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Abstract—Recent papers point out the vulnerability of Copy
Sensitive Graphical Codes (CSGC) while an opponent uses a
neural network approach to estimate a pattern then prints it as an
original one: such a fake can successfully pass the authentication
test. Here, we show that a GAN-like network can be even
more powerful. A SRGAN-based architecture including super-
resolution can tolerate a lower scanner resolution and decode
efficiently. Besides, the use of such a decoding technique to
perform the authentication test can improve the resistance of
CSGC to estimation attacks.

I. INTRODUCTION

The number of counterfeited valuable documents (as diplo-
mas, bills, tickets) and packaging (for luxury products and
medicines) increases each year in a large part due to the
development and accessibility of even more efficient print and
scan devices. The protection of such manufactured objects is
for a long the goal of many research works and developments.
For this purpose different techniques have been deployed.
Optical watermarks and special means as specialized inks and
substrates with a controlled distribution are among the most
popular. To fight against hard copy, a more recent way has
been suggested: the Copy Sensitive Graphical Codes (CSGC)
[1], [2]. Such a graphical code (see for instance Fig. 1.a) is a
digital hard-to-predict pattern designed to be highly sensitive
to the stochastic nature of Print-and-Scan (P&S) process. As
shown in Fig. 1.b, it can severely impact the CSGC structure.
Nevertheless some statistical learning techniques [3], [4], [5]
have shown that CSGC can be efficiently estimated after P&S.
Such vulnerabilities are even more salient when the learning
stage makes use of some artificial neural networks [6], [7].
In this paper, we consider a generative model to reverse
engineer the P&S process. CSGC are first estimated (decoded)
from images acquired at different scan resolutions, in order to
pixel-wise compare with the original versions and get Bit Error
Rate (BER). The lower resolution here considered is 2400
spi (samples per inch), a middle one for standard scanners,
corresponding to the physical resolution of the scanner used
for the experiments. Resolutions ×2 (4800 spi), and ×4 (9600
spi) involving numerical interpolations are also considered.
Besides, the CSGC resolution can numerically be increased
by Super-Resolution (SR) technique. It was shown in [8] that
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Fig. 1. Example of CSGC pattern: (a) an original random binary image before
printing (I) and (b) its (degraded) gray level version after P&S (Ĩ).

the use of the multi-frame SR technique [9] can increase the
quality of P&S images and, thus, increase the gap between the
images printed once (original CSGC) and the images printed
twice (duplicated CSGC) during authentication test.
We suggest here to slightly modify a state-of-the-art single
image super-resolution architecture named SRGAN (as Super
Resolution Generative Adversarial Networks) [10], to upscale
as well as binarize output images. In the resulting deep
architecture, upscaling is an option. Either the dedicated layers
are used (we will name the network, SRGANb) or not (we
will name the network, srGANb) such that we can compare
physical resolution and numerical resolution with globally the
same architecture. At any of these resolutions, the results
on srGANb are compared with those of the state-of-the-art,
namely with Selectional Auto-Encoder (SAE) which performs
well CSGC decoding [7]. Learning GAN architectures as
SRGANb or srGANb, is learning a pair of networks which
are in competition with each other to minimize the loss such
that the generated data are as similar as possible to real data.
In the GAN literature the first network is called a Generator
(GθG ) and the other a Discriminator (DθD ). The discriminator
acts as an expert whereas the generator acts as a forger. Such
a learning makes use of a dataset of pairs consisting each
in a printed-and-scanned CSGC at a given resolution and an
original (binary) CSGC at either the same or higher resolution.
In practice to get an efficient forger network, an opponent
needs an access to the legal printer or to a printer having
very close characteristics (the same trade mark and model; no
access to any high resolution scanner is required: the binary
images are zoomed out) during the learning stage. The use
of the same printer during an attack is not a scenario valid



(otherwise the printer could be used by anybody also for
attacking) but it corresponds to a superior bound concerning
the impact of any copy attack.
The rest of this paper is organized as follows. The authenti-
cation system is described in Section II. The SRGAN imple-
mentation is presented in Section III. We discuss the obtained
experimental results in Section IV. Finally, we conclude in
Section V.

II. AUTHENTICATION SYSTEM BASED ON CSGC

The CSGC studied in this paper are random black-and-white
patterns composed with elementary units. During a first step,
any generated CSGC I is inserted in artwork then printed
using the legal printer of an authority center, denoted as Π.
Each elementary unit of the current CSGC is reproduced with
a number of u× u pixels depending on the printer resolution.
In the CSGC principle, this number needs to stay close to 1
(native resolution of the printer) to be maximally sensitive
to the noise inherent to the printer. It can be more than
1 for reading performance reasons. During verification, the
printed CSGC is scanned at the same or at higher resolution.
Consequently, each elementary unit in the printed-and-scanned
image Ĩ has v × v pixels, where v ≥ u. Obviously, if the
resolution of the scanner is equal to that of the printer, the
printed-and-scanned units have the same size as the printed
ones: u = v. An opponent can try to estimate and retrieve the
original binary CSGC by scanning the genuine printed version
before re-printing in order to produce a fake one. Such an
estimation attack consists of the following steps: 1) scanning at
a resolution vo, where vo ≥ u, 2) image processing including a
binarization process (as digital printers available on the market
can only print black-and-white images), using a statistical
approach [5] or machine learning techniques as SVM, LDA [3]
and neural networks [6], [7], 3) printing the estimated CSGC,
Î at the same print resolution as the generation stage. The
considered authentication system is presented in Fig. 2 (the
last processing dedicated to the authentication test is not
represented here), where the authentic channel is illustrated
using green lines and the opponent channel is illustrated using
red dashed lines.

Fig. 2. Legal channel (green lines) and opponent one (red dashed lines) of
the considered authentication system.

The authentication test that ends the verification process, has
to distinguish an authentic from a fake: a scan of the current
printed CSGC (grayscale image Ĩ if authentic, ˜̂

I if not) is

compared with the original CSGC (I). For this purpose, the
Pearson correlation is currently used. If the score is higher
than a pre-calculated authentication threshold ε, the CSGC is
considered as genuine, otherwise, it cannot be considered as
such. The considered authentication test can be defined as a
hypothesis test:

H0 : cor(I, Ĩ) ≥ ε,

H1 : cor(I, Ĩ) < ε,

where cor is a Pearson correlation value between binary image
I and grayscale image Ĩ after scanning.

III. NEURAL APPROACH WITH RESOLUTION MANAGEMENT

The most straightforward strategy for estimating a binary
CSGC using deep networks is to formulate the task as image
to image translation with a binarization objective, where the
input is a grayscale CSGC and the output is its estimated
binary version. Authors in [6] proposed a similar approach
based on fully connected networks. Their investigation on
different architectures led to the conclusion that the estimation
process suffers from a bottleneck that makes it not optimal.
The underlying process basically requests processing each
input pixel for classification. Taking advantage of recent ad-
vancements in deep networks, the authors of [7] suggested the
use of a fully convolutional auto-encoder that has previously
demonstrated promising results in binarization of degraded
manuscripts [11]. Additional use of residual connection in
the architecture provides an opportunity to efficiently train the
deep network.
The extensive use of deep learning approaches based on
Convolution Neural Networks (CNN) has led to development
of many successful architectures. One such architecture is
Generative Adversarial Networks (GAN) [12]. GAN are one
of the emerging and widely studied deep learning architec-
tures. These GAN have been previously applied in variety of
domains for tasks such as image generation, image Super-
Resolution (SR), image translation and image segmentation.
Here, we propose the use the architecture of Super-Resolution
GAN (SRGAN) [10] but for binarization of CSGC along
with the management of their resolution in a single process.
This way allows taking into account with globally the same
architecture, the case where the opponent scanner has a lower
resolution to be numerically compensated (i.e. vo < v).
The initial objective of SRGAN is to generate high-resolution
images given a low resolution version. Similar to every GAN
architecture, SRGAN also comprises of a Generator (that can
be considered as a forger) and a Discriminator (that can be
considered as an expert). However the Generator GθG in
SRGAN is a very deep convolution network with 16 residual
blocks (see illustration in Fig. 3). Each residual block has two
layers of convolution and two layers of batch normalization
with ReLU activation. For each convolution in the generator
we use 64 feature maps with 3 × 3 kernel except for first
and last convolutions, where kernel size was set to 9 × 9.
In SRGAN [10], low resolved images can be super resolved
to 4×, this is done by the use of two upscaling blocks



in the architecture. Our implementation of upscaling blocks
comprises of convolution and an upsampling layer with ReLU
activation. For each convolution in the upscaling block, the use
of feature maps was extended to 256 with 3×3 kernel. In the
case where we need to (resp. not) enhance the resolution by
just 2×, we don’t use the last upsampling layer (resp. the two
last upsampling layers) in the architecture.
The architecture of discriminator DθD on the other hand has
been inspired by [13]. In our implementation of DθD , for
each convolution in the discriminator we fixed the number
of feature maps to 64 for low computational cost. Each
convolution is followed by batch normalization and Leaky
ReLU as activation. Kernel size was set to 3 × 3 for each
convolution. The last convolution in DθD is followed by
two fully connected layers with Leaky ReLU and Sigmoid
activation.
Loss l defined in SRGAN is crucial for the generation of
natural looking CSGC. The loss l is basically defined as the
weighted sum of VGG loss lV GG/i.j and adversarial loss ladv:

l = lV GG/i.j + 10−3ladv. (1)

VGG loss is computed by parsing the generated high resolu-
tion binary image GθG(Ĩ) and its corresponding ground-truth
I through the pre-trained 19 layers VGG network, therefore
calculating the euclidean distance between their feature maps,
where φi,j(·) describes the feature map obtained after activa-
tion of jth convolution before the ith max-pooling and Wi,j ,
Hi,j represent the dimensions of feature maps:

lV GG/i.j =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I)x,y−

φi,j(GθG(Ĩ))x,y)2.

(2)

Additional to lV GG/i.j the adversarial loss ladv defined below
encourages the generator GθG to generate high resolution
binary CSGC which are close to the ground-truth I:

ladv =

N∑
n=1

− logDθD (GθG(Ĩ)). (3)

IV. EXPERIMENTAL RESULTS

A. Database description

In our experiments, we use the public database of CSGC 1.
This database contains of 950 random binary images of
100 × 100 dot size in 600 ppi (pixels per inch). The density
of black dots is fixed to 48− 52%. These CSGC were printed
by laser printer Xerox Phaser 6500 with a true 600 dpi (dots
per inch) resolution (u = 1). The real size of printed CSGC
is 4× 4 mm that is the acceptable size for such kind of codes
while it is used for packaging protection.
These printed CSGC were scanned using a scanner Epson
Perfection V850 Pro at 1) a true resolution of 2400 spi

1The database can be found in www.univ-st-etienne.fr/graphical-code-
estimation

(v = 4), then 2) at 4800 spi (v = 8) and 3) at 9600 spi
(v = 16) by using some numerical interpolation techniques.
This database was divided into a training dataset (650 images),
a validation dataset (100 images) and a test dataset (200
images).

B. Implementation details

Our implementation of SRGAN were declined in three
variants: SRGANb ×4, SRGANb ×2, srGANb which corre-
spond to binary outputs v = 16, v = 8 and v = u = 4,
respectively. All the variants include binarization, only the first
two include upscaling (×4 and×2, respectively). For learning
these architectures, gray level image Ĩ was cropped (see an
example in Fig. 5.b) to 100 × 100 (whatever is the scan
resolution) and normalized to values [0, 1] for each CSGC
binary source image I (see an example in Fig. 5.a). Each
ground-truth 100× 100 image I was digitally zoomed in into
200× 200 (400× 400 resp.) for 2× (4× resp.) upscaling.
For Selectional Auto-Encoder (SAE) [7] crop window was set
to 128× 128 pixels and size of kernel was set to 4× 4 when
v = 4, 8× 8 when v = 8 and 16× 16 when v = 16.
For SRGAN we defined lV GG/11.10 with φ11,10, a loss defined
on very deep feature maps. The VGG implementation was
adapted from keras 2 pre-trained network trained on imagenet
database.
During training, we evaluate the performance after every few
mini batch iteration on validation set with mean Bit Error
Rate (BER) as metric. We compare 100× 100 pixels [down-
sampled] decoded CSGC with 100× 100 pixels digital codes
of validation set. After complete training of SR\srGANb the
generator can be used to convert any Ĩ to a [high resolution]
binarized CSGC Î .
The pipeline of studied estimation attack is presented in Fig. 4.
The authentic printed CSGC is scanned with equal or smaller
resolution. The obtained grayscale CSGC is binarized via
trained SR\srGANb at the desired resolution.
To down-sample the high resolution binarized images obtained
from the generator we merge the predicted 100×100, 200×200
or 400×400 patches to create a full image Î of size 400×400,
800× 800, and 1600× 1600 pixels, respectively.
Due to the use of sigmoid activation at the last layer, the
images generated by the generator have pixel values either
close to 0 or to 1 (an example illustrated in Fig. 5.c). It is
therefore sufficient to set a global threshold to t = 0.5 for
image binarization (Fig. 5.e). A majority vote is then applied
on every v × v modules (v = 4, 8, 16) to label each pixel as
either black or white and obtain the estimation result (Fig. 5.f).
For optimization, Adam method was used with a learning rate
of 0.0002 and β1 = 0.5. Training for both SRGAN and SAE
was done for 20 epochs on a NVIDIA Geforce GTX 1080
GPU card.

2https://github.com/keras-team/keras-applications/blob/master/keras
applications/vgg19.py



Fig. 3. Image resolution management and binarization of CSGC using SRGAN architecture, where n is the number of feature maps, s is the stride at each
convolution layer and k is a size of filter for convolution. This scheme represents the case when the image resolution is increased ×4. If we need to increase
the image resolution ×2, we just need to delete one operation of upsampling (green block) from this scheme. Keeping the image resolution constant can be
achieved similarly.

Fig. 4. Pipeline of studied CSGC estimation attack: estimation from scanned authentic graylevel CSGC using trained SR\srGANb network, binarization of
estimated CSGC, construction of fake CSGC by applying majority vote (MV) to a up-sampled estimated binary CSGC.

C. Decoding using neural approach

The printed-and-scanned CSGC in the test dataset were de-
coded after learning first with the state-of-the-art architectures
i.e. BN DNN [6] and SAE [7] for v = 4, 8, 16, respectively
(Table I). Crop windows were set to 25 × 25 pixels (25600
patches for v = 4, 102400 patches for v = 8) and 128× 128
pixels (1600 patches for v = 4, 4900 patches for v = 8),
respectively, to avoid bias in the number of patches. Filter
size for SAE [7] was set to 4 × 4 when v = 4 and 8 × 8
when v = 8. These results can be directly compared with
the results obtained with srGANb at the corresponding scan
resolutions, which themselves can be compared with SRGANb
ones involving an super-resolution. The effectiveness of these
decoding methods is assessed via BER (Table II).

Architecture v BER Std Best case Worst case
BN DNN 4 17.92% 1.40% 15.32% 22.91%
SAE 4 11.26% 1.59% 8.83% 19.84%
BN DNN 8 14.2% 1.06% 12.06% 17.28%
SAE 8 10.04% 0.82% 8.32% 13.65%
SAE 16 10.42% 1.02% 8.53% 15.51%

TABLE I
BER FOR SAE AND BN DNN AT DIFFERENT SCANNING RESOLUTIONS.

Architecture v BER Std Best case Worst case
srGANb 4 9.20% 0.98% 7.28% 13.43%
SRGANb 4 to 8 9.27% 1.04% 7.14% 15.47%
srGANb 8 8.48% 0.66% 6.88% 10.33%
SRGANb 4 to 16 9.18% 0.96% 7.52% 15.21%

TABLE II
BER FOR SRGAN-BASED ARCHITECTURES AT DIFFERENT RESOLUTIONS,

WITH OR WHITOUT SUPER-RESOLUTION.

The GAN-type architecture allows decoding with BER lower
than 10%. It can be noticed that a numerical resolution of
9600 spi either from interpolation by the scanner or from
super-resolution is not so powerful.

D. Authentication under attack

In this section, we report results of authentication test done
under original and attacked CSGC. We want to study two
different situations:

1) an attacker and an authentication center have a printer
and a scanner with the resolutions 600 dpi and 2400 spi,
respectively.

2) an attacker has a scanner with lower resolution
(2400 spi) while an authentication center uses a high
resolution scanner (with resolution 4800 spi or 9600 spi).



(a) (b)
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(e) (f)

Fig. 5. Example of zoomed parts of a) an original black-and-white CSGC,
b) a printed and scanned gray-level CSGC, c) an output image from neural
network, d) its histogram, e) a binarized output image and f) its final version
after majority vote.

To perform the attacks, the estimated CSGC Î were printed
with resolution 600 dpi. Than these printed codes are scanned
with the resolution used in the authentication center. The mean
correlation values for all tested attacks as well as for the
original CSGC are presented in Table III.

Printed CSGC v = 4 v = 8 v = 16

Original 0.48± 0.01 0.48± 0.01 0.49± 0.01

SAE 0.44± 0.01 0.44± 0.01 0.45± 0.01
srGANb 0.47± 0.01 0.46± 0.01 -
SRGANb ×2 0.45± 0.01 0.45± 0.01 -
SRGANb ×4 0.46± 0.01 - 0.45± 0.02

TABLE III
CORRELATION SCORE COMPUTED FOR THE AUTHENTICATION TEST: FOR

ORIGINAL CSGC ON ONE HAND, FOR FAKE CSGC USING SAE AND
SR\SRGANB ESTIMATIONS ON THE OTHER HAND.

For illustrations of authentication results we use a Receiver
Operation Characteristics (ROC) curve by plotting the depen-
dency between False Positive Rate (FPR) and True Positive
Rate (TPR). FPR is the percentage of printed fake CSGC that
were considered by authentication test as authentic. TPR is
the percentage of printed original CSGC that were considered
by authentication test as authentic. The attack is successful
when the curve is closer to the bisectrix (i.e. the lower line is
the bigger number of fake samples can pass the authentication

test).
The first experiment consists of CSGC that were printed with
600 dpi and scanned with 2400 spi. An attacker also has
access to devices with the same resolutions. Thus an opponent
training database was constructed using the CSGC printed and
scanned with the same resolutions as the authentic codes. The
ROC curve in Fig. 6 illustrates the effectiveness of SRGANb
decoding (lines orange and gray) in comparison with SAE
result.

Fig. 6. ROC curve for CSGC scanned in 2400 spi.

We note that more than 20% of fake CSGC can pass the
authentication test, while using SRGANb for ×4 up-sampling.
In the same time, only 80% of authentic CSGC are accepted.
If the authentication threshold ε is higher, in order to accept
all authentic CSGC, more than 80% of fake CSGC will be
accepted too.
The second experiment consists of CSGC that were printed
with 600 dpi and scanned with 4800 spi. In the same time an
attacker has access only to a scanner with 2400 spi resolution,
thus s/he will use SRGANb technique in order to increase
the image resolution numerically. The image resolution was
increased twice during decoding process (from images with
vo = 4 to images with v = 8). In ROC curve presented
in Fig. 7, we can see that the number of SRGANb fake
CSGC that can pass the authentication test is bigger than the
number of accepted SAE fake CSGC. Nevertheless, thanks
to the higher resolution of authentication center scanner, the
correlation values of authentic printed CSGC is higher. Thus,
the number of fake CSGC that pass the authentication test is
smaller (in comparison with the previous attack test). The ROC
curve in Fig. 8 illustrates the results while an attacker tries
to increase numerically the resolution in four time, i.e. from
images scanned with 2400 spi (vo = 4) to images scanned with
9600 spi resolution (v = 16) as an authentication center uses
the scanner with 9600 spi resolution. Still a bigger number of
CSGC faked using SRGANb can pass the authentication test
in comparison with fake CSGC estimated using SAE.
The ROC curves in Fig. 7 and Fig. 8 show us that only
20% of fake CSGC can pass the authentication test, when
ε is sufficiently high to accept all authentic CSGC. This can
be explained by the high resolution of authentic scanner that



Fig. 7. ROC curve for CSGC scanned in 4800 spi.

Fig. 8. ROC curve for CSGC scanned in 9600 spi.

can catch more changes that are produced during estimation
attack. Nevertheless, these results show the vulnerability of
the studied authentication system as possibly a bigger training
database or a longer training process will allow an attacker to
fake the CSGC even without high resolution scanning devices.

E. Decoding using SRGANb for authentication

One of the possible reinforcements of the studied authenti-
cation system is the use of authentication test which is more
adapted for such estimation attacks. In this section, we show
the authentication results while the decoding with SRGANb
is used as an authentication test. The mean correlation values
and mean BER values are presented in Table IV.

Printed CSGC After SRGAN decoding
Correlation BER

SRGANb ×2
Original 0.82 9.28%
Attack SRGANb 0.67 16.53%

SRGANb ×4
Original 0.82 9.18%
Attack SRGANb 0.69 15.54%

TABLE IV
AUTHENTICATION USING SRGAN DECODING.

From this table we can see that the difference of mean correla-
tion values between original and attacked CSGC is more than
0.13. That is a big gap in comparison with the values that we
have in Table III. If we use the BER as an authentication
test, the gap will be even bigger as reported in Table IV.
These results show us that the use of precise decoding method
can improve the robustness of studied authentication system.
In addition, the decoding methods using neural approach can
efficiently detect the fake CSGC.

V. CONCLUSION

SRGAN-based architectures jointly achieving binarization
can partly compensate a lower resolution when scanning, and
can powerfully decode printed-and-scanned CSGC. Thanks to
such an architecture, we have been able to fall BER below the
threshold of 10%. The measured ROC curves when re-printing
with the legal printer gives a bound for an estimation attack
performed in this way. Besides, SRGAN-decoding allows an
increase of the gap between original and fake graphical codes,
and an improvement of the resistance to an estimation attack.
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