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Abstract. We develop a self-consistent description of the slowly changing magnetic 
configuration of the near-Earth plasma sheet (NEPS) during substorm growth phase. 
This new approach is valid for quasi-static fluctuations co < kllv • (v• being the 
Alfv•n velocity), with characteristic frequency lower than the bounce frequencies of 
electrons •nd ions (co < w•i,w•,), •nd for spatial scales l•rger th•n the ion L•rmor 
radius. The basic equations are obtained from a linearization of the cyclotron and 
bounce-averaged Vlasov equation, together with Maxwell equations. The Vlasov- 
Maxwell system of equations is solved for the quasi-dipolar NEPS region. Using a 
2-D dipole for the equilibrium, we calculate analytically the perturbed components 
of the electromagnetic field as a function of an external forcing current. The 
quasi-neutrality condition (QNC) is solved via an expansion in the small parameter 
T,/Ti (T,/Ti is the ratio between the electronic and ionic temperatures). To the 
lowest order in T,/Ti, we find that the enforcement of QNC implies the presence of 
a global electrostatic potential which is constant for a given magnetic field line but 
varies across the magnetic field. The corresponding electric field shields the effect of 
the inductive component of the electric field, thereby producing a partial reduction 
of the motion that would correspond to the inductive electric field. Furthermore, 
we show that enforcing the QNC implies a field;aligned potential drop which is 
computed to the next order in T,/Ti in a companion paper [Le Contel et al., this 
issue]. In the present paper, we show that the direction of the azimuthal electric 
field varies along the field line, thus the equatorial electric field cannot be mapped 
onto the ionosphere. Furthermore during the growth phase, the (total) azimuthal 
electric field is directed eastward, close to the equator, and westward, off-equator. 
Thus large equatorial pitch angle particles drift tailward, whereas small pitch angle 
particles drift earthward. 

1. Introduction 

The process(ses) by which the plasma is transported 
in the Earth's magnetosphere is a critical issue, and 
there is no consensus yet about its exact nature. Earlier 
models are generally based on simple assumptions: a 
static magnetospheric electric field (i.e., an electric field 
derived from a scalar potential), driving a steady earth- 
ward "convective" motion (e.g., Cowley and Ashour- 
Oa. tt. ..a low 
velocities deduced from the measurements of coherent 
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and incoherent scatter radar tend to support the view 
that there is a regular earthward convective motion no- 
tably prior to substorms [e.g., Forme et al., 1998]. In 
the case of incoherent scatter radar, however, the Earth 
rotation is used to build maps of the flow velocity in 
the ionosphere, thus a steady state (over one Earth ro- 
tation) is implicitly assumed. However, electric field 
and/or flow velocity measurements, carried out in the 
magnetosphere on board several spacecraft, are not easy 
to reconcile with the simple view of a steady convec- 
tion. Huang and Frank [1986] carried out a statisti- 
cal survey of plasma flows, measured on ISEE 1, in- 
side the plasma sheet. In their survey they excluded 
flow velocities above 150 km/s. Their results show that 
the average flow is too small to account for the rate 
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expected by steady convection models. Baumjohann 
et al. [1989] conducted a survey of slow and fast flows 
from AMPTE/IRM data. While slow flows were ob- 
served most of the time, in agreement with Huang and 
Frank [1986], Baumjohann et al. [1989], taking advan- 
tage of a better time resolution, gave evidence for tran- 
sient bursts of fast flows, with speeds above 300 km/s, 
generally directed earthwards (at least inside of 19 
RE being the Earth radius). Conversely, the slow flows 
have no preferred direction. Angelopoulos et al. [1992] 
further analyzed the fast flow bursts and defined bursty 
bulk flows (BBFs); these authors suggest that most of 
the radial transport of the flux could be effected through 
these short lasting but intense flow bursts. These mea- 
surements indicate that there is not a unique regime. 
These results and other similar results, not described 
here, have led Ifennel [1995], to introduce the possibil- 
ity of a bimodal plasma sheet flow, to stress the differ- 
ence between the morphology of fast laminar flows and 
slow turbulent flows. The standard convection models, 
based on a constant potential electric field, do not de- 
scribe these complex situations characterized either by 
a high temporal variability of the fast transient BBFs, 
or by slow flows with no obvious preferred direction. 
Thus "one wonders if steady uniform convection has 
ever been found" [Kennel, 1995, p. 22]. 

In the present paper we do not assume any static 
convection electric field. We adopt a different view 
point and investigate the transport under the influence 
of an externally applied electromagnetic perturbation 
that mimics the variation induced by the solar wind. 
What is the difference between a steady convection and 
a time-dependent transport? In a steady state mag- 
netosphere the electric field can only be electrostatic. 
Then, the assumption of the absence of a parallel elec- 
tric field Ell is equivalent to consider the magnetic field 
lines as equipotentials (Ell = -O•/O1 -- 0 ,e--5 the po- 
tential electrostatic • is independent of 1 the distance 
along the magnetic field line). Conversely, in a non- 
stationary approach, Ell:-0•/01- O/OtAll- 0 
ß +O/Ot f dlAll - const, where 5All in the parallel com- 
ponent of the vector potential. Therefore the absence of 
parallel electric field does not imply the equipotentiality 
of the magnetic field lines but only that the variation 
along the field line of the electrostatic component of the 
electric field cancels the inductive component. Thus, for 
a time-dependent perturbation the mapping between 
the equatorial and the ionospheric electric fields is not 
granted. Here we investigate the relation between 
time-dependent transport and the formation of thin cur- 
rent sheets (TCS) during the substorm growth phase. 
For the sake of simplicity, in the rest of the paper, we 
will call "convection" a steady motion driven by a con- 
stant (e.g., dawn to dusk) electric field, derived from 
a constant scalar potential. The term "transport" will 
be used to describe the effect of time varying perturba- 
tions, associated for instance with a growing current in 
the tail. 

The theoretical basis of standard convection mod- 
els also deserves some discussion. Most of the mod- 
els rely upon the assumption that convecting particles 
are moving in a given magnetic field; in other words, 
no attempt is made to take into account the effect the 
particles have on the fields; the approach is not self- 
consistent, which introduces serious limitations on the 
significance of the results. MHD is a priori more appeal- 
ing, because it is self-consistent, and provides a simple 
description of plasma dynamics [Schindler and Birn, 
1982; Erickson, 1992]. The validity of the MHD ap- 
proach, however, is also subject to restrictions. Indeed, 
MHD approach is only valid for perturbations whose 
the frequency is greater than kllVe (kll being the par- 
allel component of the wave vector and ve the thermal 
velocity of the electrons). In a magnetic-mirror geom- 
etry as the NEPS, particles are trapped between mir- 
ror turning points. Therefore the validity condition of 
MHD writes w > woe - ve/Lll (Lll being the magnetic 
field length) or equivalently the characteristic timescale 
• < roe, the bounce period of electrons. In the NEPS, 
at 7 RE, •'• is typically 1 s for energetic electrons (1 
keV). Thus MHD is not a valid approximation for long- 
period fluctuations (see, for instance, Rosenbluth and 
Varma [1967], Rutherford and Frieman [1968], Anton- 
sen and Lane [1980], and Hurricane et al. [1994]). The 
bounce resonance is only one of the nonlocal processes 
that limit the validity of MHD; the magnetic field gra- 
dient, the pressure gradient, also introduce nonlocal ef- 
fects, as will be discussed in the course of the paper. See 
also discussions on the importance of these resonances 
by Chen and Hasegawa [1988, 1991], Cheng [1982], and 
Cheng and Johnson [1999]. 

Plasma transport can also be achieved via low- 
frequency hydromagnetic waves, as discussed by John- 
son and Cheng [1997] and by Chen [1999]. These works 
are based on a quasi-linear formalism applied to the gy- 
rokinetic equations; hence the rate of transport is pro- 
portional to the square of the amplitude of these hydro- 
magnetic waves. Observations carried out in the near- 
Earth plasma sheet (NEPS), for instance, by GEOS-2 
[Roux et al., 1991], show that during the growth phase, 
the amplitude of hydromagnetic waves is very weak. 
Thus wave-induced transport is unlikely to play an im- 
portant role during the growth phase. While periodic 
oscillations are negligible, one regularly observes a slow 
change in the magnetic configuration that will be mod- 
eled as a quasi-static perturbation. Therefore, in the 
present paper we describe a linear selLconsistent ap- 
proach to the transport of the plasma in the NEPS, 
in response to quasi-static variations of the magnetic 
field. We use an approach developed for electromag- 
netic perturbations with a frequency lower than the 
bounce frequency of electrons and ions (w < woi,wo•) 
and for spatial scales larger than the ion Larmor ra- 
dius (kñp < 1), but we neglect Alfv•n waves, assum- 
ing w < kllV A. The present approach is based on the 
linearized response of the plasma to low frequency dec- 
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tromagnetic perturbation (w < w0) obtained by Pellat 
from the Vlasov equation by assuming conservation of 
the first adiabatic invariant [Pellat, 1990]. The response 
of the plasma is completed by Maxwell equations. For 
long perpendicular wavelength electromagnetic pertur- 
bations (k_cAD << 1, where /•D- V/eokBT/(noq 2) is 
the Debye length, e0 is the vacuum permittivity, kB the 
Bolztmann constant, T the temperature, no the den- 
sity, and q the charge of particles), the Gauss's equation 
reduces to the QNC. Yet, owing to the low frequency 
of the perturbations, we need to take into account the 
existence of nonlocal terms. For instance, in the elec- 
trostatic case, for a multipole, the QNC implies the ex- 
istence of an electrostatic perturbed potential (I'0 con- 
stant along the field line [Pellat et al., 1994]. This result 
has been extended to electromagnetic perturbations by 
Hurricane et al. [1995b] for w > w.,•d (w, being the 
diamagnetic drift frequency and •d being the bounce- 
averaged magnetic drift frequency), and applied to the 
magnetotail. In section 2.2 we solve the QNC to the 
lowest order in T,/Ti < 1 and give a generalization of 
Hurricane 's result valid for perturbations with arbitrary 
frequencies. 

Finally, the system is completed by the parallel and 
p,•rpendicular projections of the AmpSre's law. Unlike 
substorm injection which is known to be a sudden pro- 
cess (w >_ wt>i) with a small spatial scale (ky --> c•), 
the buildup of a tail-like configuration is a slow process 
(•_ 30 rain) affecting a large fraction of the tail (small 
ky). Thus the applied electromagnetic perturbation is 
not considered as being the consequence of a local inter- 
nal instability (as it is probably the case for breakup). 
The change from a dipole to a tail-like configuration, in- 
stead, is considered as the result of the response of the 
magnetotail to a quasi-static forcing caused by varia- 
tions in the solar wind [e.g., Jacquey, 1996]. The full 
treatment of this problem is very difficult since it would 
require a full description of the forcing caused by the so- 
lar wind, taking into account the boundary conditions 
imposed at the magnetopause. Moreover, the way the 
solar wind drives the stretching of the magnetic field 
lines is still not completely understood. To simplify, we 
assume that the change of the dipolar field close to the 
Earth is due to an increase of the westward current far- 

ther in the tail [e.g., Jacquey, 1996], neglecting the local 
electrical currents (low/3 assumption, /3 being the ra- 
tio between the kinetic pressure and the magnetic pres- 
sure). Thus, for the equilibrium, Amp•re's law gives 
• x • - -•. Perturbing the equilibrium with an exter- 
nal current located far from the dipqlar re, on, we solve 
the linearized Amp•re's law gives • x 5t{ = luoS-•ext 
to obtain the perturbed components of the magnetic 
field. 

The above few lines suggest the following questions, 
to be discussed in the course of the paper: (1) What 
are the consequences of enforcing the QNC in a time- 
dependent situation? (2) What is the role of the time 
varying electric fields (associated with electromagnetic 

perturbations) on the transport of the plasma inside the 
plasma sheet? (3) Can we map the electric field from 
the equatorial magnetosphere, down to the ionosphere 
during the growth phase? 

The linearized response of the plasma is described 
in subsection 2.1 and the QNC is solved in subsection 
2.2. In subsection 2.3 we build a Green function and 

solve the linearized Amp•re's equation to obtain the 
perturbed magnetic field from the external current. In 
order to allow an analytical approach, a simple mag- 
netic field model, a two-dimensional (2-D) dipole, is 
used. This model is also presented in subsection 2.3. 
In section 3 we give the spatial profile of the azimuthal 
electric field along the field line and show the implica- 
tions on the transport of the plasma across magnetic 
field lines during the growth phase. The solution of the 
QNC, to the first order in (Te/Ti), will be described 
in a companion paper [Le Contel et al., this issue], to- 
gether with its consequences, namely the development 
of a finite parallel electric field. 

2. Linearized Vlasov-Maxwell System of 
Equations 

2.1. Solution of the Bounce-Averaged Vlasov 
Equation 

Assuming that the electromagnetic perturbation is 
periodic in time (t) and in space (across the magnetic 
field) we take the_Derturbing electrostatic (5(•) and 
magnetic vector (5.4) potentials as 

5•( r-•, t), 5--•(•, t) 

-- •'•(•, cv, l), •(•, w, l)exp [i(•. • + wt)], 
where • (•)is the position vector (the wave vec- 
tor) and ß denotes the component perpendicular to the 
magnetic field. For the sake of simplicity we omit the 
hat symbol and the exponential factor in the following 
formulas, then the linearized response 5f is given by 

5 f - q• 5• - u•SA• 

+ (1 + •)Ae -is- (1 + •)g], (1) 
where fo(E, py) is the equilibrium distribution function 
(E is the particle energy and py the canonical momen- 
tum), uy is the diamagnetic drift velocity, w• = ky'uy is 
the diamagnetic drift frequency, ky is the wavenumber 
in the y direction (azimuthal). We work in local field- 
aligned coordinates defined by the triad of unit vectors: 

In this frame, the velocity becomes 

v-+ - I vñ I(• cos f + • sin f) + vii e--•. (3) 
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To obtain the linear response (1), a change of vari- 
ables (v½, %, vii ) --• (E, p, •) has been made, where 

•mVll q-/•B is the kinetic energy, /• •mv_c 
is the magnetic moment, and • is the gyrophase angle. 
The elementary volume in velocity space becomes dav= 
•o--x,+x Bd•d•d•/("•21v, l), where cr- sign(vii ) (for 
more details, see Rutherford and Frieman [1968], Hur- 
ricane [1994], and Hurricane eta!. [1995a, b]). In (1) 
the function g contains the nonlocal wave-particle inter- 
action. To first order in w/coo, the function g becomes 

-is • • 
+ (rico I-•111 H- , co+cod J 

(4) 

S- k_cv_c sin(ak- •)/i2, ak - Arctan(k½/ku), i2 is 
the cyclotron frequency, cod - kuvd is the gradient- 
curvature drift frequency, the upper bar denotes bounce 
averaging and H is given by 

(o: + o:•) ,X H - Jo (•4> - vddAy) + 

(5) 

where ,k - ico ft dl/JoSAl[ and ,h, are Bessel functions 
of argument kzlvz[/l•. In the next section we sub- 
stitute the linearized solution of the Vlasov equation 
into the QNC. The bounce-averaged linear solution of 
Vlasov equation obtained here is similar to those devel- 
oped and used by different authors [e.g., Antonsen and 
Lane, 1980; Uheng, 1982; Chen and ttasegawa, 1991]. 

2.2. Quasi-neutrality Equation 

In this subsection, we solve the QNC via an expansion 
in the small parameter T•/Ti. The validity of this ex- 
pansion is suggested by several observations indicating 
that this ratio is small in the magnetotail. For instance, 
Lui et al. [1992] presented a statistical study of cur- 
rent disruptions from AMPTE/CCE when the space- 
craft was in the near-Earth current sheer. They showed 
that the electron to proton [emperature ratio is in [h.e 
range of 0.11 to 0.57. They poin[ed out that these val- 
ues are higher than those reported by Baumjohann et al. 
[1989] based on IRM data. Indeed, Baumjohann et al. 
[1989] obtained average plasma properties, notably an 
electron to proton [emperature ratio in the range: 0.09- 
0.18. These authors also noticed that this ratio is nearly 
the same as the one found by Slavin et al. [1965] a[ 
distances of 1x1:30-60 P,E. More recently, during a 
dusk-dawn crossing of the near-Ear[h tail by Geotail, 
during a relatively quiet period, a ratio around 0.2 was 
measured [Frank et al., 1996]. It is therefore possible to 
consider T•/T/as a small parameter over a wide range of 
radial distances from the Earth, and for different levels 
of a.ctivity. 

From the linear response of the plasma (equations (1) 
to (5)) and assuming that f0 is a Maxwellian distribu- 
tion function (fo -no [m/(2•rT)]a/2xp-(E/T)), the 
QNC' Ej=i,e qj f d3 5 fj __• 0 can be written 

i • q J 1 4 •r B d E d /u 
(• +•* •+•*•'i•o] + & • O, (6) 

where we have performed the gyrophase integration and 
summed over streaming and antistreaming velocities. 
This latter operation cancels out the part of 5f that is 
an odd function of rr. The above relation was derived 

earlier by Hurricane ½t al. [1995b], where more details 
are given about the derivation. The gauge SAy = 0 
has been chosen. Since we are interested in large-scale 
perturbations (the growth phase), the usual wavelength 
ordering k_cpj << i is made. In this limit, the Bessel 
functions become J0 -• 1 and J• •_ k_clv_cl/2i2, and the 
expression for H simplifies; we get 

H - 54> + • + • (7) 

where E - codA/co- ilukydA½/q. Then, after some alge- 
braic manipulations, the QNC can be written as 

• -•" (• + x) - • + •" (•) (8) 

where the terms co.j,X cancel between electrons and 
ions, because ttyi/• } q- ttye/Te -- O, [Hurricane et al., 
1995b]. Note that the diamagnetic drift frequency and 
the purely magnetic drift frequency of electrons can 
easily be related to the corresponding terms for ions: 
-t6 - -•/•/T/ (where cod•(oz) -- -T•/• •')(•) and •.• •.i 
th means thermal quantities and • denotes the particle 
pitch angle). The QNC becomes 

f 4•BdEd• •'•;•i fo• (• - •) + (• - x) 
+ • ((• -•)+ (x- •)) 

: • m7lvlll foi •(• 
- ] + •.,- •, (•) . (•) 

Since the right-hand side (RHS) term of (9) is propor- 
tional to (T•/Ti), we get to the lowest order in (•/T/)' 
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J 4rcBdEdl• 
+ - X)] - 0 + 

A •rivial solution of (10) is 

+ - y) + 

where •0 is constant for a given magnetic field line. 
This constant component of the perturbed electrostatic 
potential is always taken to be equal to zero (5•+h - 0) 
in studies based on MHD. An external electrostatic 

field, modeling the convection, is often added to the 
inductive part of the electric field in order to better fit 
the data [e.g., Sauvaud et al., 1996]. In the present pa- 
per, we show that the quasi-neutrality over the volume 
of the flux tube implies that •0 is different from zero. 
We compute •0 in a self:consistent manner, as a func- 
tion of the electromagnetic perturbation defined by h 
and 5Bii. Integrating the QNC (9) over the volume of 
the flux tube, we find 

m7lvl fog 

(• + 7•i ) • + 7•i ' 

where the left-hand side (LHS) term of (9) has vanished 
thanks to the identity f dl/B f dav(X - •) - O, valid 
for any function X(E, •, l). Finally, •0 writes 

f f 0iL 
ß 0 = 

[, [ ]' f • 4•• foi •"•(•*•-•"• (13) 

Now, we can calculate the self-consistent perturbed 
electric field. Taking in•o account the implications of 
•he QNC (11) [o the lowest order in T•/Ti,. [he per- 
ubed daic i. 
y direction, becomes (remembering •ha• $Av - 0)' 

- - 

Thus the complete perpendicular electric field associ- 
ated with the perturbation is the sum of an inductive 
component (,•) plus an electrostatic component ((I>0) de- 
termined from the QNC. This electric field will produce 
a transport of the plasma. Notice that this transport 
is different from a steady convection; it is associated 
with an electromagnetic perturbation (see discussion in 
introduction). The electrostatic component, associated 
with •0, tends to reduce the effect of the inductive com- 
ponent of the electric field ,•, thereby producing a par- 
tial shielding of the motion that would correspond to 
the inductive electric field (if it was not shielded). This 
effect can explain why large bulk flows are not detected 
in the NEPS during the growth phase. 

The expression I - iw ft dl•dAll shows that the par- 
tial derivative of I with respect to 1 is equal to the in- 
ductive component of the parallel electric field (Ol/Ol = 
05All/Or ). Thus locally and in the limit Te < Ti, (11) 
implies that the inductive component of the parallel 
electric field OdAll/Ot is balanced by the parallel gra- 
dient of the perturbed electrostatic potential Odq)/Ol. 
Hence (11) is equivalent to the usual MHD approxima- 
tion, where one assumes the absence of a parallel electric 
field (Ell: -0/0l(5• + A) = 0). In the present study, 
the absence of a parallel electric field is not an assump- 
tion but an (approximate) result, obtained by solving 
the QNC in the limit Te < iF/. We show, however, in a 
companion paper [L½ Contel et al., this issue], that the 
solution of the QNC to the first order in (T•/T/) allows 
us to compute a finite parallel electric field. 

Studying low-frequency perturbations, Chcn and 
Hasegawa [1991] considered a magnetospheric plasma 
consisting of two populations: a core (100 eV) and an 
energetic component (10 keV). In their work the core 
population is denser than the energetic population and 
therefore plays a key role in the QNC. For this popu- 
lation, 0:b• > 0: > wbi. They obtained d• + l = 0, i.e., 
no parallel electric field (dEll : -0t(d(I)+ A) - 0). In 
the present work carried out for 0:•,0:•i > 0:, we also 
find dell •- 0 in the limit T• < T/ since we have ob- 
tained &I) + l: (I)0(g', y) where 4)o is constant along a 
field line. However, this constant potential (I)0 modifies 
the perpendicular transport of tile plasma as already 
mentioned. 

Finally, one should notice that the perpendicular elec- 
tric field (14) varies along the field line even when there 
is no parallel electric field. Thus, in the quasi-static 
limit, the absence of a parallel electric field does not im- 
ply that the equatorial perpendicular electric field can 
be mapped onto tile ionospheric electric field. This is 
true only in the purely electrostatic case (steady convec- 
tion); an assumption which is certainly not valid during 
the growth phase. In the next subsectiOn, we solve the 
Ampare's law to determine the magnetic field pertur- 
bation. 

2.3. Ampare's Law 

Close to the Earth, we can neglect the local elec- 
trical currents which corresponds to assuming/7 < 1. 
Thus we can approximate the field by a dipole. To al- 
low us to carry out analytical calculations, we use a 
two-dimensional (2-D) dipole [Huang and Birmingham, 
1994] to describe the equilibrium magnetic field. Using 
cylindrical coordinates (r,O,y) where 0 is the colatitude, 
the 2-D magnetic field model is defined by 

/) (cos Ou-? + sin Ou---•), (15) 
where • is the dipolar moment. The magnetic field 
strength is given by 
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B- Beq sin 2 0' (16) 

where Beq -- iS/L 2, is the equatorial magnetic field 
strength, L is the equatorial-crossing distance of the 
relevant field line. For the 2-D dipole the local coordi- 
nates become 

½- -15/L,y,x- bcotO/L. (17) 

It follows that •- X• x e-•y, and the magnetic field 
strength is 

B- ;)2 (•8) /• sin 2 [arccot (-X/O)] 

The bounce period and the bounce average curvature- 
gradient magnetic drift velocity are 

2rrL / dl -2E rt, - • - --v-'• - • e-•. (19) v ' vii qLBeq 

Then, we perturb the dipolar equilibrium by an external 
current, flowing in the westward direction and located 
far in the tail. The linearized AmpSre's law becomes 

• x • - luo5j•te-•y. (20) 
We assume that 

5---•(-½r , t) -- •(O, ky, l, w) exp [i(kyy + wt)], 
for the sake of simplicity we omit the hat symbol and 
the exponential factor in the following formulas. The 
external current 5j•t is defined by 

5j•t(L, ky, O, co): (Sjeq(ky, co)(5(L - Lc) 

ß sin "•0[(2n+l)cot 20-1]. (21) 

We have assumed that the current is highly localized 
in radial distance, and we choose for simplicity a Dirac 
function 5(L-Lc), where Lc is the radial location of the 
forcing current. Therefore we are interested in L values 
between 0 < L < L• where the 2-D dipole assumption is 
valid. Along the field line, we have chosen a class of forc- 
ing current whose the dependence allows us to obtain 
easily the magnetic field perturbation and corresponds 
to an increase in the equatorial current as suggested 
by the observations [e.g., Sauvaud and Winckler, 1980; 
Scrgecv et al., 1993]. This class is labeled by an index 
n, the larger n, the more localized is the perturbation 
close to the magnetic equator (see Figure 1). Compari- 
son between results obtained for various n gives insight 
on how sensitive the results are to the 0 dependence of 
the forcing current. For n = 0 the perturbed current 
is divergent at high latitudes but as we will check later 
on, this divergence does not modify the results because 
the perturbed components of the electromagnetic field 
do not diverge. For the sake of simplicity, in the course 

6 

4 

2 

0 

-2 

-4 

-6 

0 50 100 150 

colotitude 0 (degree) 

Figure 1. Variation of the external current (Sjyezt(O) OC 
sin 2" 0 ((2n + 1)cot 2 0- 1) versus the colatitude 0 for 
n - 0, 1, 2, 3, 4. 

of the paper, we often use the case n - 0 to obtain 
estimates of the various characteristic quantities. 

After some algebra (described in Appendix A) and, in 
the limit Iky[L > 1 and Iky(L- Lc)l < 1, the perturbed 
components of the magnetic field write 

5B½ - - ..olkvlaj•q(k v. w) (sin 2r•+1 0 cos O) 2 ' 

For A, we obtain (Appendix A) 

(22) 

(23) 

A..(L. kv.O.w ) - A,•q [c•(L. kv) q- (sin 2 0)•+1], 
(24) 

where we have defined c•(L, ky)- (n + 
L•)[) •+1 and A•,q -- 1/[4(n+ 1)]po([kv[/kv)•dj•q(kv,•) 
ß L•L.To obtain the real components of •he perturbed 
magnetic field, we have •o perform an inverse Fourier 
tra,nsform in time and in y. We find (see Appendix B) 

- coO) 
5j•q(y'.? Pf(l•dy'(::;;•-) (25) 

2 L 

- (2n + 2)sin2 0] {H(L- L•) 
- H[-(L- L•)]} (26) 

Now, we have to specify the variation of the current in 
the y direction. During the growth phase, spacecraft oh- 
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servations close to midnight [McPhemvn, 1979; Sauvaud 
and Winckler, 1980; Roux et al., 1991] show that the 
magnetic field changes from a dipole-like configuration 
to a tail-like configuration. The equatorial value of the 
magnetic field decreases, whereas, off-equator, the ra- 
dial component increases. The duration of this vari- 
ation is typically •_ 30-45 min. Moreover, breakup is 
usually observed to start close to midnight in a longitu- 
dinally narrow sector, while the rest of the magnetotail 
keeps on stretching [Nagai, 1991]. These observations 
suggest that while the reconfiguration at breakup is lo- 
calized in longitude, the formation of the current sheet 
during the growth phase is more homogeneous in lon- 
gitude. Thus, while the limit ky -+ cxv is adapted to 
study breakup, the formation of the current sheet can 
be better described by a finite ky. Therefore we consider 
an external current localized around the noon-midnight 
meridian, flowing eastward and slowly increasing with 
the time as 

y2 
5jeq(y, t) -- 5j,• exp(-•¾)exp('/t), (27) 

where 5jr• is the initial magnitude of the current, 1/7 
is the characteristic time scale of the growth phase, and 
A is the characteristic scale along y where the tail cur- 
rent increases. The complete expression of the external 
current becomes 

5je•t(L, y, O, t) - 5j•q(y, t)5(L - L•) 
ß sin 2n t9 [(2n + 1)cot 2 0 -- 1]. (28) 

We verify that for 19 : rr/2 (magnetic equator), the 
forcing current flows westward as suggested by observa- 
tions. Then, we can compute the •) component of the 
perturbed magnetic field which gives 

5B½ = ttodj,• 2 (sin2,,+z 0) _ Lc 0cos 
V'• 

ß (29) 

where I•V(C) - 1/(x/•) f-•o dV exp(-V2)/(V-()is the 
Fried-Conte function and we have defined 1/ - y•/A 
and • - y/A. Close to midnight, • < 1, and in this 
limit, the Fried-Conte function can be approximated 
by Pf(r7V(•')) "• -2• + O(• a) and we obtain 

yo6j.• 2 (sin2,•+• O) Vff Lo 0 cos 

] ß ]-- 1-2(X) 2 ß A 
(30) 

One should notice that in the opposite limit ( > 1 (far 
away of the lnaxm•um of the current in the y direction), 
the expansion of the Fried-Conte function is -1/( and 
5B• = 0. Finally, close to lnidnight (( < 1), the two 
perturbed components of the magnetic field write 

O 

Z 

5B 

x 

Figure 2. Schematic diagram of the electromagnetic 
perturbation applied on a 2-D dipole field to model the 
change of configuration which occurs during the growth 
phase. As indicated by the arrows, the magnetic field 
perturbation tends to produce a tail-like configuration. 

5B½: Po6j,• 2 (sin2,•+• O) • L• 0cos 

ß 
511-- 05q(V, 0 + 1) 2 L 

- (2n + 2) sin2 01{H(L- L•) 
-H[-(L-L•)]}. (32) 

We verify that for a forcing current directed westward 
(5j,• > 0) at the magnetic equator (19: rr/2), the ra- 
dial component of the equilibrium magnetic field in- 
creases off-equator, whereas the equatorial component 
decreases, which corresponds to observations carried 
out during the growth phase (see Figure 2). 

3. Transport of the Plasma 

In the previous subsections 2.1, 2.2, and 2.3, we have 
V, asov-Maxwell system of equa- completely solved the 

tions in the quasi-static limit, (w < kllVA and 
In (5), only the terms w•/w and it•kySA ½/q - -SB[/q 
appear. It is useful to compare the size of these two 
terms. Remembering that w•tA/w •_ ky¾•,Aneq/CO and 
1•8Bil/q -- -t•B}>/q •' E[-2(n u,_ l):•,•q]/•/b/q 
1/(kyL)ky7•A•q/W, we c•.•t conclude that, in the limit 
IklL > we have t•6BiI/• < waA/w. Thus the term 
containing dBii can be neglected. In this case the lin- 
earized Vlasov equation, which describes the behavior 
of the plasma, can be simplified, (1) and (4)remains 
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the same but the expression (5) of H becomes Then, in the limit • < 1 we obtain 

+ ) H - J05(I> + A , (33) 5Ey - 5Eœ,y,t(L, y, t) 

where 5(I) is given by the QNC (9) that implies 5(I) = 
(I)0- A, with (I)0 given by (13), and A and 5Bii given by 
(24) and (32) (from the Ampare's law solved in the limit 

> 1 < 1). Now, obtain the self- 
consistent perpendicular electric field associated with 
the magnetic field perturbations, we need to compute 
the constant part, (I)0, of the perturbed electrostatic 
potential. Taking into account that/USBll/q 
the expression, (13), of (I)0 becomes 

l [s,• - (sin2 0) '•+1] n+l 
(41) 

where we have defined 

5E•: y t(L y t) - _/•odj,•7L•L 1 
,, ,, 2 

'X X exp(7t). (42) 

The colatitude 0 where the perpendicular electric field 
changes sign is given by 

f •_. {f 4•rBdEd/• .•fl•,l fo• 

(34) 

From the expression (24) of • we obtain (see Appendix 
C) 

1 I u Beq 1 + k lu Beq E E 
(35) 

Then, we compute the expression of (I)0 (see Appendix 
D) and obtain 

'I'o- (c• + S•)A.•q, (36) 

where we have defined 

(37) 

Now, from (14), the self-consistent perpendicular elec- 
tric field writes 

00 - arcsin (S,•w•+•) . (43) 
Because S,• is always smaller than unity, the direc- 
tion of the perpendicular electric field changes along 
the field line even in the absence of a parallel elec- 
tric field (see Figure 3). As noted in section 2.2, 
5Ey is directed eastward (positive) close to the equa- 
tor, it is null for 0 = 00, and it is directed west- 
ward (negative) for 0 < •0. The larger n, the larger 
is •0 therefore the region where 5Ey is eastward gets 
thinner (as n increases). As an example, for n = 0, 
S0: 5/6, A0 = (c0 + sin 2 e) A0•q, •0: (c0 + 5/6)A0•q, 
and 6Ey : 6E•(L, y,t) (5/6 - sin 2 0). The elec[ric 
field •Es is directed eas[ward (positive) close •o the 
equa[or, iC is null for 0 = arcsin(5/6) 1/2 and is directed 
westward (negative) for e < arcsin(5/6) •/• From (42) 
we can estimate the intensity of the perpendicular elec- 
tric field during the growth phase. For instance, the 
characteristic variation of the equatorial magnetic field 
a[ the geostationary orbk (L• 2 L = 6.6 R•) is of order 
of 30 nT for a duration of the growth phase of 30 min. 
We assume thaC the radial scale of the current sheet is 

m 1R•; therefore t*o•J• • 30 x 10-9/(6.4 x 10•)T/m. 
In the • direction we assume [hat [he spatial scale A 
is • 4R•. We ob[ain for the inductive component of 
the perpendicular elec[ric field (without the conCribu- 

5Ey -- -ikyAneq [Sn -- (sin 2 (38) 

After an inverse Fourier transform, we obtain 

(39) 

'raking into account the expression of the current (27), 
we find 

5E'y = 

(40) 

1.0 

0.5 

0.0 

-0.5 

-1.0 

0 

Ey(8) 

_ 

50 1 O0 150 

colotitude •?(degres) 

Figure 3. Variation of A and 5Ey versus the colatitude 
0for n- 0. 
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tion of (I>0), 5•'L,y,t 'm'_ 2.5 mV/m which is reduced to 
0.4 mV/m at the equator due to the contribution of the 
electrostatic component (I>0 (S, in (41)). As we have 
previously mentioned, the effect of the (I>0 is to decrease 
the magnitude of the total electric field compa,red to the 
inductive component. Therefore the plasm.• transport 
is also reduced. 

Next, we can compute the bounce average electric 
drift to study the motion of the particles along • as a 
function of their pitch angle. We obtain (see Appendix 

__ i / dl 5Ey _ 5E•,u,t(L, y, t) 1 n Ivll I B Beq n + 1 

"+• (2k- 1)• 
- k=0 

. •(_1)•C• pB•q . (44) E 
j=0 

We note that the bounce average electric drift, associ- 
ated with 5Eu, depends on the magnetic moment. TO 
simplify, we can consider two extreme cases: equatorial 
pitch angle particles of 900 (pBeq/E • 1) and equa- 
torial pitch angle particles of 0 ø (pB•q/E 2 0). We 
obtain 

p,,+2 5EL,u,t/Beq S•/2-•u=0(-1 

• ), - 0 o, • .Ch+,(2•- 1)•/(•)• • 
5EL,y,t/Beq(Sn- 1), •eq-- 900 , 

where 5EL,y,t, given by (42) is always negative close to 
the midnight meridian (y < A). Since S, is always 
smaller than unity the bounce average electric drift of 
900 particles and that of 0 ø particles have opposite di- 
rections. The 900 particles drift tailward, whereas 0 ø 
particles drift earthward, during the magnetic field line 
stretching. When n increases, the perturbation is more 
and more localized close to the equator and S, de- 
creases. Therefore, from (45) we deduce that 900 parti- 
cles drift more and more tailward, whereas 0 ø particles 
remain almost at rest. Again for n = 0, we find 

1/24(5E•,u,t(L, y, t)/Beq), Geq : 0 ø, 90 o. 

Thus the correct treatment of the QNC implies a per- 
pendicular motion in response to a quasi-static elec- 
trornagnet, ic perturbation (w < kl!VA and 
•%t, because the perpendicular electric field direction 
varies with the positicr). :xlong the field line, the bounce- 
averaged motion is dii[•rent for different pitch angles. 
Ninety degrees pitch angle particles, which mirror close 
to tb.e equator drift tailward while zero degree parti- 

cles ,•:'•ft e•rthward. This result is very different h'om 
the results of Huang and t)•rmingham [1994], who con- 
sider a static magnetic field and impose an electrostatic 
field to ensure the convection of the plasma toward the 
Earth. In the present work, the transport is due to the 
response of the plasma to the quasi-static perturbation 
and to the necessity of enforcing the quasi-neutrality. 

4. Conclusion 

In the present paper, we have given a self-consistent 
description of the quasi-static transport of the plasma, 
during the growth phase, in response to an external 
forcing. The full linearized Vlasov-Maxwell system of 
equations has been solved for quasi-static electromag- 
netic perturbations, satisfying 0: < kllvn and 0: < 0:s. In 
order to get a simple equilibrium the pressure gradient 
has been assumed to be small. Thus the local current is 

small, and the local perturbation of the magnetic field 
is due to currents flowing farther in the tail. From Am- 
p•re's law we have obtained the perturbed components 
of the electric and magnetic fields as functions of the 
external forcing current. For the sake of simplicity, this 
current is assumed to be localized close to the mag- 
netic equator and around the noon-midnight meridian. 
It flows in the east-west direction, as expected during 
the growth phase. Using a 2-D dipole model to describe 
the region close to the Earth (the NEPS), we have built 
a Green function to relate the fields in the NEPS with 

this external driving current. Thus the solutions for the 
fields, in the plasma sheet, have been obtained as the 
products of the Green function by the forcing current. 
Using the linear bounce-averaged solution of the Vlasov 
equation obtained by P½llat [1990], the QNC has been 
solved. To the lowest order in T•/• (T•/• < 1), we 
found the following: 

1. The QNC imposes the existence of a component 
•0, given by (13), of the perturbed electrostatic po- 
tential. This component •0 is constant along the field 
line and varies in the azimuthal direction, thereby con- 
tributing to the azimuthal electric field. This electric 
field tends to reduce the effect of the inductive compo- 
nent of the electric field, which explains why no large 
bulk flows are associated with large timescale electro- 
magnetic perturbation (r > rb) like the growth phase. 
Unlike what is done for the particle test and MHD ap- 
proaches, in the present paper, the electrostatic compo- 
nent of the azimuthal electric field is not assumed; it is 
determined, in a self-consistent manner, by the response 
of the plasma and related to an externally applied elec- 
tromagnetic perturbation. ¾Ve point out that the ex- 
istence of the component (I)0 is a purely kinetic effect 
occuring for co < co•. In a forthcoming paper we will 
show that the component (I)0 exists as long as co < 
In all cases it cannot be described by MHD. 

2. The total azimuthal electric field (14), which is 
the sum of these two components, varies in amplitude 
and direction, as a function of the position along the 
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field line. The changes in amplitude and in direction of 
the azinmthal electric field implies a bounce-averaged 
transport of the particles (44) that strongly depends on 
the pitch angle. 

3. The parallel electric field is null to the order 
Te/• < 1 (see (11)), therefore the residual parallel elec- 
tric field should be calculated from the QNC developed 
to the order Te/Ti. This calculation is presented in a 
companion paper. 

Notice that the full Vlasov-Maxwell system of equa- 
tions has been solved only in the quasi-static limit, no- 
tably the solutions of Ampare's law, (31) and (32), are 
valid only in this limit. However, the results obtained 
to the lowest order in Te/Ti from the QNC (summa- 
rized above) are, also basically valid for low-frequency 
perturbations co < cob. Furthermore, for the sake of sim- 
plicity and because in the NEPS the effect of magnetic 
drift. are expected to be more important than the finite 
larmor radius effects, the present calculations have been 
performed in the long wave length limit. However, we 
can easily include these effects if necessary since they 
are retained in the expression of the perturbed distri- 
bution function (5). 

For the magnetic field variations corresponding to the 
growth phase, namely for a slow decrease (increase) of 
the component of the magnetic field, perpendicular to 
the equatorial plane (radial), the azimuthal electric field 
is explicitly computed. It is found to be directed east- 
ward, close to the equator and westward off-equator. 
As a consequence, during the growth phase, large equa- 
torial pitch angle particles, which mirror near the equa- 
tor, drift tailward, whereas small equatorial pitch angle 
particles, which mirror far away from the equator, drift 
earthward. Furthermore, this result suggests that the 
mapping between the perpendicular electric field in the 
equatorial region and the electric field in the ionosphere 

where J is the Jacobian of the change of coordinates 
between the cartesian and the local frame (see also the 
Appendix A of Hurricane et al. [1995b]). We assume 
that 

•---•(•r , t) - 5--•(½, kv,l, co) exp[i(kvy +cot)], 
for the sake of simplicity we omit the hat symbol and the 
exponential factor in the following formulas. Defining 
two variables X - ky•/co and Y - ikySAo/B as Bern- 
ste•n et al. [1958], interchanging the partial derivatives, 
O•(JBOt) - JBOtO•, (see Hurricane et al. [1995b] for 
details about the interchange of the partial derivatives) 
when necessary, the Amp•re's law writes 

is not simple; a self-consistent approach, including non- One can show that (A4) can be obtained from (A2) and 
local kinetic effects associated with the bounce motions (A3); therefore the system is reduced to these two latter 
of particles, is needed to sort out the consequences of a equations. Inserting (A2) to (A3), we obtain 
time-dependent transport. The corresponding charac- 
teristic azimuthal electric field is of order of 0.4 mV/m 
at the magnetic equator. In order to test these theoret- 
ical results it would be necessary to have electric field 
and/or plasma flow data organized as a function of the 
distance from the center of the current sheet, during the 
growth phase. 

Appendix A' Solution of the Linearized 
Ampre's Law 

Using the local field-aligned coordinates and with the 
gauge aA v = 0, the curl of • gives 

-• x '• '• -' • • O y J B O x • • 
0½ 

(A5) 

Again, we interchange the partial derivatives (O½(JBOt) 
: JBOtO•), divide by B and integrate along the field 
line which yields 

(A6) 

Therefore we hav'e to solve the following system of equa- 
tions: 
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~ i 0 (0• 02X) ki•_B O1 '-• aloe ' (A7) 

(AS) 

To go further, we assume a priori that O•"/O1 < 02X/O1 
0• (and will check it afterwards) which corresponds to 
assume that the variation of 5Bll along the field line is 
smaller than the variation of 5B½ in the radial direction. 
This assumption is well adapted to the choice of an 
external current highly localized in the radial direction. 
The system becomes 

10X 

k• a• • a•a½ ' 
1 o B 
• 0½ oto½ 

j. :/-to •(•jyext . 
(A10) 

Defining a new variable, U- ax/az, (A10) becomes 

02U 0 In JB 20U kv 2 

B••, (10dB)] I•okv2/dl (All) 

Assuming that the perturbation varies faster in the • di- 
rection than the equilibrium, the second term of (All) 
can be neglected. Moreover, in the limit Ikyl œ > 1 the 
term between parenthesis is equivalent to unity. There- 
fore (All) can be rewritten in a classical form of a linear 
second-order differential equation: 

02U 
2 

ky U- S(• B 2 ' 
(A12) 

where S(½, k v, l, w) - -(luokuU/B) f[dl/BSj•t(½, kv, l, 
w)] is the forcing tern,. To solve (A12), we have to 
build a Green functie• l-kom the solutions of the ho- 
mogeneous equation; U• - exp (1•1 f d½/•) and U2 - 

' ,se• e.g Zwillinger, 1989]. Taking 
into account the properties of the 2-D dipole model it 
is more convenient to use the variables L and 0 defined 

by (17). While L and 0 are not strictly speaking inde- 
pendent variables, we can consider them as such in the 

- •2L sin 2 0 f d0sin 20dje.rt(L where S(L, ky, O, w) poky , 
0, o:). Now, the solutions of the homogeneous equation 
becorne U1 - exp [ky]L sin 2 0 and U2 - exp-Ik•,lL sin 2 0. 
The Green function is defined by 

Ui(L)U2(Lo) 
W(Lo) 
exp([ky[(L-Lo)sin29) -- W(L0) ,0 <_ L _< L0; 

Ui(Lo)U2(L) 
W(Lo) 

_ exp(-[kul(L--Lo) sin •0) Lo • L • oo -- W(Lo) .... 

where W(Lo) - -2lkul•in 2 o, is the Wronskian of U1 
and U2. The Green function becomes 

exp (--la•(• - •0)1 sin2 O) 
2lkyl sin 2 0 (A14) 

The complete solution of (A13) writes (omitting to 
specify all the dependences) 

v (•) - d•0•(•, •0),S'(•0 ), 
(A15) 

which yields (specifying all the spatiotemporal depen- 
dences) 

U(L,O, ky,•) 

_ •01a•l d•0•0 ½xp (-la•(• - •0)1 sin2 O) 
2 

ß • dOsin 2 OSj•t(Lo,O,k•,•). (A16) 
Taking into account [he expression (21) of the ex[ernal 
curren[, the complete solution for this class of current 
is 

U•(L kv,O,•)- polkvlZj•q(kv,•) 2 

ß exp(-,ky(L-L•)' sin2 O) 
ß (sin 2•+• 0 cos 0 + C(ky, ½)), (A17) 

where we have used the integrM f dO sin 2•+2 0[(2n + 1) 
ß cot 20- 1] : sin 2•+x0cos0+C(ky,½). Weimpose 
U = OX/O1 = dB½ = 0 at the equator (0 = w/2) which 
implies C = 0. From (A17) we obtain 

X•(L •,O •)- •01•15J•(•,•) • ' ' 4 L•L 

ß f •• •p(Z•), (m18) 
where we have defined u -- sin 2 0 and Z = --[ky(L-L•)l. 

limit where we neglect the variations of the equilibrium The solution becomes 

compared to those of the perturbation, these variables allow us to easily solve (A12), which becomes Xr•(L ky,O, co)- t'•ølkvldJ•q(kv'•ø)L•2L u"• ' 4 Z 

n un-k 02U •2 sin 40)U - S(L, ky, O, o:), + E(-1) • n(n - 1)...(n- k q- 1)Z•+i exp(Zu), OL 2 (ky (A13) U=l (A19) 
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where we have used the integral f duu r• exp(Zu) = 
[•/z + E•=• (-•)•(•- •)... (•- • + •)u•-•/z•+•] 
ß exp(Zu). Now, we can solve the second equation (A9) 
of the system to obtain •. With the variables L and 0, 
and in the limit Iky[L > 1, (A9) becomes 

L 20U) 1 a B (A20) •=••a0 •• ' 
After some algebra, we obtain 

2 Lc - 

+ 2Zu (1- u)) {H(L - Lc) 
- H [-(L - Lc)]} exp (Zu), (A21) 

where H stands for the Heaviside function. As claimed 

above, we verify a posteriori that the assumption OY/O1 
< 02X/Ol&) is valid. Indeed, we have 

(A22) 
02X/010•, - OU/O• - k•2L 2' 

Thus the above assmnption is valid in the limit IkylL > 
1. Then, we take the limit [Z[ = [ky(L- L•)[ < 1, 
which implies that the wave length of the perturbation 
is larger than the distance between the current and the 
location where the solution is calculated. In this limit, 
one can show that X writes 

(A23) 

/•n(L, ky, O, co) •'• /•neq [cn(L, ky) q- (sill2 0) n+l 
+O(-I•(L-Lc)I) 1 , (A24) 

where we have defined c•(L, ku)- (n + 1)!/(-Iku(L- 
L•)l) •+1 and A,•eq- •/[4(n+l)]•,o(l%l/ku)•oSj•q(ku,•o) 
LcUL. The second variable Y becomes 

Y - 2(n + 1)A•q I%1•• sin2+20 (2n + 1) 
- (2n + 2)sin2 0) f H(L- L•) 

- H [-(z- •)]}. (A2S) 
Therefore, in the limit Ia•IZ > X and Ia•(z- •)1 < 
the perturbed components of the magnetic field write 

• - U•(L o)- _p01kulaJ•q(ku,.:) ' 2 

ß Lc 2 (sin2•+• 0 cos 0) (A26) 

•BI[ .... B? -- -]'tø•jeq(kY'Cø) Lc2 sin 2• O((2n q- 1) 2 L 

-(2n+2)sin20){H(L-L•) 
- H [-(L - L•)]} (A27) 

Appendix B' inversion of the Fourier 
Transform 

In this appendix we do not omit the Fourier nota- 
tions; therefore we have 

U- ai = 5B½' (B1) 
and the real component 5B• writes 

•, (•, y, o, t) - • d• d•,•, (•, •, o, •) 
ß exp [i(kyy + •t)], (B2) 

5B,(L,y,O,t) - -•f(O)• d• 
ß •j•q(kv,•)exp[i(kuV+•t)], (B3) 

where f(O) - L• sin 2•+• 0 cos •. The • integration is 
straightforward and gives 

•,•(•, t)•p (%u). 

For the k• in[egrafion we no[e tha• 

where FT denotes a one dimension Fourier [ransform 

and Pf the Cauchy principal value. The per[urbed 
magnetic field component becomes 

Fr (•A•(•, t)) •p (i•). (eS) 

Moreover, [he convolu[ion [heore•n gives 

f ,g- f .•• f ,g-FT -• ß . 

Therefore we obtain 

5 B • - /u o t:: 2rr f(0 ) dy'djeq(y',t) 

(B7) 

(B8) 
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Finally, we can write The purely magnetic drift becomes 

vd= la+ ß 
(B9) qL 

(c4) 

Appendix C' Nonlocal Terms 
Here we compute the first nonlocal term wdh/w of 5f. 

In the field-aligned coordinates the expression of the 
magnetic curvature-gradient drift is [Hurricane ½t al., 
1995b] 

mVll 0 (jBvl ) (C1) v• = qJB Ov9 I ß 

After the • derivative we obtain 

Vd = 10(1 q 0½ •rnv 0 (in 
q •0 ' 

replacing 1/2mv• by E-laB and taking into account the 
conservation of the kinetic energy E (static magnetic 
field and absence of electrostatic field) and conservation 
of the magnetic moment la, in the adiabatic regime, we 
obtain 

1 OB mv• OB 
vd - -la + 

where J - 1/B 2. Indeed, from the definition of the 

Jacobian J - (1/B 2) exp (- f d•(• x ]•). e-s+s/B 2) 
[Bernste•.n et al., 1958], we have 

0 In J O In B la0p' 
O;b 0'• B 2 ' 

which can be approximated by 

0 In J 2 2la0p 

0•' - LB LpB 3' 

where Lp is the scale length of the pressure gradient 
and L is the scale length of the magnetic field gradient. 
Noticing that fi - 2laop/B 2, the above relation becomes 

( 1L) O ln J 2 1+ • • •pp . 0½ - LB 

In the li•nit/3 << 1 even if the scale length of the pressure 
gradient is small (L/Lp >> 1), we can still get fiL/Lp << 
I and write 

OlnJ 20B 

- B 
(c2) 

which gives J- 1/B 2. Now, we have to compute the 
7/;, derivative of B, keeping X constant. From (18), we 
obtain 

OB 2 
= ---. (C3) 

&) L 

The bounce average of the product v•A gives 

•A - -- - 
(c5) 

With the definition of I given in (24) we obtain 

O$d/• __ •dCn /•ne q l f dl [ 2ky ( 
+ •-•-•v•v• ) (sin2 0)n+l] /\neq. 

In (C6), T•, the first term of the expression between 
bracket becomes 

2ky i • dl (sin 20)•+ • T1 = qL•neq• I• ' (c7) 

The parallel velocity is given by 

(C8) 

and from (16) we obtain 

l vii I - 1 - E sin2 0 ' 

Then, the term T• becomes 

1 /•'• d0(sin 20) "• 8ky la/•neq-- 1/2' Tl-qv r• (1 Esin•0 ) I•B•q 
(c0) 

where v is the velocity, 0,• is the colatitude of the mirror 
point and we have used that I - L(•'/2- O) so dl - 
-LdO. Taking Z - cosO/A with A- 1- laB•q/E, we 
obtain 

8ky 4 • l dZ qv laA'•q;r-7 (1- Z2) •/2 (1- AZ2) n+x . (Cll) 

Using the binomial formula, we obtain 

T• = 8ky 4 fo • dZ qv la/\neq Tr (1 - Z 2) •/2 
n+l 

ß Z(-1)•C•+•AkZ 2•, 
k=0 

T• z 

n+l 

8k• A• 
qv k=0 

4 ]i • dZ Z2 • ß __ 

Tr (1- Z2) 1/2 ' 

(C12) 

(C13) 
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We give the following relation 

fo • dZ Z 2k •r (2k - 1)! I (1 Z2) •/2: • (2k) II ',k>_0, - " (C14) 

and perform the Z integration 

2ky n+l (2k 1)" 
qL itX,,•q E(-1)kC•+i (2k)!! (C15) k=0 

.•(_I)JC•( itB•q (l+k itB•q 
j=0 

We give the following integral 

f0 E/B dit it• _ • (2n)!! E 
(2n+ 1)!! B '•+• ' (D2) 

and we perform the it integration (reinember that for 
Following the same approach, the second term T2 of the 2-D dipole •di is independent of it)' 
(C6) gives 

1 / dl [ 2ky (•-•v•)](sin20)'•+• T2- • I-•111 --•- (•16) 
n+l 

2kyE A,•qA •(-1)•C•+•A • T2 - - qLB•• •=0 

(2k-1)•, ( I ) (C17) (2k)•] k + 1 ' The denominator D of D1 gives 

Summing all terms, we obtain 

•+• (2k 1)" OYd/• •'d/•neq C. q- 2 E(-1) • k - " - c.+• (2• + 2)!! k=O 

ß 1 itB•q 1 + k 
E E ' (C18) (D3) 

where •d -- -2kyE/(qLBeq). 

Appendix D' Calculation of the 
Constant Part (I)0 of the Perturbed 
Electrostatic Potential 

Thanks to the simplicity of the 2-D dipole, we are 
able to compute completely (I)0 Remembering that in 
the limit Ikyl L >> 1, (I)0 writes 

( - 
•,• ]o• •(•+•,• ) (o•) 

The terms being integrated over the energy vanish be- 
tween the numerator N and the denominator D, we 
obtain 

dl (2k- 1)!! ß 0 - 7 x•. c• + 2 •(-1)•cX+• (2• + k=0 

•=0 (2j + 1)• 

(l + k (2j + 2) B•q) ) (2j + •) • / 
Remember that B - B•q/sin 2 •, we perform an I inte- 
gration and we obtain ß 

Using (C18), the numerator noted N of (D1) becomes 

/ dl { / 4•rBdEdit [• (w.i - Zai) 
•+• (2•- 1)• '•neq Cn +2•(--1)k•+1(2k+ 2) • 

ß (1 (1 + ) E E ' 

• (2j),! 3/2 ß •/2t-'(J+ ) ß Z(-1)Jc• (2j + 1)!! F(j + 2) j=0 

(l+k(2j+2'(j+3/2') } / dl (2j + 3)(j + 2) / 7' 
where we have used the following integral: 

Using again the binomial formula, we can write 

N - • 4•rdEfoi L w(w q- 

ß x• •. + • •(-•)•cX+• (• + •)• 

j(o • dO sin p O - •r •/2 P((p + 1)/2) (D6) r(p/2 + 1) ' 

where F is the classical Gamma function (r(n + 1/2) - 
(2n- 1)!!•r•/2/2". Finally, we obtain 

(I)o - A•q (c• + Sr•), (D7) 
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where we have defined 

'*+• (2k- 1)!! 
S,• - E(-1)UC•+i (2k + 2)!! 

j=0 

(D8) 

Appendix E' Calculation of the Bounce- 
Averaged (5: x •)/B 2 Drift 

Taking into account the expression (41) of the per- 
pendicular electric field 8E•, the bounce-averaged elec- 
tric drift writes 

_ 1 f dl 5Ey _ 4L 5EL,y,t(L, y,t) 1 u• Ivll I B v•% Beq n + 1 

l: m d: (•n_(sin20)n+l)sin2 0 ( )1/2 i - E sin 2 8 

Using the same change of variables as in Appendix 
we obtain 

4L 5EL,y,t(L, y, t) 1 
__ 

__ 

v7'b Beq n + 1 

(1-Z 2) S,,(1-AZ 2)-(1-AZ2) '*+2 . 
Again, we use the binomial formula and perform the Z 
integration (see Appendix C), we get 

•Ey 

Then, we substitute the expression of rb - 2•rL/v and 
A - (1 - t. tBeq/E) and obtain 
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