
HAL Id: hal-02550719
https://hal.science/hal-02550719v1

Submitted on 22 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Password typo correction using discrete logarithms
Nikola K Blanchard

To cite this version:
Nikola K Blanchard. Password typo correction using discrete logarithms. IC-CSCE 2019 - 8th In-
ternational Conference on Computer Science and Communication Engineering, Oct 2019, Pristine,
Kosovo. �hal-02550719�

https://hal.science/hal-02550719v1
https://hal.archives-ouvertes.fr

Password typo correction using discrete
logarithms

Nikola K. Blanchard1

Digitrust, Loria, Université de Lorraine
Nikola.K.Blanchard@gmail.com, www.koliaza.com

Abstract. As passwords remain the main online authentication method,
focus has shifted from naive entropy to how usability improvements can
increase security. Chatterjee et al. recently introduced the first two typo-
tolerant password checkers, which improve usability at no security cost
but are technically complex. We look at the more general problem of
computing an edit distance between two strings without having direct
access to those strings — by storing the equivalent of a hash. We propose
a simpler algorithm for this problem that is asymptotically quasi-optimal
in both bits stored and exchanged, at the cost of more computation on
the server.

Keywords: Usable security · Passwords · Discrete logarithm

1 Introduction

Despite recent advances in biometric authentication [12] and account linking [2],
passwords are still the main method of authentication used online and will prob-
ably remain so in the near future. Countless studies have been written on the pit-
falls of password-based authentication [11], with users creating bad passwords [4]
or repeatedly dodging security measures [15,10]. Failing to login is increasingly
frustrating, and forgetting one’s password is now about as frustrating as for-
getting one’s keys [5]. To improve usability, some services like Facebook have
discreetly adopted typo correction for the 2-3 most frequent typos, such as for-
getting the caps lock or capitalising the first character on mobile [9].

In an innovative paper in 2016 [6], Chatterjee et al. discovered that authenti-
cation failures could turn 3% of the users away, but that a vast majority of errors
comes from a few simple typos. They also developed a system called TypTop [7],
which is efficient both computationally and memory-wise, and corrects up to
32% of typos. This system works by keeping a cache of allowed password hashes
corresponding to the frequent typos made by the user, and updates this cache
at each successful authentication. Those systems can actually have a positive
impact on security as they make long passwords — which are more error-prone
— much more usable, lowering the cost of using highly secure passwords.

We look at the general problem of storing information on the server that can
allow typo correction while preventing an adversary in control of the server from
computing the passwords from the stored information.

www.koliaza.com

2 Nikola K. Blanchard

Main results. We introduce a metric called the keyboard distance, and a protocol
to compute this distance (or the Hamming distance) between a queried string and
a secret string, without it being possible to find the secret string in polynomial
time (assuming the security of the discrete logarithm). This is non-trivial, as it
was shown in [3] that any distance computation protocol can find the original
password in a polynomial number of queries, which we prevent by having queries
of non-uniform complexity.

2 Keyboard distance and algorithm

Fig. 1. Keyboard coordinate system, starting at the bottom left. The string "Arc" has
coordinates ((1, 1, 1), (4, 2, 0), (3, 0, 0)).

Before the algorithm, we must first introduce a distance between strings
which, although simple, is not generally used. Let’s consider a keyboard, with a
standard QWERTY layout, as in Figure 1. The 48 main keys of the keyboard and
the different characters they can create can easily be modelled by a 3-dimensional
coordinate system. The first dimension corresponds to the horizontal position of
the key (or the row), the second dimension to the vertical (the diagonal column),
and the third dimension to the modifiers, here only considering Shift although
it could easily be extended. This forms a subset of a 14× 4× 2 lattice1 as shown
in Figure 1.

Definition 1. Let s be a string of length n. The string coordinates of s are
defined as the sequences (xi)1≤i≤n,(yi)1≤i≤n and (zi)1≤i≤n, where (xi, yi, zi) are
the coordinates of the i-th letter in the previous coordinate system.

Definition 2. Let s and s′ be strings of identical length n. Let the keyboard
distance between s and s′ be defined as the L1-distance between their string co-
ordinates: d(s, s′) =

∑
1≤i≤n (|xi − x′i|+ |zi − z′i|+ |zi − z′i|).

1 One could also add the space key, in which case the following proofs still work
although with a slightly different structure. Similarly, adding the Alt key would only
make it a 4-dimensional coordinate system.

Password typo correction using discrete logarithms 3

By this definition, the distance between homomorphic and homimorphic is 1,
but the distance between homomorphic and Bomomorphic is 3, the same as the
distance between homomorphic and homomor;jkc.

The expected distance between two random n-character strings is then 59707
10296×

n, or about 58 for 10-character keymashes.

Definition 3. Let s be a string of length n, and let (xi)1≤i≤n,(yi)1≤i≤n and
(zi)1≤i≤n be its string coordinates. Let pi be the i-th prime number. We define
the integral representation X(s) of s as

X(s) =
∏

1≤i≤n

pxi
i × p

yi

i+n × p
zi
i+2n

To follow the example in the figure, the integral representation of "Arc" 2 ×
34 × 53 × 7 × 112 × 17 = 291579750. The integral representation of "ArC" is
2× 34 × 53 × 7× 112 × 17× 23 = 291579750× 23.
We can now define the a cryptographic protocol to detect typos, inspired by the
Diffie-Helman key exchange. Intuitively, we take a random element in a group
and put it to the X-th power, where X is dependent on the password. Because of
the function’s structure, it is easy to compare the elements corresponding to two
closely related strings. The security lies in the assumed hardness of computing
the discrete logarithm.

Data: Username string U , Salt string S, Password string P
Group G, Pseudorandom number generator f

Result: An element g0 ∈ G as the "hashed" password sent to the server
begin

Compute the string coordinates (xi, yi, zi)1≤i≤|P | of P
X ←−

∏
1≤i≤n pxi

i × pyii+n × pzii+2n; Y ←− U + S; N ←− f(Y)

Let g be a pseudorandom element g of G computed from N

Transfer g0 ←− gX to the server

Algorithm 1: Key-setting/sending discrete logarithm algorithm

Remark 1. Alternatively, we could use a more intuitive definition, with X(s) =∏
1≤i≤n p

xi
3i−2 × pyi

3i−1 × pzi3i. This way, strings that include others as prefixes
have integral representations that are multiples of the prefixes’ integral repre-
sentations. As we only consider strings of constant length, this leads to higher
values of X(s) with no real advantage. On a standard keyboard, for a string s
of length 10, X(s) < 2966 with the second definition whereas X(s) < 2768 with
the first (and X(s) < 2853 for length 12). In all cases, they are in expectation
quite above 2250, which is enough to prevent discrete logarithm attacks on small
exponents [8].

Remark 2. The PRNG in the algorithm does not require a high level of security,
and can simply be any algorithm to get an element from a set of pseudorandom
bits — such as a PCG algorithm [13].

4 Nikola K. Blanchard

Data: Group G, constant D, maximum length n, nt g0, g1 ∈ G
Result: Keyboard distance between the passwords if it’s less than D.
begin

for i from 1 to D do
for j from 0 to i do

L0 ←− []
L1 ←− []
foreach 1 ≤ a1 ≤ a2 ≤ ... ≤ aj ≤ 3n do

X0 ←−
∏

ak
pak

g′ ←− gX0
0

L0 ←− Concatenate(L0, g
′)

foreach 1 ≤ b1 ≤ b2 ≤ ... ≤ bi−j ≤ 3n do
X1 ←−

∏
bk

pbk
g′ ←− gX1

1

L1 ←− Concatenate(L1, g
′)

foreach g′ ∈ L0 do
if g′ ∈ L1 then

return i
return REJECT
Algorithm 2: Distance-checking discrete logarithm algorithm

Remark 3. The reason why we compute two lists of elements is that computing
errors where ai is greater than expected is easy, as gXpi = (gX)pi . Computing
errors the other way around is actually akin to computing a discrete logarithm
in the group. As such, the distance computation in this algorithm always goes
from the "smaller" to the "bigger" password, which can thankfully be mixed
when the keyboard distance is greater than 1.

3 Security and performance

The security of this algorithm directly comes from the discrete logarithm assump-
tion: computing P from g0 corresponds exactly to solving the discrete logarithm
with the promise that the solution is a 3n-smooth number — for potentially
high n in case of added padding. To implement it in practice, one would have
to be careful to choose an appropriate group [1]. A cyclic group of order p with
p a 2048-bit prime should be enough for now, and a similar algorithm could be
adapted for elliptic curves.

With this framework, the login queries are all of the same format — a single
element of the group. This could lead to a proof of optimality in terms of space
and communication bits required, depending on the group used in practice. It
also means that faking an id is not easier than the hardest typo-tolerant frame-
work that accepts the same typos. As the size of the group is much greater than
the general password space, the discrete logarithm assumption also implies that
bruteforcing the password is the best avenue of attack.

Besides the fact that it only allows the correction of substitution errors, the
main downside of this algorithm is the time needed to compute the distance.

Password typo correction using discrete logarithms 5

This is still acceptable on the client side, where the main hurdle is squaring
an element at most 1600 times in a large group. Using efficient libraries, this
can be done in less than 10ms. However, the server-side computation is where
the cost becomes prohibitive. For strings of length 12, checking whether they
are at distance 1 takes at most 72 exponentiation operations, or less than 500
squaring operations, doable in a few ms. At distance 2, computation already
takes 35 times more operations, which is on the edge of noticeable from the client-
side. Checking whether they are at distance 3 (probably the highest reasonable
distance for typos) is, alas, prohibitive, taking at least a few seconds. Using the
trinomial revision, the number of expected exponentiations at distance D ≤ n
is on average

1

2

D∑
i=0

((
3n

i

)(
3n− i
D − i

))
= 2D−1 ×

D∑
i=0

(
3n

D

)
≥ 1

2

(
6n

D

)D

.

The algorithm can also be adapted to compute Hamming distances, by checking
all possible values for variants on a single letter instead of going by increasing
keyboard distance.

4 Discussion

It was proved in [3] that black boxes that compute arbitrary distances between
strings such as the one studied here are vulnerable to attacks with at most
poly(n) queries, and with θ(n) queries against the Hamming distance. The for-
mula above illustrates why our method is not concerned by those lower bounds:
although a linear number of queries would be enough to find the original string
from the computed distances, most of those couldn’t be computed because of
their potentially exponential cost.

A second lower bound shown in [3] concerns the minimal number of commu-
nication and storage bits to obtain n bits of entropy, showing that in both cases,
n−o(n) bits are necessary. In our case, we store and send a single element of the
group, and the security is that of a discrete logarithm attack against the group.
We then have a quasi-linear time complexity for current commonly used groups,
with real values currently corresponding to an overhead of a factor between 10
and 20.

Some questions remain, such as whether it is possible to obtain a linear
storage or communication complexity (or whether stronger lower bounds are
provable otherwise). Moreover, the typos corrected here only concern the Ham-
ming or keyboard distances, and don’t allow complex typos such as exchange of
adjacent letters. It would be interesting to check whether the method could be
expanded to more complex distance functions. Finally is also one potential risk
that requires investigating with this method. The discrete logarithm assumption
concerns normal elements of the group. However, the elements considered here
are not random elements but X-th powers, with B-smooth X, for 101 ≤ B ≤ 181.
Although B-smooth numbers are essential in discrete logarithm problems [14],
there seems to be no attack so far where X being B-smooth is an issue.

6 Nikola K. Blanchard

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: How diffie-
hellman fails in practice. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. pp. 5–17. CCS ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2810103.2813707

2. Batista, G.C., Miers, C.C., Koslovski, G.P., Pillon, M.A., Gonzalez, N.M., Simp-
licio, M.A.: Using Externals IdPs on OpenStack: A Security Analysis of OpenID
Connect, Facebook Connect, and OpenStack Authentication. In: IEEE 32nd In-
ternational Conference on Advanced Information Networking and Applications –
AINA. vol. 00, pp. 920–927 (5 2018). https://doi.org/10.1109/AINA.2018.00135

3. Blanchard, N.K.: Usability: low tech, high security. Ph.D. thesis, Institut de
Recherche en Informatique Fondamentale (2019)

4. Bonneau, J.: The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: IEEE Symposium on Security and Privacy. pp. 538–552 (5 2012)

5. Centrify: Centrify password survey: Summary. Tech. rep., Centrify (2014), https:
//www.centrify.com/resources/5778-centrify-password-survey-summary/

6. Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: pASSWORD
tYPOS and how to correct them securely. In: IEEE Symposium on Security and
Privacy. pp. 799–818. IEEE (2016)

7. Chatterjee, R., Woodage, J., Pnueli, Y., Chowdhury, A., Ristenpart, T.: The typtop
system: Personalized typo-tolerant password checking. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. pp. 329–
346. CCS ’17, ACM, New York, NY, USA (2017)

8. Guillevic, A., Morain, F.: Discrete Logarithms. In: Mrabet, N.E., Joye, M. (eds.)
Guide to pairing-based cryptography, p. 42. CRC Press - Taylor and Francis Group
(Dec 2016), https://hal.inria.fr/hal-01420485

9. Lambert, P.: The case of case-insensitive passwords (6 2012), https:
//web.archive.org/web/20190310221858/https://www.zdnet.com/article/
the-case-of-case-insensitive-passwords/

10. Lipa, P.: The security risks of using "forgot my pass-
word" to manage passwords (2016), https://web.archive.
org/web/20170802185615/https://www.stickypassword.com/blog/
the-security-risks-of-using-forgot-my-password-to-manage-passwords/

11. Ma, W., Campbell, J., Tran, D., Kleeman, D.: Password entropy and password
quality. In: 4th International Conference on Network and System Security. pp.
583–587 (9 2010). https://doi.org/10.1109/NSS.2010.18

12. Memon, N.: How biometric authentication poses new challenges to our security
and privacy [in the spotlight]. IEEE Signal Processing Magazine 34(4), 196–194
(2017)

13. O’Neill, M.E.: PCG: A family of simple fast space-efficient statistically good algo-
rithms for random number generation. ACM Transactions on Mathematical Soft-
ware (2014)

14. Pomerance, C.: The role of smooth numbers in number theoretic algorithms. In:
International Congress of Mathematicians. Citeseer (1994)

15. Ur, B., Noma, F., Bees, J., Segreti, S.M., Shay, R., Bauer, L., Christin, N., Cranor,
L.F.: I added ’ !’at the end to make it secure”: Observing password creation in the
lab. In: Proceedings of the 11th symposium on usable privacy and security (2015)

https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1109/AINA.2018.00135
https://www.centrify.com/resources/5778-centrify-password-survey-summary/
https://www.centrify.com/resources/5778-centrify-password-survey-summary/
https://hal.inria.fr/hal-01420485
https://web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-case-of-case-insensitive-passwords/
https://web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-case-of-case-insensitive-passwords/
https://web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-case-of-case-insensitive-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://doi.org/10.1109/NSS.2010.18

	Password typo correction using discrete logarithms

