
HAL Id: hal-02550847
https://hal.science/hal-02550847v1

Submitted on 22 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

gTFRC : a QoS-aware congestion control algorithm
Guillaume Jourjon, Emmanuel Lochin, Laurent Dairaine

To cite this version:
Guillaume Jourjon, Emmanuel Lochin, Laurent Dairaine. gTFRC : a QoS-aware congestion control
algorithm. International Conference on Networking, International Conference on Systems and In-
ternational Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06),
Apr 2006, Morne, Mauritius. �10.1109/ICNICONSMCL.2006.109�. �hal-02550847�

https://hal.science/hal-02550847v1
https://hal.archives-ouvertes.fr

gTFRC : a QoS-aware congestion control algorithm

Emmanuel Lochin
National ICT Australia Ltd,

Locked Bag 9013,
Alexandria, NSW 1435

Australia

Laurent Dairaine
National ICT Australia Ltd,
ENSICA - LAAS/CNRS,

1, place Emile Blouin
31056 Toulouse Cedex 5

France

Guillaume Jourjon
National ICT Australia Ltd,
ENSICA - LAAS/CNRS,

1, place Emile Blouin
31056 Toulouse Cedex 5

France

{emmanuel.lochin,laurent.dairaine, guillaume.jourjon}@nicta.com.au

Abstract

This study addresses the end-to-end congestion control
support over the DiffServ Assured Forwarding (AF) class.
The resulting Assured Service (AS) provides a minimum
level of throughput guarantee. In this context, this paper de-
scribes a new end-to-end mechanism for continuous trans-
fer based on TCP-Friendly Rate Control (TFRC) originally
proposed in [11]. The proposed approach modifies TFRC
to take into account the QoS negotiated. This mechanism,
named gTFRC, is able to reach the minimum throughput
guarantee whatever the flow’s RTT and target rate. Simula-
tion measurements show the efficiency of this mechanism ei-
ther in over-provisioned or exactly-provisioned network. In
addition, we show that the gTFRC mechanism can be used
in the same DiffServ/AF class with TCP or TFRC flows.

1 Introduction

The increasing capabilities of high performance end sys-
tems and communication networks have greatly accelerated
the development of distributed computing. Distributed ap-
plications were originally characterized by very basic com-
munication requirements mainly related to full reliability
and order. Today, many applications are demanding more
complex requirements in terms of delay and bandwidth. In
the context of Internet, the Assured Forwarding class of the
IETF/DiffServ [12] provides a guaranteed minimal through-
put that many applications can take advantage of. The ser-
vice offered is called Assured Service (AS) and built on
top of the AF PHB. The minimum assured throughput (also
called target rate) is given according to a negotiated profile
with the user. Such traffic is generated by adaptive appli-
cations, it means that their throughput can increase as long

as there are available resources and can decrease when a
congestion occurs.

Nevertheless, this QoS support is alone not sufficient to
cope with either the application requirements (e.g., reliabil-
ity, timing) or the network control requirements. Most of
the today’s Internet applications use TCP [23] as a mean
to transport their data. TCP offers a reliable and in se-
quence end-to-end stream oriented data transfer service be-
tween two interconnected systems. Moreover, TCP imple-
ments flow and congestion control mechanisms in order to
avoid receivers’ buffers overflowing and network conges-
tion. Despite of a TCP good behavior in terms of avail-
able bandwidth sharing, TCP is not appropriate for many
applications that integrates time and bandwidth constraints.
The TCP-friendly Rate Control (TFRC) [11] is an equation
based congestion control mechanism operating in the best-
effort Internet environment and competing with TCP traffic.
TFRC has a much lower variation of throughput over time
than TCP. As a result, it is more suitable for multimedia
application such as video streaming or VoIP.

This paper focus on how TFRC mechanism behaves in
the context of a DiffServ/AF class. We show by simu-
lation the good properties of classical TFRC in terms of
bandwidth smoothing and sharing when it is mixed with
either other TFRC or TCP flows. Nevertheless, even if a
throughput guarantee is provided to the application by the
underlying network, as for TCP, the throughput obtained
by TFRC mainly depends on RTT and loss probability.
Then, the application does not always get the negotiated
guaranteed throughput also called the target rate. To cope
with this problem, we propose a very simple adaptation to
TFRC, namely gTFRC, allowing the application to reach
its target rate whatever the RTT value of the application’s
flow. Results from a large simulation campaign is presented
to demonstrate the improvements and to exhibit the TCP-

friendliness of gTFRC in various situations.
This paper is structured as follow. The section 2 presents

the context of this study and provides a related work about
the DiffServ/AF and congestion control mechanisms. Sec-
tion 3 gives the problem statement and presents the gTFRC
mechanism. Section 4 evaluates gTFRC and finally section
5 provides a conclusion.

2 Background

2.1 Context of this study : the EuQoS project

Many research works have been carried out on Quality
of Service mechanisms for packet switching networks over
the past ten years. The results of these efforts have still not
been transformed into a large multi-domain network pro-
viding QoS guarantees [1]. Without loss of generality, this
study takes place in the context of the EuQoS project. The
EuQoS project [3] is an integrated project under the Eu-
ropean Union’s Framework Program 6 which aims at de-
ploying a flexible and secure QoS assurance system over a
pan-European testbed environment. The EuQoS System in-
tegrates many applications requiring QoS guarantees such
as Voice over IP, Video on Demand or Medical applica-
tions over multi-domain heterogeneous environment such
as WiFi, UMTS, xDSL or Ethernet technologies. Then,
the EuQoS system integrates various architectural compo-
nents such as signaling protocols, traffic engineering mech-
anisms, QoS routing, admission control to resource reserva-
tion scheme and of course multimedia application and trans-
port protocols.

2.2 Related work

There have been a number of studies that focused on as-
sured service for TCP flows. In [25], five factors have been
studied (RTT, number of flows, target rate, packet size, non
responsive flows) and their impact has been evaluated in
providing a predictable service for TCP flows. In an over-
provisioned network, target rates are achieved regardless of
these five factors. This result is corroborated by [9]. How-
ever, the distribution of the excess bandwidth depends on
these five factors. Recently [21] demonstrates the unfair
allocation of out-of-profile TCP traffic and concludes that
the aggregate that has the smaller/larger target rate, occu-
pies more/less bandwidth than its fair-share regardless of
the subscription level. As the TCP protocol uses the AIMD
control congestion algorithm which tries to share fairly the
available bandwidth, the only meaning to obtain a service
differentiation with TCP protocol is to use DiffServ traffic
conditioners such token bucket color marker [13] or time
sliding window color marker [5]. The behavior of the traf-
fic conditioner has a great impact on the service level, in

terms of bandwidth, obtained by TCP flows. Several others
conditioners have been proposed to improve throughput in-
surance [2], [7], [10], [16], [17], [18], [20]. In these articles,
it is clearly shown that the key of the problem is the valued
trio (loss probability, RTT, target rate) of a TCP flow.
At our best knowledge, there is a only few studies of TFRC
behavior in a DiffServ network. In particular, [14] inves-
tigates AF-TFRC performances and gives a service provi-
sioning mechanism allowing an ISP to build a feasible Diff-
Serv system. In this study, the problem of high RTT differ-
ence between long and short transfer are not tackled. More-
over, for experimentations purposes (based on loss rate es-
timation), all simulations are carried during 1000 seconds.
So, this duration allows a TFRC flow to converge easily to
the target rate and, as a result, obtain an average throughput
near the target rate.

3 gTFRC : a QoS-aware rate congestion con-
trol

3.1 Problem statement

As related in section 2.2, the only way to obtain a service
differentiation with TCP protocol is to use DiffServ traffic
conditioners. Indeed, the AIMD principle do not use the
instantaneous TCP throughput as an input value for its con-
gestion control. On the contrary, TFRC congestion proto-
col uses this value in conjunction with the RTT and the loss
event of the flow (this value is symbolized in the gTFRC ’s
name by the letter g). These values are used in order to give
a smooth rate adaptation to the flow and are efficient for
streaming media applications that do not require absolute
reliability. Assume that an adaptive application uses TFRC.
This application uses the AF DiffServ class and negotiate a
target rate. In the assured service class, the throughput of
these flows breaks up into two parts:

1. a fixed part which corresponds to a minimum assured
throughput. In the event of congestion in the network,
the packets of this part are marked like inadequate for
loss (colored green or marked in-profile);

2. an elastic part which corresponds to an opportunist
flow of packets (colored red or marked out-profile). No
guarantee is brought to these packets. They are con-
veyed by the network on the principle of ”best-effort”
(BE) and are dropped first if a congestion occurs.

We assume that the network is well-provisioned and that
the whole in-profile traffic does not exceed the resource al-
located to the AF class. In case of excess bandwidth in the
network, the application could send more than its target rate,
so the network should mark its excess traffic out-of-profile.
If the network becomes congestioned, many out-of-profile

losses occur and the optimal rate estimated by TFRC could
be under the target rate requested by the application. TCP
would react in a same manner by halving its congestion
window. As for TCP in the AF class, the TFRC flow is
not aware that the loss is corresponding to an out-of-profile
packet and that it should not decrease its target rate. For
TCP, the solution was to find a conditioner able to mark bet-
ter the TCP flows that the simple token bucket as explained
in section 2.2, or propose to add a new QoS congestion win-
dow as in [6] or [26]. In order to avoid this case and allow
to TFRC to send always under its target rate, we propose
to make the sending rate estimator aware of the target rate.
This is achieved by computing the sending rate as the maxi-
mum between the TFRC rate estimation and the target rate.
Thanks to this knowledge, the application’s flow is sent in
conformance with the negotiated QoS while staying TCP-
friendly in its out-profile part.

3.2 Implementation

In the previous section, we saw that gTFRC requires the
knowledge of the bandwidth guarantee the DiffServ/AF net-
work service provides to the session. We assume it is con-
figured at socket creation time, directly by the application.
Without loss of generality, this parameter is supposed to be
known by application after it has been previously negoti-
ated in an end-to-end basis by the way of proper signal-
ization protocol that an architecture like EuQoS System [3]
provides. In order to evaluate the proposition, we use the
TFRC code issue from ns-2 simulator. Figure 1 gives the
modification we made on the TFRC’s code. The lines be-
ginning by a "+" show the modification applied in the rate
estimation function. We can see on this algorithm that this
maximum value is not applied during the TFRC slow-start
period in order to stay friendly with the others TFRC or
TCP flows.

4 Evaluation and analysis

gTFRC is evaluated over a DiffServ network using sim-
ulation. We use ns-2.28 simulator and the Nortel DiffServ
implementation [22]. We drive simulation on the testbed il-
lustrated in the figure 2 with the two following scenarios:
when the network is exactly-provisioned (when there is no
excess bandwidth for the out-profile traffic) and when the
network is over-provisioned (when there is excess band-
width). As a network under-provisioned (in this case, the
amount of in-profile traffic is higher than the resource allo-
cated to the AF class) is considered as a wrong dimensioned
network, we exclude this case.

if (first_pkt_rcvd == 0) {
first_pkt_rcvd = 1 ;
slowstart();
nextpkt();

}
else {

if (rate_change_ == SLOW_START) {
if (flost > 0) {

rate_change_ = OUT_OF_SLOW_START;
oldrate_ = rate_ = rcvrate;
} else {

slowstart();
nextpkt();

}
} else {

+ if (rcvrate > gtfrc_)
+ {

if (rcvrate > rate_)
increase_rate(flost);

else
decrease_rate ();

+ } else {
+ rate_ = gtfrc_;
+ rate_change_ = CONG_AVOID;
+ last_change_ = now;
+ heavyrounds_ = 0;
+ }

}
}

Figure 1. gTFRC algorithm

4.1 Simulation model and hypothesis

An important known problem in a DiffServ network is
the unfair bandwidth sharing of the out-profile part. In [21],
the authors provide a way to solve this problem; they show
that if a network is exactly-provisioned, there is no bias in
favor of a flow or an aggregate that has a smaller target
rate. Taking this as the starting point, they infer that the
unfairness problem can be solved by making the networks
exactly-provisioned by simply adjusting the target rates of
the token bucket marker in order to get a proportional differ-
entiation. This assertion is strongly closed to the RTT and
the loss probability of the network. So, in a first part of our
experiments, we measure the behavior of TFRC and gTFRC

End-System 1

End-System 2

End-System 3

End-System 4

Core
QoS Router

Ingress
QoS Router

Egress
QoS Router

10Mb/s|5ms

10Mb/s|5ms

10Mb/s|5ms 1Mb/s|10ms

10Mb/s|x ms

10Mb/s|y ms

Figure 2. The simulation topology.

in order to evaluate the gain brought by gTFRC in this net-
work case. In a second part, we made measurements with
an over-provisioned network. It is important to note that we
are not interested in finding the best conditioning mecha-
nism in order to improve throughput insurance. This prob-
lem should be tackled by the network provider. In our case,
we try to give a QoS transport protocol in conformance with
the QoS negotiated in the network.

In all simulations:

• packet size is fixed to 1500 bytes;

• TCP version used is NewReno;

• we use a two color token bucket marker with a bucket
size of 104 bytes;

• the queues size are 50 packets and RIO parameters
are: (minout, maxout, pout, minin, maxin, pin) =
(10, 20, 0.1, 20, 40, 0.02);

• the bottleneck between the core and the egress router
is 1000Kbits/s;

• measurements are carried during 100sec.

For each experiment, we evaluate the throughput at
the server side and draw on the figures the instantaneous
throughput and the cumulative average throughput. In a
DiffServ multi-domain network, such the EuQoS network,
RTTs difference between flows could be very large. Indeed,
some flows can cross one or several DiffServ domains and
obtain low or high RTT. Figure 3 illustrates this case. On
this figure, the flow emitted between both end-system A1
and A2 should have an RTT higher than the flow emitted
between A1 and C1. In order to take in consideration this
case, we have chosen to compare flows with an high RTT
difference (i.e., 600ms).

DiffServ
Domain A

DiffServ
Domain B

DiffServ
Domain C

End-System A.1

End-System A.2

End-System B.1

End-System C.1

Figure 3. DiffServ multi-domain

4.2 Experiments in an exactly-provisioned net-
work

4.2.1 Comparison between TFRC and gTFRC

We made experiments with many different RTTs and tar-
get rates configuration and give in this part a representative
measurement of the efficiency of gTFRC . We measure the
performance obtained by gTFRC in two scenarios. On fig-
ures 4, two flows are emitted on the testbed. The first one
has a non favorable conditions since it has the highest tar-
get rate to reach and a high RTT (RTT = 640ms, TR =
800Kbits/s). The second flow has the lowest target rate
(200Kbits/s) and a low RTT (40ms).

The results for TFRC are presented on figure 4 (a) and
for gTFRC on figure 4 (b). We can see that gTFRC allows
to reach the target rate more quickly than with TFRC. The
reason is obvious since at the first rate decrease evaluation
of the algorithm, gTFRC evaluates a rate equal to the target
rate. On figure 4 (a), we can see that this case of decreasing
occurs for TFRC at t = 11sec and that gTFRC does not cal-
culate a rate lower than the negotiated target rate on figure
4 (b). Figure 4 (b) shows that the flow with the lowest tar-
get rate and the lowest RTT is constrained to reach its own
target rate of 200Kbits/s.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=800Kbits/s
TFRC cumulative RTT=640ms TR=800Kbits/s

TFRC RTT=40ms TR=200Kbits/s
TFRC cumulative RTT=40ms TR=200Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=800Kbits/s
gTFRC cumulative RTT=640ms TR=800Kbits/s

gTFRC RTT=40ms TR=200Kbits/s
gTFRC cumulative RTT=40ms TR=200Kbits/s

(b) gTFRC only

Figure 4. Exactly-provisioned network

In the second experiment, the target rates are reversed.
This experiment shows that the gTFRC algorithm keeps the
same behavior than TFRC in ideal condition. Figures 5
present the results obtained and show that in case of using
gTFRC , the instantaneous throughput stays nearer to the
target rate than TFRC.

Table 1 presents the packets statistics gathered during the
simulation on figures 4 with ldrops for packets dropped
due to link overflow and edrops for RED dropping. We
can see that gTFRC increases the number of in-profile pack-
ets in the network. As a result, gTFRC gives an average
throughput for each flow near their target rate since there are
less out-profile packets in the network. These two measure-
ments allow to conclude that gTFRC is DiffServ compli-
ant and allow to get a throughput guarantee in the standard

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=200Kbits/s
TFRC cumulative RTT=640ms TR=200Kbits/s

TFRC RTT=40ms TR=800Kbits/s
TFRC cumulative RTT=40ms TR=800Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=200Kbits/s
gTFRC cumulative RTT=640ms TR=200Kbits/s

gTFRC RTT=40ms TR=800Kbits/s
gTFRC cumulative RTT=40ms TR=800Kbits/s

(b) gTFRC only

Figure 5. Exactly-provisioned network

Code Point Total packets ldrops edrops
in-profi le 76.63% 0.02% 0%
out-profi le 23.37% 3.41% 3.78%

(a) Packets statistics for scenario on fi gure 4 (a)

Code Point Total packets ldrops edrops
in-profi le 91.51% 0.01% 0.03%

out-profi le 8.48% 12.66% 2.14%

(b) Packets statistics for scenario on fi gure 4 (b)

Table 1. Packets statistics for figure 4

DiffServ AF class in case of exactly-provisioned network.
Moreover, a simple token bucket color marker seems to be
able to characterize gTFRC flows.

4.2.2 Comparison with TCP

As the DiffServ/AF class has been designed for elastic flows
and in particular for TCP flows, we propose in this part to
compare gTFRC and TCP flows together. TFRC has been
built in order to be TCP-friendly. A flow is considered TCP-
friendly or TCP-compatible when its long-term throughput
does not exceed the throughput of a conformant TCP con-
nection under the same conditions [8]. In case of a DiffServ
network, this behavior can change due to the network con-
ditioning. Indeed, the aim of a DiffServ network is to oper-
ate a differentiation between flows and not to share in a fair
manner the bandwidth. As gTFRC is a specific mechanism
for DiffServ network, it is not TCP-friendly in its in-profile
part but it must remain TCP-friendly in its out-profile part.
In order to show if gTFRC stays TCP-friendly in the out-
profile part, we propose to determine if a similar behavior
is obtained when a TCP flow is mixed with either a TFRC
flow or a gTFRC flow. In order to verify this point, we keep
the same network scenario than in the previous part but we
compare TFRC and gTFRC with a TCP flow. Results are
presented on figures 6 and 7.

If we compare with the previous experiments made on
figures 4 and 5, we can see that the behavior of the TCP flow

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=800Kbits/s
TFRC cumulative RTT=640ms TR=800Kbits/s

TCP RTT=40ms TR=200Kbits/s
TCP cumulative RTT=40ms TR=200Kbits/s

(a) TFRC versus TCP

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=800Kbits/s
gTFRC cumulative RTT=640ms TR=800Kbits/s

TCP RTT=40ms TR=200Kbits/s
TCP cumulative RTT=40ms TR=200Kbits/s

(b) gTFRC versus TCP

Figure 6. Exactly-provisioned network

Code Point Total packets ldrops edrops
in-profi le 73.57% 0.02% 0%
out-profi le 26.42% 1.67% 3.12%

(a) Packets statistics for scenario on fi gure 6 (a)

Code Point Total packets ldrops edrops
in-profi le 90.16% 0.16% 0%

out-profi le 9.84% 89.23% 2.84%

(b) Packets statistics for scenario on fi gure 6 (b)

Table 2. Packets statistics for figure 6

is similar to the TFRC flow and that the long-term through-
put has the same order of magnitude. Table 2 presents the
packets statistics obtained during the simulation on figures
6. These statistics are similar to these related on table 1.
Nevertheless, we can see on table 2 (b) that the ldrops
value is very high. This is due to the aggressive nature of
TCP which tries to always reach a better throughput. This
explains the oscillation of both figures 6. On figure 6 (b),
since it has the best condition to release it (lower target rate
and lower RTT), TCP tries to outperform its target rate and
as a result, generates a high number of out-profile packets.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=200Kbits/s
TFRC cumulative RTT=640ms TR=200Kbits/s

TCP RTT=40ms TR=800Kbits/s
TCP cumulative RTT=40ms TR=800Kbits/s

(a) TFRC versus TCP

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=200Kbits/s
gTFRC cumulative RTT=640ms TR=200Kbits/s

TCP RTT=40ms TR=800Kbits/s
TCP cumulative RTT=40ms TR=800Kbits/s

(b) gTFRC versus TCP

Figure 7. Exactly-provisioned network

Finally, to complete this comparison, we remind the
well-known results obtained by two TCP flows in a DiffServ
network on figures 8. We can see that TCP does not reach

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TCP RTT=640ms TR=800Kbits/s
TCP cumulative RTT=640ms TR=800Kbits/s

TCP RTT=40ms TR=200Kbits/s
TCP cumulative RTT=40ms TR=200Kbits/s

(a) TCP only

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TCP RTT=640ms TR=200Kbits/s
TCP cumulative RTT=640ms TR=200Kbits/s

TCP RTT=40ms TR=800Kbits/s
TCP cumulative RTT=40ms TR=800Kbits/s

(b) TCP only

Figure 8. Exactly-provisioned network with
TCP

its target rate even if the network is exactly-provisioned in
case of high RTT difference. On figure 8 (a), the flow which
requests a target rate of 800Kbits/s obtains a throughput
around 200Kbits/s. If the highest RTT flow requests the
lowest target rate, we can see on figure 8 (b) that this flow
has difficulties to reach its target rate and that it oscillates
under this value. In [24] and [19], analytical studies show
that it is not always possible to achieve service differentia-
tion with a simple token bucket in certain conditions. This
example illustrates the case where the token bucket param-
eters has no effect for TCP flows on the desired target rate
as raised in these studies. If we compare with figures 6 and
7, these results allow to verify that the use of gTFRC and
TFRC flows in the same DiffServ class is not prejudicial for
the TCP flows.

4.3 Experiments in an over-provisioned network

This part deals with the case of an over-provisioned net-
work. We present measurement where the network let 20%
of unallocated bandwidth. We investigate the case of vari-
ous RTTs and different target rates.

4.3.1 Impact of the target rate

In this experiment, we focus on the influence of the nego-
tiated target rate for TFRC and gTFRC . Both flows have
an RTT equal to 250ms and two different target rates of
700Kbits/s and 100Kbits/s. Figure 9 shows the results
obtained with two flows with the same RTT but different
target rates. We can see that gTFRC reaches its target rate
quicker than TFRC. The explanation is the same than in sec-
tion 4.2.1: if the throughput returned by the TFRC equation
is lower to the target rate due to the loss event evaluation,
gTFRC uses the target rate as optimal rate.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=250ms TR=700Kbits/s
TFRC cumulative RTT=250ms TR=700Kbits/s

TFRC RTT=250ms TR=100Kbits/s
TFRC cumulative RTT=250ms TR=100Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=250ms TR=700Kbits/s
gTFRC cumulative RTT=250ms TR=700Kbits/s

gTFRC RTT=250ms TR=100Kbits/s
gTFRC cumulative RTT=250ms TR=100Kbits/s

(b) gTFRC only

Figure 9. Over-provisioned network (equal
RTTs)

4.3.2 Impact of the RTT

In these experiments, we switch between two target rates
of 600Kbits/s and 200Kbits/s and two RTTs of 640ms
and 40ms. On figures 10, one flow is in the worst condition
to reach its target rate. It has the highest RTT and target
rate. On figure 10 (a), we can see that the flow with the
lowest RTT and target rate (200Kbits/s and 40ms) outper-
forms its target rate and that the other flow (600Kbits/s
and 640ms) does not reach its target rate. So, as demon-
strated in [24] and [19] for TCP flows, it seems that the
token bucket marker is not a good traffic descriptor for the
TFRC flows too. On the other hand, figure 10 (b) shows that
gTFRC allows to enforce the desired target rate and that the
gTFRC flow is able to reach its target rate. Table 3 gives
packets statistics for this experiment and shows that gTFRC
increases the number of in-profile packets in the network.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=600Kbits/s
TFRC cumulative RTT=640ms TR=600Kbits/s

TFRC RTT=40ms TR=200Kbits/s
TFRC cumulative RTT=40ms TR=200Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=600Kbits/s
gTFRC cumulative RTT=640ms TR=600Kbits/s

gTFRC RTT=40ms TR=200Kbits/s
gTFRC cumulative RTT=40ms TR=200Kbits/s

(b) gTFRC only

Figure 10. Over-provisioned network

Figures 11 deal with the reverse case and show that
gTFRC has the same behavior than TFRC in ideal case.

Code Point Total packets ldrops edrops
in-profi le 67.90% 0.02% 0%
out-profi le 32.01% 0.36% 3.11%

(a) Packets statistics for scenario on fi gure 10 (a)

Code Point Total packets ldrops edrops
in-profi le 74.71% 0.02% 0%
out-profi le 25.29% 0.47% 3.66%

(b) Packets statistics for scenario on fi gure 10 (b)

Table 3. Packets statistics for 10

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=200Kbits/s
TFRC cumulative RTT=640ms TR=200Kbits/s

TFRC RTT=40ms TR=600Kbits/s
TFRC cumulative RTT=40ms TR=600Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=200Kbits/s
gTFRC cumulative RTT=640ms TR=200Kbits/s

gTFRC RTT=40ms TR=600Kbits/s
gTFRC cumulative RTT=40ms TR=600Kbits/s

(b) gTFRC only

Figure 11. Over-provisioned network

4.4 Experiments versus TCP

This part looks at mixing one TCP flow and one TFRC
or gTFRC flow in an over-provisioned network. Figures 12
show that the TCP flow is not disturbed by the gTFRC flow
and remains the most aggressive in regard of its target rate.
On both figures 12, TCP reaches a throughput about two
times higher than its target rate. Figures 13 confirm this
assumption. Both figures 13 seem identical, indeed, since
the gTFRC flow has never been under its target rate during
a long time, the TFRC standard algorithm is applied almost
the whole experiment.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=600Kbits/s
TFRC cumulative RTT=640ms TR=600Kbits/s

TCP RTT=40ms TR=200Kbits/s
TCP cumulative RTT=40ms TR=200Kbits/s

(a) TFRC versus TCP

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=600Kbits/s
gTFRC cumulative RTT=640ms TR=600Kbits/s

TCP RTT=40ms TR=200Kbits/s
TCP cumulative RTT=40ms TR=200Kbits/s

(b) gTFRC versus TCP

Figure 12. Over-provisioned network with
TCP

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=200Kbits/s
TFRC cumulative RTT=640ms TR=200Kbits/s

TCP RTT=40ms TR=600Kbits/s
TCP cumulative RTT=40ms TR=600Kbits/s

(a) TFRC versus TCP

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=200Kbits/s
gTFRC cumulative RTT=640ms TR=200Kbits/s

TCP RTT=40ms TR=600Kbits/s
TCP cumulative RTT=40ms TR=600Kbits/s

(b) gTFRC versus TCP

Figure 13. Over-provisioned network with
TCP

4.5 Experiments with several flows

Finally, we conclude these experiments with one TCP
flow versus 4 TFRC or gTFRC flow and one TFRC
or gTFRC flow versus 4 TCP flows. Figures 14 and
15 give the results obtained. On scenario figure 14,
TCP has a target rate of 400Kbits/s and each oth-
ers four TFRC or gTFRC flows (respectively on fig-
ure 14 (a) and on figure 14 (a)) have a target rate
of : 200Kbits/s, 100Kbits/s, 50Kbits/s, 50Kbits/s.
On figure 14, this is the TFRC or the gTFRC
flow which has a target rate of 400Kbits/s and
the four other TCP flows have a target rate of :
200Kbits/s, 100Kbits/s, 50Kbits/s, 50Kbits/s. Con-
cerning TCP alone, figure 14 (b) shows that the four gTFRC
flows do not disturb the behavior of the TCP flow and that
its behavior is similar with the TFRC experiment on fig-
ure 14 (a). Table 4 gives the throughput obtained by each
flow and we can see that TCP obtains the same throughput
with TFRC or gTFRC . In the reverse case, figures 15 show
that the instantaneous throughput with gTFRC is better than
TFRC and table 5 shows that whether TFRC or gTFRC
flows obtain a similar average throughput. In these experi-
ments, all flows are the same RTT of 40ms. We have also
made experiments with various RTT (confirmed by the pre-
vious experiments with two flows) and increased the num-
ber of flows and obtained similar results. For presentation
sake, we give only the case of five flows.

5 Conclusions and further work

In this paper we proposed gTFRC : a simple and efficient
adaption of TFRC congestion control for DiffServ network.
gTFRC allows to reach a minimum guarantee throughput
whether the RTT or the target rate of a flow. It requires
only the target rate negotiated by the application in order to
become QoS aware. We have demonstrated through many

TCP TFRC or gTFRC TFRC or gTFRC TFRC or gTFRC TFRC or gTFRC
TR=400Kb/s TR=200Kb/s TR=100Kb/s TR=50Kb/s TR=50Kb/s

TCP versus 4 TFRC 413.50 237.44 143.12 100 102.967
TCP versus 4 gTFRC 415.92 239.12 145.52 103.12 92.64

Table 4. Average throughput in Kbits/s for scenario with one TCP flow versus 4 TFRC or gTFRC

TFRC or gTFRC TCP TCP TCP TCP
TR=400Kb/s TR=200Kb/s TR=100Kb/s TR=50Kb/s TR=50Kb/s

TFRC versus 4 TCP 402.32 232.88 143.77 111.32 108.57
gTFRC versus 4 TCP 413.20 236.04 140.36 107.99 100.75

Table 5. Average throughput in Kbits/s for scenario with one TFRC or gTFRC flow versus 4 TCP

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TCP TR=400Kbits/s
TFRC TR=200Kbits/s
TFRC TR=100Kbits/s

TFRC TR=50Kbits/s
TFRC TR=50Kbits/s

(a) One TCP versus 4 TFRC

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TCP TR=400Kbits/s
TFRC TR=200Kbits/s
TFRC TR=100Kbits/s
TFRC TR=50Kbits/s
TFRC TR=50Kbits/s

(b) One TCP versus 4 gTFRC

Figure 14. One TCP versus four TFRC and
gTFRC (equal RTTs)

experiments its efficiency and that it can used in a standard
AF/DiffServ class.

Future works are particularly devoted to the integra-
tion of gTFRC into the Enhanced Transport Protocol (ETP)
[4]. ETP is a configurable protocol offering a partially or-
dered, partially reliable, congestion controlled and timed
controlled end-to-end communication service suited for
message-oriented multimedia flows in the context of QoS
network. ETP, with gTFRC , will be evaluated over the
pan-European EuQoS network. Secondly, we are currently
studying the possibility to add gTFRC as a new CCID1 into
the DCCP protocol[15].

References

[1] C. Cicconetti, M. Garcia-Osma, X. Masip, J. Sa Silva,
G. Santoro, G. Stea, and H. Taraskiuk. Simulation model for
end-to-end QoS across heterogeneous networks. In 3rd In-
ternational Workshop on Internet Performance, Simulation,
Monitoring and Measurement (IPS-MoMe 2005), Warsaw,
2005.

1Congestion Control Identifi ers

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100
K

bi
t/s

Time (sec)

TFRC TR=400Kbits/s
TCP TR=200Kbits/s
TCP TR=100Kbits/s
TCP TR=50Kbits/s
TCP TR=50Kbits/s

(a) One TFRC versus 4 TCP

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC TR=400Kbits/s
TCP TR=200Kbits/s
TCP TR=100Kbits/s

TCP TR=50Kbits/s
TCP TR=50Kbits/s

(b) One gTFRC versus 4 TCP

Figure 15. One TFRC and gTFRC versus four
TCPs (equal RTTs)

[2] M. El-Gendy and K. Shin. Assured forwarding fairness us-
ing equation-based packet marking and packet separation.
Computer Networks, 41(4):435–450, 2002.

[3] EuQoS. End-to-end quality of service support over hetero-
geneous networks. http://www.euqos.org/.

[4] E. Exposito. Specifi cation and implementation of a QoS ori-
ented Transport protocol for multimedia applications. Phd
thesis, LAAS-CNRS/ENSICA, Dec. 2003.

[5] W. Fang, N. Seddigh, and AL. A time sliding window three
colour marker. Request For Comments 2859, IETF, June
2000.

[6] W. Feng, D. Kandlur, D. Saha, and K. S. Shin. Adap-
tive packet marking for providing differentiated services in
the Internet. Technical Report CSE-TR-347-97, IBM, Oct.
1997.

[7] A. Feroz, A. Rao, and S. Kalyanaraman. A TCP-friendly
traffi c marker for IP differentiated services. In Proc. of
IEEE/IFIP International Workshop on Quality of Service -
IWQoS, June 2000.

[8] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the Internet. IEEE/ACM Transactions on
Networking, 7(4):458–472, 1999.

[9] M. Goyal, A. Durresi, R. Jain, and C. Liu. Effect of number
of drop precedences in assured forwarding. In Proc. of IEEE
GLOBECOM, pages 188–193, 1999.

[10] A. Habib, B. Bhargava, and S. Fahmy. A round trip time and
time-out aware traffi c conditioner for differentiated services

networks. In Proc. of the IEEE International Conference on
Communications - ICC, New-York, USA, Apr. 2002.

[11] M. Handley, S. Floyd, J. Pahdye, and J. Widmer. TCP
Friendly rate control (TFRC): Protocol specifi cation. Tech-
nical Report 3448, IETF, Jan. 2003.

[12] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. As-
sured forwarding PHB group. Request For Comments 2597,
IETF, June 1999.

[13] J. Heinanen and R. Guerin. A single rate three color marker.
Request For Comments 2697, IETF, Sept. 1999.

[14] Y.-G. Kim and C.-C. J. Kuo. TCP-Friendly assured for-
warding (AF) video service in diffserv networks. In IEEE
International Symposium on Circuits and Systems (ISCAS),
Bangkok, Thailand, May 2003.

[15] E. Kohler, M. Handley, and S. Floyd. Designing DCCP:
Congestion control without reliability, May 2003.

[16] K. Kumar, A. Ananda, and L. Jacob. A memory based ap-
proach for a TCP-friendly traffi c conditioner in diffserv net-
works. In Proc. of the IEEE International Conference on
Network Protocols - ICNP, Riverside, California, USA, Nov.
2001.

[17] E. Lochin, P. Anelli, and S. Fdida. AIMD penalty shaper
to enforce assured service for TCP flows. In 4th Interna-
tional Conference on Networking (ICN’2005), La Reunion,
France, Apr. 2005.

[18] E. Lochin, P. Anelli, and S. Fdida. Penalty shaper to en-
force assured service for TCP flows. In IFIP Networking,
Waterloo, Canada, May 2005.

[19] N. Malouch and Z. Liu. Performance analysis of TCP with
RIO routers. In Proc. of IEEE GLOBECOM, page 9, Taipei,
Taiwan, Nov. 2002.

[20] B. Nandy, P.Pieda, and J. Ethridge. Intelligent traffi c condi-
tioners for assured forwarding based differentiated services
networks. In IFIP High Performance Networking, Paris,
France, June 2000.

[21] E.-C. Park and C.-H. Choi. Proportional bandwidth allo-
cation in diffserv networks. In Proc. of IEEE INFOCOM,
Hong Kong, Mar. 2004.

[22] P. Pieda, J. Ethridge, M. Baines, and F. Shallwani. A net-
work simulator differentiated services implementation.

[23] J. Postel. Transmission control protocol: Darpa internet pro-
gram protocol specifi cation. Request For Comments 793,
IETF, 1981.

[24] S. Sahu, P. Nain, C. Diot, V. Firoiu, and D. F. Towsley. On
achievable service differentiation with token bucket mark-
ing for TCP. In Measurement and Modeling of Computer
Systems, pages 23–33, 2000.

[25] N. Seddigh, B. Nandy, and P. Pieda. Bandwidth assurance
issues for TCP flows in a differentiated services network. In
Proc. of IEEE GLOBECOM, page 6, Rio De Janeiro, Brazil,
Dec. 1999.

[26] M. Singh, P. Pradhan, and P. Francis. Mpat: Aggregate tcp
congestion management as a building block for internet qos.
In in Proceedings of IEEE International Conference on Net-
work Protocols (ICNP 2004), Berlin, Germany, Oct. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

