffeomorphism

of the form ϕ(q0, q∗) = (q0 + l(q0) ·q∗, q∗), where q0 �−→ l(q0) is a smooth map with values

in R
d∗. The corresponding homogeneous diffeomorphism satisfies

ψ : (q0, 0, p0, p∗) �−→ (q0, 0, p0, p∗ − p0l(q0)). (9)

We then have ∂p∗(H ◦ ψ)(q0e0,p0,p∗) = ∂p∗H(q0e0,p0,p∗−p0l(q0)) hence

∂2
p0p∗H(q0e0,0) = ∂2

p0p∗(H ◦ ψ)(q0e0,0) = ∂2
p0p∗H(q0e0,0) − ∂2

p∗p∗H(q0e0,0) · l(q0).

We obtain (4) by choosing

l(q0) := (∂2
p∗p∗H(q0e0,0))

−1 · ∂2
p0p∗H(q0e0,0).

Observe that ∂2
p∗p∗H(q0e0,0) is invertible because ∂2

ppH is positive definite at each point.

�

Proof of (5). This equality can be obtained by a further homogeneous change of

coordinates preserving (2) and (4). We could assume (3), but, keeping in mind another
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Normal Forms Near Orbit Segments 7

application in Section 3, we only make the slightly more general assumption that

P(t) ≡ P(0) = (P0, 0) for some constant P0. We consider the vector field

V(q) := ∂pH(q, P(0))

on R
d+1. We apply a variant of the Flow Box Theorem to the vector field V. More pre-

cisely, we consider the diffeomorphism ϕ(q) = (q0, φ(q0, q∗)), defined in a neighborhood

of [−δ, δ] × {0} in such a way that q∗ �−→ φ(t, q∗) is the transition map along the orbits of

V between the sections {q0 = 0} and {q0 = t}. In other words, ϕ(q0, q∗) = �q0(0, q∗), where

�t is the flow of the reparametrised vector field V(q)/V0(q) (V0 is the 1st coordinate of

V). It is a smooth diffeomorphism near [−δ, δ] × {0}, and V = V0 ϕ	e0, where ϕ	e0 is the

forward image of the constant vector field e0.

Since ϕ is fixing the axis Re0 and preserving q0, the associated homogeneous

diffeomorphism ψ preserves (2) and (4). Moreover, ψ(q, P(0)) = (ϕ(q), P(0)). Denoting

as usual H := H ◦ ψ , and V(q) = ∂pH(q, P(0)), we have ϕ	V = V = V0 ϕ	e0, hence

V = (V0 ◦ϕ−1)e0, and V∗ = 0, or in other words ∂p∗H(q, P(0)) = 0 for all q. Differentiating

with respect to q gives (5). �

Proof of (6). We assume that the equations (3) to (5) initially hold. We will obtain (6) by

an admissible (usually not homogeneous) transformation preserving all these equalities.

This transformation will be decomposed into first a homogeneous transformation and

second a vertical transformation none of which preserve (5). �

The 1st step consists of applying the homogeneous change of coordinates ψ

associated to a diffeomorphism of the form

ϕ(q0, q∗) = (q0, M(q0) · q∗),

where M(t) is a d × d invertible matrix depending smoothly on t. The matrix of the

differential of ϕ is

D(q) =
[

1 0

M ′(q0)q∗ M(q0)

]
, D−1(q) =

[
1 0

−M−1(q0)M ′(q0)q∗ M−1(q0)

]
,

where M ′(q0) is the derivative. We thus have

ψ(q, p) = (
q0, M(q0)q∗, p0 − p∗M−1(q0)M ′(q0)q∗, p∗M−1(q0)

)
.
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8 S. Aslani and P. Bernard

The Hamiltonian in original coordinates is of the form

H(q, p) = H(q, 0) + v(q)p0 + 1

2
a(q0)p2

0 + 1

2
〈p∗A(q0), p∗〉 + O3(q∗, p),

with v(q) = ∂p0
H(q, 0), a(q0) = ∂2

p0p0
H(q0e0, 0), A(q0) = ∂2

p∗p∗H(q0e0, 0). We compute

H(q, p) = H ◦ ψ(q, p) = H(q, 0) + v(q)p0 − p∗M−1(q0)M ′(q0)q∗ + 1

2
a(q0)p2

0

+ 1

2
〈p∗M−1(q0)A(q0), p∗M−1(q0)〉 + O3(q∗, p).

We get (6) provided M(q0)Mt(q0) = A(q0) for each q0. We could for example take

M(q0) = A1/2(q0) for each q0 (remember that A(q0) is positive definite for each q0).

However, the unavoidable apparition of the term p∗M−1(q0)M ′(q0)q∗ means that (5) have

been destroyed. In order to be able to restore it by a vertical change of coordinates, we

need a better choice for M(q0):

Lemma 2.1. We can choose M(q0) in such a way that

H(q, p) = H(q, 0) + v(q)p0 − p∗B(q0)q∗ + 1

2
a(q0)p2

0 + 1

2
〈p∗, p∗〉 + O3(q∗, p),

where B(q0) is symmetric for each q0.

Proof. We need the matrix M(t) to satisfy the two conditions that M(t)Mt(t) = A(t) and

B(t) := M−1(t)M ′(t) is symmetric. Derivating the 1st condition, we get M ′Mt+M(M ′)t = A′.
Using the symmetry of B, we deduce that (Mt)′(Mt)−1 = M−1M ′, hence that M(Mt)′ =
MM−1M ′Mt = M ′Mt. We obtain the equation 2M ′Mt = A′ or in other words:

M ′(t) = A′(t)(Mt)−1/2.

Reducing δ if necessary, there exists a solution M(t) of this equation on the interval

[−δ, δ], satisfying moreover the initial condition M(0) = A1/2(0). For such a solution, we

see that

M−1M ′ = M−1A′(Mt)−1/2 = (M ′)t(Mt)−1
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Normal Forms Near Orbit Segments 9

hence the corresponding matrix B is indeed symmetric. Then, the same computation

made earlier shows that (MMt)′ = A′. Since the equality MMt = A is satisfied at t = 0, it

is thus satisfied for all t ∈ [−δ, δ].

The 2nd step consists of applying the vertical change of coordinates


 : (q, p) �−→ (q, p + duq)

with u(q) = 〈B(q0)q∗, q∗〉/2, so that duq = (∗, B(q0)q∗). It is then a direct computation

that

H ◦ 
(q, p) = f (q) + w(q)p0 + 1

2
a(q0)p2

0 + 1

2
〈p∗, p∗〉 + O3(q∗, p),

for some smooth functions f such that f (q0, 0) = H(0, 0), and w such that w(q0, 0) = 1.

�

We now prove the last statement of the theorem about the impossibility of

achieving the additional condition ∂2
q∗p0

H = 0. We shall only consider admissible

diffeomorphisms that preserve (2), (3), and (4). Every fibration preserving symplectic

diffeomorphism preserving (2) and (3) is the composition of a homogeneous and a

vertical diffeomorphisms each of which preserve (2) and (3).

Let us first observe that ∂2
q∗p0

H(te0, 0) can’t be changed by applying a vertical

diffeomorphism preserving (3). Such a diffeomorphism is of the form ψ(q, p) = (q, p +
duq) for some smooth function u satisfying dute0

= 0, hence in particular u is constant

on Re0. Then,

∂p0
(H ◦ ψ)(q, p) = ∂p0

H(q, p + ∂qu(q))

and

∂2
q∗p0

(H ◦ ψ)(te0, 0) = ∂2
q∗p0

H((te0, 0) +
d∑

i=0

∂2
pip0

H(te0, 0)∂2
q∗qi

u(te0)

= ∂2
q∗p0

H((te0, 0) + ∂2
p0p0

H(te0, 0)∂2
q∗q0

u(te0) = ∂2
q∗p0

H(te0, 0).

In this computation, we have used first that ∂2
p∗p0

H(te0, 0) = 0, and then that

∂2
q∗q0

u(te0) = ∂2
q0q∗u(te0) = 0, which holds since ∂q∗u(te0) is identically zero.

We now consider the action of homogeneous admissible transformations.
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10 S. Aslani and P. Bernard

Lemma 2.2. The homogeneous symplectic diffeomorphism ψ associated to ϕ preserves

(2) and (4) if and only if the matrix of the differential of ϕ has the following 1 + d block

form for each t ∈ [−δ, δ]:

Dϕ(te0, P(t)) =
[

1 0

0 ∗

]
.

Proof. Since ϕ is admissible, the matrix Dϕ along the orbit has the triangular block

form

D(t) := Dϕ(te0, P(t)) =
[

1 b(t)

0 B(t)

]
, D−1(t) =

[
1 −b(t)B−1(t)

0 B−1(t)

]
,

hence

ψ(q, p) = (
ϕ(q), p0, p∗B−1(t) − p0b(t)B−1(t))

)
.

We have

∂2
pp(H ◦ ψ)(te0, P(t)) = D−1(t)∂2

ppHψ(te0,P(t))(D
−1)t(t).

In matrix form,

∂2
pp(H ◦ ψ) =

[
1 −b(t)B−1(t)

0 B−1(t)

][
∂2

p0p0
H 0

0 ∂2
p∗p∗H

] [
1 0

−(B−1)t(t)bt(t) (B−1)t(t)

]

=
[

∗ −b(t)B−1(t)A(t)(B−1)t

B−1(t)A(t)(B−1)tbt B−1(t)A(t)(B−1)t

]
.

This matrix is block diagonal (which is equivalent to ∂2
p0p∗(H ◦ ψ) = 0) if and only if

b(t) = 0.

Let now H be a Hamiltonian satisfying (2) to (4), and ψ be the homogeneous

transformation associated to the diffeomorphism ϕ. We assume that H = H ◦ ψ still

satisfies (2) to (4). We denote by a(q) the 1st coordinate of ϕ. In view of the previous

Lemma, we have the block diagonal form for t ∈ [−δ, δ],

Dϕ(te0,0) =
[

1 0

0 Z(t)

]
,
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Normal Forms Near Orbit Segments 11

in particular ∂qa(q0, 0) = e0, ∂q∗a(q0, 0) = 0 for each q0 ∈ [−δ, δ] thus ∂2
q0q∗a(q0, 0) = 0. It is

convenient for the following computations to denote V(q) := ∂pH(q, 0), V(q) := ∂pH(q, 0),

so that

V(ϕ(q)) = dϕq · V(q)

and, focusing on the 1st coordinates, V0(ϕ(q)) = ∂qa(q)·V(q). Differentiating with respect

to q∗ at the point te0, t ∈ [−δ, δ] yields

∂q∗V0(te0) · Z(t) = ∂2
q∗qa(te0) · V(te0) + ∂qa(te0) · ∂q∗V(te0)

= ∂2
q∗qa(te0) · e0 + ∂q∗V0(te0) = ∂2

q∗q0
a(te0) + ∂q∗V0(te0)

= ∂q∗V0(te0).

Since Z(t) is invertible for each t ∈ [−δ, δ], we have proved that ∂2
q∗p0

H(te0, 0) =
∂q∗V0(te0) = 0 if and only if ∂2

q∗p0
H(te0, 0) = ∂q∗V0(te0) = 0. If H did not satisfy this

condition from the start, then neither does H. �

3 The Homogeneous Case

We explain here for completeness how the arguments given above also imply the

following statement, which is equivalent to [7, Lemma 3.1].

Proposition 3.1. Let H : T∗
R

1+d −→ R be a Hamiltonian positively homogeneous in

the fibers, smooth and positive outside of the zero section, and such that ∂pp(H2) is

positive definite at each point outside of the zero section. Let (Q(t), P(t)) be an orbit

of H such that Q̇(0) �= 0. Then there exists a smooth local homogeneous symplectic

diffeomorphism ψ and δ > 0 such that the new Hamiltonian H = H ◦ψ and the new orbit

(Q(t), P(t)) = ψ−1(Q(t), P(t)) satisfy the equalities (2), (4), and (5) for each t ∈ [−δ, δ], as

well as

P(t) = (P0(0), 0), (10)

∂2
qpH(te0, P(t)) = 0. (11)

Proof. We work in coordinates where (2) hold and apply admissible homogeneous

transformations.
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The 1st component P0(t) of the momentum is independent of t, and non-zero.

Indeed, we have, using the Euler relation,

P0(t) = P(t) · e0 = P(t) · ∂pH(te0, P(t)) = aH(te0, P(t)),

where a is the degree of homogeneity. Then,

P0(t) = aH(te0, P(t)) = aH(0, P(0)) = P0(0),

where we have used the preservation of H along the orbit. Moreover, the constant P0(t)

as well as the energy H(te0, P(t)) are non-zero otherwise the orbit would be constant.

We now apply the same homogeneous diffeomorphism as in the proof of (4)

above, with l(q0) = P∗(t)/P0, where P0 = P0 is the 1st component of the momentum.

In view of (9), we get (10).

Then (4) automatically holds: we have

∂p∗H(te0, (P0, 0)) = ∂p∗H(te0, P(t)) = Q̇∗(t) = 0.

By homogeneity of the map p �−→ ∂p∗H(te0, p), we deduce that ∂p∗H(te0, (sP0, 0)) = 0 for

each s > 0, hence that ∂2
p0p∗H(te0, (p0, 0)) = 0.

The equality (5) can then be obtained by applying a homogeneous change of

coordinates, the proof of the previous section can directly be applied.

The equality ∂qp0
H(te0, P(t)) = 0, hence (11), then automatically holds. Indeed,

since P(t) = P(0) is constant, we have ∂qH(te0, (P0(t), 0)) = ∂qH(te0, P(t)) = Ṗ(t) = 0. Using

the homogeneity of the map p �−→ ∂qH(te0, p), we deduce that ∂qH(te0, (sP0, 0)) = 0 for

each s > 0, hence that ∂p0qH(te0, (P0, 0)) = 0. �
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