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Letters

Membrane Inlet Mass Spectrometry at the Crossroads of
Photosynthesis, Biofuel, and Climate Research1[OPEN]

Dear Editor,
Microalgae are continuously shaping Earth’s atmos-

phere through oxygenic photosynthesis, and nowa-
days, half of the photosynthesis is attributed to
microbial photosynthesis (Field et al., 1998; Behrenfeld
et al., 2005). While algal photosynthesis contributes to
offsetting the CO2 footprint, it also produces nitric oxide
(N2O), a potent greenhouse gas. In some ecological
niches microalgae can produce hydrogen (H2), a prom-
ising energy carrier; therefore microalgae are actively
explored for their potential as a platform for production
of renewable energy. Measuring gas exchange between
algae and the atmosphere, and understanding biological
mechanisms underlying photosynthetic CO2 capture,
and O2, H2, or N2O production, holds great promise—
not only to better evaluate the reciprocal effects of global
changes on oceanic carbon sinks, but also to explore the
limits of biomass and biofuel productivity of algae.
Membrane inlet mass spectrometry (MIMS)was initially
developed to measure O2 exchange between algal cells
and the surrounding liquid medium (Hoch and Kok,
1963), and its use has since been extended to other
gases including H2 and more recently, N2O (Burlacot
et al., 2020). Here we review recent breakthroughs
allowed by MIMS in dissecting molecular mechanisms
of gas exchange in microalgae (Fig. 1) and provide per-
spectives on howMIMSwill be crucial to address future
challenges in algal research.

DECIPHERING PHOTOSYNTHETIC OXYGEN
UPTAKE MECHANISMS

MIMSwas initiallydeveloped tomonitorO2-consuming
processes during photosynthesis (Hoch and Kok, 1963).
The use of 18O labeling made it possible to differentiate
O2-consuming processes fromO2-generating processes.
While O2 is produced from water splitting by PSII,
various mechanisms participate in O2 consumption in-
cluding mitochondrial respiration, chlororespiration,
PSI-driven reduction, andphotorespiration (Curien et al.,
2016). Measuring O2 exchange byMIMS has contributed

to the discovery of several factors involved in O2
consumption, including the plastid terminal oxidase
(Cournac et al., 2000) and flavodiiron proteins (FLVs;
Helman et al., 2003). Recently, the use of MIMS has
also helped to reveal the occurrence of redox com-
munication between mitochondria and chloroplasts
(Dang et al., 2014; Bailleul et al., 2015), and between
chloroplasts and peroxisomes (Kong et al., 2018). In-
triguingly, although FLVs are recognized as major
factors in light-dependent O2 uptake in cyanobacteria
(Helman et al., 2003; Allahverdiyeva et al., 2013;
Santana-Sanchez et al., 2019) and green microalgae
(Chaux et al., 2017), they are absent from diatoms
where interaction between chloroplasts and mito-
chondria is critical (Bailleul et al., 2015; Flori et al.,
2017). The use of MIMS will be crucial in establishing
the significance of such diverse bioenergetic mecha-
nisms among algal species in relation to their ecolog-
ical niches and environmental constraints.

MEASURING CO2 GAS EXCHANGE AND THE
CARBON-CONCENTRATING MECHANISM

Many microalgae and cyanobacteria have the ability
to improve the affinity of photosynthesis for dissolved
inorganic carbon (DIC) when grown at limiting DIC
levels (Badger et al., 1980; Reinfelder, 2011). This prop-
erty is due to the induction of a carbon-concentrating
mechanism, which involves, among other components,
active bicarbonate pumping and carbonic anhydrases
(Mackinder et al., 2017; Mackinder, 2018). MIMS has
been used to elucidate different aspects of carbon-
concentrating mechanisms, including (1) the disequilib-
rium between bicarbonate and CO2 pools resulting from
this active pumping (Badger and Price, 1989; Sültemeyer
and Rinast, 1996; Sültemeyer et al., 1998), (2) in vivo
activity of carbonic anhydrases by following 18O ex-
change between CO2 and water (Tansik et al., 2015;
Tolleter et al., 2017), and (3) more recently, the direct
assessment of apparent affinity of photosynthesis for
DIC (Douchi et al., 2019).

MIMS AND BIOFUEL RESEARCH

The study of microalgae has been greatly boosted by
biofuel research, as microalgae naturally produce energy-
rich compounds such as H2, reserve lipids, or hydrocar-
bons (Stephens et al., 2010). Secretion of H2 or short-chain
hydrocarbons by photosynthetic cells avoids energy-
costly steps of harvesting and extraction. H2 is produced
by microalgae through a coupling between hydrogenase
(H2ase) and the photosynthetic electron transport chain.
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By in situ-monitoring of H2 exchange performed in a
time-resolved manner, MIMS contributed to the identifi-
cation of biological bottlenecks of H2 production. These
include the photosynthetic control triggered by the Proton
Gradient Regulatory protein Like-1-mediated cyclic elec-
tron flow (Tolleter et al., 2011), competition for electrons
with theCalvin cycle (Milrad et al., 2018), and competition
with the FLV-mediated O2 photoreduction (Burlacot
et al., 2018). Lately, MIMS has been used in the develop-
ment of a very promisingmethod forH2 photoproduction
based on the intermittent illumination of microalgae
(Kosourov et al., 2018; Jokel et al., 2019).

MIMS has also contributed to the study of hydrocar-
bon synthesis by microalgae. It enabled the detection of
CO2 produced by the Fatty-Acid Photodecarboxylase
(FAP), therefore demonstrating its decarboxylase activ-
ity and further establishing that FAP is a photoenzyme
using blue photons as substrates (Sorigué et al., 2017).
Taken together, MIMS should be useful in future studies
aimed at characterizing the bottlenecks of volatile com-
pound production by FAPs and H2ase at the both en-
zyme and cellular levels.

PHOTOREDUCTION OF NO INTO N2O

N2O is a potent greenhouse gas responsible for 6% of
the Earth’s radiative force although it is present at a
concentration 1,000 times lower than that of CO2 (IPCC,
2013). Recently, N2O production by the photosynthetic
chain has been demonstrated using real-time MIMS
measurements in axenic cultures of Chlamydomonas
reinhardtii (Burlacot et al., 2020). NO was shown to be
produced during nitrogen assimilation and reduced
into N2O by FLVs in a light-dependent manner
(Burlacot et al., 2020). These results open new per-
spectives for the study of mechanisms regulating the
intracellular concentration of NO, an important sig-
naling molecule in plants (Farnese et al., 2016). They
also provide insights into the possible consequences of

algal blooms and large-scale algae cultivation on global
warming.

ADVANTAGES AND DRAWBACKS

When compared to other methods like gas chroma-
tography or specific gas electrodes, MIMS has the great
advantage of simultaneously measuring the concen-
trations of various gases in a time-resolved manner by
selecting mass peaks specific to the gases of interest.
This flexibility largely explains the recent success of
MIMS (Ketola and Lauritsen, 2016), but it must be kept
in mind that MIMS is demanding from a technical point
of view (Shevela et al., 2018). Proper use of MIMS re-
quires a suitable experimental setup (including efficient
temperature control and limitation of gas leaks), as well
as appropriate calibration and data processing proce-
dures (Bailleul et al., 2017). The choice of the type of
membrane, in particular its material (usually silicon or
polytetrafluoroethylene) and thickness, is critical be-
cause the membrane permeability and selectivity af-
fects the sensitivity of the setup and the relative
enrichment of specific gases (Beckmann et al., 2009).
Furthermore, the diffusion of gases through the mem-
brane from the liquid sample to the vacuum pump of
the mass spectrometer creates a gas consumption that
needs to be corrected to determine gas exchange rates
related to biological processes (Kotiaho and Lauritsen,
2002; Bailleul et al., 2017). Depending on the targeted
application, a compromise must be found among
membrane permeability (which affects both sensitivity
and gas consumption), cell or enzyme concentration
(which affects rates of gas exchange), and the volume of
the reaction vessel (which affects gas consumption ki-
netics). Ultimately, the sensitivity of the MIMS is gen-
erally limited by (1) the permeability of the membrane
and (2) gas leakage of the setup, which can reduce the
use of the technique in highly diluted samples, such as
found in the natural environment (Chatton et al., 2017).

PERSPECTIVES

This decade has seen an increasing use of MIMS in
addressing biological questions in algal research. This
has helped to push the limits of the types of biological
questions that we can address in photosynthetic mi-
croorganisms at various scales. Coupling MIMS mea-
surements with chlorophyll fluorescence has proven to
be of interest to study gas exchange beyond the theo-
retical limits of MIMS (Burlacot et al., 2018) and should
allow deeper understanding of photosynthesis. Further
coupling to absorption change measurements (Bailleul
et al., 2010) should provide new insights into mecha-
nisms regulating photosynthesis and their interactions
in response to environmental constraints. While several
O2 photoreduction mechanisms have been observed in
algae (Curien et al., 2016), their physiological signifi-
cance and their relevance in natural environments

Figure 1. Schematic view of gas exchange between microalgae and its
surrounding medium illustrated in the model species C. reinhardtii.
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remain largely unexplored. Recently, the miniaturization
of MIMS allowed measuring in situ O2 exchange rates in
samples from the north Pacific (Ferrón et al., 2016) or in
planktonic blooms from the north Atlantic (Bailleul et al.,
2017), starting thus a new era for expanding our labora-
tory models to natural environments.
MIMS has now emerged as a key technique to study

cellular mechanisms involved in the exchange of gas
molecules with the medium, paving the way toward
better understanding of the interaction among algae,
aquatic ecosystems, and the atmosphere. In situ mea-
surements of O2 and CO2 exchange in oceanic samples
will provide a better understanding of the physiological
relevance of mechanisms regulating photosynthesis
under natural conditions. In another perspective, it will
be of great interest to uncover the distribution of re-
cently discovered N2O production pathways in aquatic
ecosystems (Burlacot et al., 2020) and further estimate
their global influence on the climate throughmeasuring
N2O production in oceanic hotspots.
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