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As passwords remain the main online authentication method, focus has shifted from naive entropy to how usability improvements can increase security. Chatterjee et al. recently introduced the first two typotolerant password checkers, which improve usability at no security cost but are technically complex. We look at the more general problem of computing an edit distance between two strings without having direct access to those strings -by storing the equivalent of a hash. We propose a simpler algorithm for this problem that is asymptotically quasi-optimal in both bits stored and exchanged, at the cost of more computation on the server.

Introduction

Despite recent advances in biometric authentication [START_REF] Memon | How biometric authentication poses new challenges to our security and privacy [in the spotlight[END_REF] and account linking [START_REF] Batista | Using Externals IdPs on OpenStack: A Security Analysis of OpenID Connect, Facebook Connect, and OpenStack Authentication[END_REF], passwords are still the main method of authentication used online and will probably remain so in the near future. Countless studies have been written on the pitfalls of password-based authentication [START_REF] Ma | Password entropy and password quality[END_REF], with users creating bad passwords [START_REF] Bonneau | The science of guessing: Analyzing an anonymized corpus of 70 million passwords[END_REF] or repeatedly dodging security measures [START_REF] Ur | I added ' !'at the end to make it secure": Observing password creation in the lab[END_REF]10]. Failing to login is increasingly frustrating, and forgetting one's password is now about as frustrating as forgetting one's keys [START_REF]Centrify: Centrify password survey: Summary[END_REF]. To improve usability, some services like Facebook have discreetly adopted typo correction for the 2-3 most frequent typos, such as forgetting the caps lock or capitalising the first character on mobile [START_REF] Lambert | The case of case-insensitive passwords[END_REF].

In an innovative paper in 2016 [START_REF] Chatterjee | pASSWORD tYPOS and how to correct them securely[END_REF], Chatterjee et al. discovered that authentication failures could turn 3% of the users away, but that a vast majority of errors comes from a few simple typos. They also developed a system called TypTop [START_REF] Chatterjee | The typtop system: Personalized typo-tolerant password checking[END_REF], which is efficient both computationally and memory-wise, and corrects up to 32% of typos. This system works by keeping a cache of allowed password hashes corresponding to the frequent typos made by the user, and updates this cache at each successful authentication. Those systems can actually have a positive impact on security as they make long passwordswhich are more error-prone much more usable, lowering the cost of using highly secure passwords.

We look at the general problem of storing information on the server that can allow typo correction while preventing an adversary in control of the server from computing the passwords from the stored information.

Main results. We introduce a metric called the keyboard distance, and a protocol to compute this distance (or the Hamming distance) between a queried string and a secret string, without it being possible to find the secret string in polynomial time (assuming the security of the discrete logarithm). This is non-trivial, as it was shown in [START_REF] Blanchard | Usability: low tech, high security[END_REF] that any distance computation protocol can find the original password in a polynomial number of queries, which we prevent by having queries of non-uniform complexity. Before the algorithm, we must first introduce a distance between strings which, although simple, is not generally used. Let's consider a keyboard, with a standard QWERTY layout, as in Figure 1. The 48 main keys of the keyboard and the different characters they can create can easily be modelled by a 3-dimensional coordinate system. The first dimension corresponds to the horizontal position of the key (or the row), the second dimension to the vertical (the diagonal column), and the third dimension to the modifiers, here only considering Shift although it could easily be extended. This forms a subset of a 14 × 4 × 2 lattice1 as shown in Figure 1.

Keyboard distance and algorithm

Definition 1. Let s be a string of length n. The string coordinates of s are defined as the sequences (x i ) 1≤i≤n ,(y i ) 1≤i≤n and (z i ) 1≤i≤n , where (x i , y i , z i ) are the coordinates of the i-th letter in the previous coordinate system. Definition 2. Let s and s be strings of identical length n. Let the keyboard distance between s and s be defined as the L 1 -distance between their string coordinates:

d(s, s ) = 1≤i≤n (|x i -x i | + |z i -z i | + |z i -z i |).
By this definition, the distance between homomorphic and homimorphic is 1, but the distance between homomorphic and Bomomorphic is 3, the same as the distance between homomorphic and homomor;jkc.

The expected distance between two random n-character strings is then 59707 10296 × n, or about 58 for 10-character keymashes. Definition 3. Let s be a string of length n, and let (x i ) 1≤i≤n ,(y i ) 1≤i≤n and (z i ) 1≤i≤n be its string coordinates. Let p i be the i-th prime number. We define integral representation X(s) of s as

X(s) = 1≤i≤n p xi i × p yi i+n × p zi i+2n
To follow the example in the figure, the integral representation of "Arc" 2 ×

3 4 × 5 3 × 7 × 11 2 × 17 = 291579750. The integral representation of "ArC" is 2 × 3 4 × 5 3 × 7 × 11 2 × 17 × 23 = 291579750 × 23.
We can now define the a cryptographic protocol to detect typos, inspired by the Diffie-Helman key exchange. Intuitively, we take a random element in a group and put it to the X-th power, where X is dependent on the password. Because of the function's structure, it is easy to compare the elements corresponding to two closely related strings. The security lies in the assumed hardness of computing the discrete logarithm.

Data: Username string U , Salt string S, Password string P Group G, Pseudorandom number generator f Result: An element g0 ∈ G as the "hashed" password sent to the server begin Compute the string coordinates (xi, yi, zi) 1≤i≤|P | of P X ←-1≤i≤n p x i i × p y i i+n × p z i i+2n ; Y ←-U + S; N ←-f (Y ) Let g be a pseudorandom element g of G computed from N Transfer g0 ←-g X to the server Algorithm 1: Key-setting/sending discrete logarithm algorithm Remark 1. Alternatively, we could use a more intuitive definition, with X(s)

= 1≤i≤n p xi 3i-2 × p yi 3i-1 × p zi 3i .
This way, strings that include others as prefixes have integral representations that are multiples of the prefixes' integral representations. As we only consider strings of constant length, this leads to higher values of X(s) with no real advantage. On a standard keyboard, for a string s of length 10, X(s) < 2 966 with the second definition whereas X(s) < 2 768 with the first (and X(s) < 2 853 for length 12). In all cases, they are in expectation quite above 2 250 , which is enough to prevent discrete logarithm attacks on small exponents [START_REF] Guillevic | Discrete Logarithms[END_REF].

Remark 2. The PRNG in the algorithm does not require a high level of security, and can simply be any algorithm to get an element from a set of pseudorandom bitssuch as a PCG algorithm [START_REF] O'neill | PCG: A family of simple fast space-efficient statistically good algorithms for random number generation[END_REF].

Data: Group G, constant D, maximum length n, nt g0, g1 ∈ G Result: Keyboard distance between the passwords if it's less than D. begin for i from 1 to D do for j from 0 to i do

L0 ←-[ ] L1 ←-[ ] foreach 1 ≤ a1 ≤ a2 ≤ ... ≤ aj ≤ 3n do X0 ←-a k pa k g ←-g X 0 0 L0 ←-Concatenate(L0, g ) foreach 1 ≤ b1 ≤ b2 ≤ ... ≤ bi-j ≤ 3n do X1 ←-b k p b k g ←-g X 1 1 L1 ←-Concatenate(L1, g ) foreach g ∈ L0 do if g ∈ L1 then return i return REJECT
Algorithm 2: Distance-checking discrete logarithm algorithm Remark 3. The reason why we compute two lists of elements is that computing errors where a i is greater than expected is easy, as g Xpi = (g X ) pi . Computing errors the other way around is actually akin to computing a discrete logarithm in the group. As such, the distance computation in this algorithm always goes from the "smaller" to the "bigger" password, which can thankfully be mixed when the keyboard distance is greater than 1.

Security and performance

The security of this algorithm directly comes from the discrete logarithm assumption: computing P from g 0 corresponds exactly to solving the discrete logarithm with the promise that the solution is a 3n-smooth numberfor potentially high n in case of added padding. To implement it in practice, one would have to be careful to choose an appropriate group [START_REF] Adrian | Imperfect forward secrecy: How diffiehellman fails in practice[END_REF]. A cyclic group of order p with p a 2048-bit prime should be enough for now, and a similar algorithm could be adapted for elliptic curves.

With this framework, the login queries are all of the same formata single element of the group. This could lead to a proof of optimality in terms of space and communication bits required, depending on the group used in practice. It also means that faking an id is not easier than the hardest typo-tolerant framework that accepts the same typos. As the size of the group is much greater than the general password space, the discrete logarithm assumption also implies that bruteforcing the password is the best avenue of attack.

Besides the fact that it only allows the correction of substitution errors, the main downside of this algorithm is the time needed to compute the distance. This is still acceptable on the client side, where the main hurdle is squaring an element at most 1600 times in a large group. Using efficient libraries, this can be done in less than 10ms. However, the server-side computation is where the cost becomes prohibitive. For strings of length 12, checking whether they are at distance 1 takes at most 72 exponentiation operations, or less than 500 squaring operations, doable in a few ms. At distance 2, computation already takes 35 times more operations, which is on the edge of noticeable from the clientside. Checking whether they are at distance 3 (probably the highest reasonable distance for typos) is, alas, prohibitive, taking at least a few seconds. Using the trinomial revision, the number of expected exponentiations at distance D ≤ n is on average

1 2 D i=0 3n i 3n -i D -i = 2 D-1 × D i=0 3n D ≥ 1 2 6n D D .
The algorithm can also be adapted to compute Hamming distances, by checking all possible values for variants on a single letter instead of going by increasing keyboard distance.

Discussion

It was proved in [START_REF] Blanchard | Usability: low tech, high security[END_REF] that black boxes that compute arbitrary distances between strings such as the one studied here are vulnerable to attacks with at most poly(n) queries, and with θ(n) queries against the Hamming distance. The formula above illustrates why our method is not concerned by those lower bounds: although a linear number of queries would be enough to find the original string from the computed distances, most of those couldn't be computed because of their potentially exponential cost.

A second lower bound shown in [START_REF] Blanchard | Usability: low tech, high security[END_REF] concerns the minimal number of communication and storage bits to obtain n bits of entropy, showing that in both cases, n -o(n) bits are necessary. In our case, we store and send a single element of the group, and the security is that of a discrete logarithm attack against the group. We then have a quasi-linear time complexity for current commonly used groups, with real values currently corresponding to an overhead of a factor between 10 and 20. Some questions remain, such as whether it is possible to obtain a linear storage or communication complexity (or whether stronger lower bounds are provable otherwise). Moreover, the typos corrected here only concern the Hamming or keyboard distances, and don't allow complex typos such as exchange of adjacent letters. It would be interesting to check whether the method could be expanded to more complex distance functions. Finally is also one potential risk that requires investigating with this method. The discrete logarithm assumption concerns normal elements of the group. However, the elements considered here are not random elements but X-th powers, with B-smooth X, for 101 ≤ B ≤ 181. Although B-smooth numbers are essential in discrete logarithm problems [START_REF] Pomerance | The role of smooth numbers in number theoretic algorithms[END_REF], there seems to be no attack so far where X being B-smooth is an issue.
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 1 Fig. 1. Keyboard coordinate system, starting at the bottom left. The string "Arc" has coordinates ((1, 1, 1), (4, 2, 0), (3, 0, 0)).

One could also add the space key, in which case the following proofs still work although with a slightly different structure. Similarly, adding the Alt key would only make it a 4-dimensional coordinate system.