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Abstract

Ambiguity in the ordinary language sense means that available information is open to mul-

tiple interpretations. We model this by assuming that individuals are unaware of some possi-

bilities relevant to the outcome of their decisions and that multiple probabilities may arise over

an individual’s subjective state space depending on which of these possibilities are realized. We

formalize a notion of coherent multiple priors and derive a representation result that with full

awareness corresponds to the usual unique (Bayesian) prior but with less than full awareness gen-

erates multiple priors. When information is received with no change in awareness, each element

of the set of priors is updated in the standard Bayesian fashion (that is, full Bayesian updating).

An increase in awareness, however, leads to an expansion of the individual’s subjective state

and (in general) a contraction in the set of priors under consideration.
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1 Introduction

The idea that choices under uncertainty are subject to problems arising from ambiguity was first

put forward by Ellsberg (1961), drawing on the earlier work of Knight (2006). Like Knight, Ellsberg

argued that, in many cases, decisionmakers do not, and could not be expected to, act as if they

assigned well-defined numerical probabilities to all the possible outcomes of a given choice. His

well-known thought experiments illustrating this argument formed the basis of a large subsequent

literature both theoretical and empirical.

In most of this literature, the term ‘ambiguity’ has been treated as a synonym for what Knight

called ‘uncertainty’ namely the fact that relative likelihoods are not characterized by well-defined

numerical probabilities. The standard method of dealing with ambiguity in decision theory is to

endow the decisionmaker with multiple priors as in Gilboa and Schmeidler (1989). This approach

may be combined with a variety of preference models, notably including the maxmin model of Gilboa

and Schmeidler (1989) and the smooth model of Klibanoff et al. (2005).

For a non-specialist this is puzzling; there is no obvious link to the ordinary meaning (or mean-

ings1) of ambiguity as a characteristic of propositions with more than one interpretation. In its

normal usage, ambiguity is a linguistic concept, but in decision theory it is typically treated as a

property of preferences.

The now-standard usage is quite different from that in Ellsberg’s (1961) original article. Ellsberg

treated ambiguity, not as a property of preferences or relative likelihoods, but as a property of the

information on which judgements of relative likelihoods might be based.

“Responses from confessed violators [of the expected utility (EU) axioms] indicate that

the difference is not to be found in terms of the two factors commonly used to determine a

choice situation, the relative desirability of the possible payoffs and the relative likelihood

of the events affecting them, but in a third dimension of the problem of choice: the nature

of one’s information concerning the relative likelihood of events. What is at issue might

be called the ambiguity of this information, a quality depending on the amount, type,

reliability and ‘unanimity’ of information, and giving rise to one’s degree of ‘confidence’

in an estimate of relative likelihoods.”

In this paper, we argue that informational ambiguity, in the ordinary language sense that the

available information is open to multiple interpretation, may be modelled using concepts from the lit-

erature on unawareness. When individuals are unaware of some possibilities relevant to the outcome

of their decisions, there are multiple probability distributions that may be applicable, depending on

whether or not these possibilities are realized.

1Empson (1930) famously distinguished seven types of ambiguity.
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To represent this idea, we adopt a syntactic representation, in which the state of the world is

characterized by the truth values of a finite set of elementary propositions P . The state space Ω is

given by the set of all logically possible combinations of truth values, that is, by the truth table for

P . Events in Ω correspond to the truth values of compound propositions in P .

An unboundedly rational decision-maker is aware of all the propositions in P , and in the logical

closure of P , and therefore has access to a complete and unambiguous description of the state space

Ω. If her unconditional and conditional preferences over acts (mappings from the state space to a

set of consequences) conform to expected utility theory, then it is as if the decision-maker can assign

a unique subjective probability π to any event E, and update that probability in line with Bayes

rule as new information is received.

In contrast, we represent a boundedly rational decision-maker as one who is unaware of at least

some propositions in P . For simplicity, consider the case when an agent is aware of a proposition

p, but not of a related proposition q. In this situation, the proposition p is ambiguous since it may

mean either p ∧ q or p ∧ ¬q. From the agent’s viewpoint, her information about p is incomplete,

since it is open to multiple interpretations.2

In this paper, we formalize this idea to derive a coherent multiple priors (CMP) model. Our

goals are twofold. First, we derive a representation theorem for the CMP model and show that,

with full awareness, it corresponds to the usual Bayesian model. Second, we consider the problem

of updating beliefs. In our setting, updating may arise in response to the receipt of new information

or to increased awareness, represented as awareness of new elementary propositions p. When infor-

mation is received with no change in awareness, each element of the set of priors is updated in the

standard Bayesian fashion as in Ghirardato et al. (2008). An increase in awareness is represented

by an expansion of the state space to which the decision maker has access, and by a corresponding

contraction in the set of priors under consideration. As the decisionmaker approaches full awareness,

the set of priors contracts to a singleton {π∗}. Relative to π∗ the set of priors at any time t is made of

conditional probabilities, depending on the truth values of propositions of which the decisionmaker

is unaware.

Roadmap

The paper is organized as follows. We begin with a motivating example, involving a policy-maker’s

response to an epidemic disease outbreak. This example illustrates the relationship between bounded

awareness and ambiguous beliefs and explains the notion of coherence.

We next set up the description of the decision-making problem in both propositional (syntac-

tic) and state-space (semantic) terms. Awareness, information and acts are defined. Under full

2Ambiguity also arises in interactive contexts as in Grant et al. (2018), where different agents may interpret the

same proposition differently.
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awareness, individuals have access to a set of propositions P such that the associated truth table

2P encompasses all relevant distinctions between states of the world. Boundedly aware individu-

als have access to a more limited set of propositions A which gives rise to a coarser state space

SA, as well as an associated ‘complementary’ space of unawareness states, with each ‘unawareness

state’ corresponding to an assignment of truth values for the propositions of which the individual is

unaware.

Next we consider preferences and ambiguity. We restate the Ghirardato et al. (2004) axioms. The

crucial result of this section is to show that preferences satisfying the Ghirardato et al. (2004) axioms

may be derived from the preferences of a fully aware EU-maximizer, by introducing unawareness.

As in Ghirardato et al. (2004), the preference over acts on SA has a sub-relation which is

incomplete and obeys the Independence axiom. This sub-relation may be represented by a unique,

closed convex set of priors: an act is preferred over another by this sub-relation if it yields greater

expected utility for every prior in the representation. Hence, a DM who is unaware of some of the

propositions is endowed with an ambiguous preference relation which is coherent (in a sense that

will be made precise) with the expected-utility preferences of a fully aware DM with the same utility

function and the appropriate unique prior.

Our new key assumption, Axiom 6, states that if an act is conditionally preferable to another by

each conditional preference relation obtained by conditioning the complete expected utility prefer-

ence of a fully aware agent on each ‘unawareness state’, then it is unambiguously preferred.

We next consider updating in response to increases in information and awareness. We represent

updating as a two-stage process. First, in even periods, the DM gets to know an event (in the part

of the state space she is aware of). Second, in odd periods the DM becomes aware of proprositions

she had not previously considered.

For changes in information with constant awareness, we show that the preferences we derive

display prior-by-prior Bayesian updating, as in Ghirardato et al. (2008) and Pires (2002). To convey

the intuition for changes in awareness, we first address the simplest case where the individual becomes

aware of a single additional proposition. We show that the result is to expand the state space,

dividing each existing state into two new states, one in which the newly discovered proposition is

true and the other in which it is false. Conversely, any pair of priors conditioned on events that

differ only on the truth value of the new proposition is replaced by a convex combination of the

two. In the finite setting we have here, the state space doubles in size, while the set of priors halves.

This result is shown to hold more generally for any changes in awareness consistent with our model

structure.

In Section 7, we discuss important links between the concept of bounded awareness used here

and problems arising in econometric and statistical theory associated with concept such as ‘latent

variables’ and ‘unobserved heterogeneity’ and the techniques for their estimation as developed by
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Dempster et al. (1977). The crucial idea is that the relationship between observed variables of

interest may be influenced by unobserved variables. In some cases, these variables are known on

theoretical grounds to be relevant but cannot be measured. A variety of classical and Bayesian

methods may be applied to this case. More generally, any trained statistician understands that

relationships estimated on the basis of a given data set may be rendered unreliable by the omission

of relevant variables, without necessarily being aware of which variables might be relevant in a

particular case. This may be seen as an example of “awareness of unawareness”.

Section 8 relates our work to the existing literature. Finally, in Section 9, we offer some concluding

comments.

2 Illustrative example

Consider the regrettably topical problem of developing a public health response to an epidemic

disease outbreak. The disease has only recently been discovered in the country in question, but has

already had severe impacts elsewhere.

The possible options include a low-cost campaign, focusing on basic hygiene measures such as

hand-washing and a high-cost response involving putting the entire population into some form of

quarantine. To simplify, we will assume that the high-cost option is guaranteed to control the

pandemic if applied sufficiently early before the number of cases reaches some critical proportion of

the population. The policy-maker (hereafter, PM) has sufficient data to estimate the probability

that the number of cases is below the critical level, which we will denote by r. For the purpose of

the numerical exercise below, we will set r = 4/5.

The success or failure of the low-cost option depends on a range of factors, only some of which

the PM is fully aware of. Consider the proposition

q = “the low-cost option will contain the pandemic” and its negation ¬q = “the low-cost option

will result in uncontained spread”

The PM is aware that the success of the low-cost option will depend on the extent of voluntary

compliance, but is not explicitly aware of other relevant factors. To make this more precise, she

is aware of the propositions: p1 = “voluntary compliance will be high”. Hence, the initial set of

propositions of which the decision maker is aware is A = {q, p1}. This defines the relevant state-

space: SA = 2|A| = {(q, p1) , (q,¬p1) , (¬q, p1) , (¬q,¬p1)}
Given knowledge about the relevant population, the PM can form unambiguous statements about

the probability of p1 being true, that is whether the population is likely to comply with her advice.

Given the current state of knowledge about the disease, no further information is available.

The PM understands that there are other factors relevant to q, and therefore that information

about q is ambiguous in the sense described by Ellsberg. In these circumstances, some advocates
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of evidence-based medicine point to randomized controlled trials (RCT) as the ‘gold standard’ for

assessing interventions.3

Ideally, an RCT would yield precise estimate of the proportion π (q | p1) and π (q | ¬p1) of pro-

grams that succeed in high compliance and low-compliance populations respectively. However, there

is no guarantee that RCTs conducted on different populations will yield the same results, even if

these populations are similar with respect to compliance. On the contrary, it is possible that results

differ too much to be consistent with the hypothesis that low-cost interventions in populations with

similar compliance probabilities have the same probability of success.

Suppose, thus, that individual RCTs conducted in different countries have yielded probability

estimates πk (q | p1) ∈ [π (p1) , π̄ (p1)] and πk (q | ¬p1) ∈ [π (q | ¬p1) , π̄ (q | ¬p1)] and that the differ-

ences are too large to be explained by chance variation. As Cowan (2020) observes:

“A positive result for treatment against control in a randomized controlled trial shows

you that an intervention worked in one place, at one time for one set of patients but not

why and whether to expect it to work again in a different context. Evidence based

medicine proponents try to solve this problem by synthesizing the results of RCTs from

many different contexts, often to derive some average effect size that makes a treat-

ment expected to work overall or typically. The problem is that, without background

knowledge of what determined the effect of an intervention, there is little warrant to be

confident that this average effect will apply in new circumstances. Without understand-

ing the mechanism of action, or what we call a theory of change, such inferences rely

purely on induction.

“The opposite problem is also present. An intervention that works for some specific

people or in some specific circumstances might look unpromising when it is tested in a

variety of cases where it does not work. It might not work ‘on average’. But that does

not mean it is ineffective when the mechanism is fit to solve a particular problem such as

a pandemic situation. Insistence on a narrow notion of evidence will mean missing these

interventions in favor of ones that work marginally in a broad range of cases where the

answer is not as important or relevant.”

In these circumstances, the PM is cognizant of the fact that there are differences between the

populations of the various countries that result in differing rates of success for the low-cost inter-

vention, but is unaware what these differences might be.4 We may suppose that some of the RCT

3This view is not universally shared. It is also argued that meta-analyses of large numbers of studies provide better

evidence.
4Here we deliberately use ‘cognizant’ instead of ‘aware’, in light of the observation made by Grant and Quiggin

(2013) that the proposition ‘I am aware that there exist propositions of which I am unaware’ is self-contradictory for

plausible definitions of awareness.
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populations match that with that of the country in question.

How can the PM reason about the probability that the treatment will be successful for a popu-

lation with known compliance rates?

One possible answer, noted by Cowen, is to impute the mean probability π (q | p) (respectively,

π (q | ¬p)) averaged across RCT studies of populations with high (low) compliance. Given that the

country is a member of a particular, yet undefined, sub-class, this answer is wrong with probability

1, although the direction and magnitude of the error cannot be determined.

An alternative might be to set up a higher-order probability model. That is, the PM might impute

a subjective probability wk to the proposition ‘the relevant characteristics of my country are most

similar to those of the patient population of country k’. This yields, for compliant populations, the

success probability π∗ (q | p1) =
∑
k πk (q | p1)wk. Some version of this subjective approach would

be required of an agent satisfying the Savage axioms. Yet the solution is obviously problematic.

While the success rates for each country, πk (q | p1), are objectively defensible, the choices of wk

are just guesses. The resulting weighted average π∗ (q | p1) cannot be justified to the public, or to

another policy-maker whose guesses wk are different.

The third response to unawareness is to say that the success probability lies in the interval

[π (p1) , π̄ (p1)]. With this response, bounded awareness implies ambiguous probability beliefs.

The idea that probabilistic judgements apply to large populations but not to individual cases (in

our case, that of individual countries) may be traced back to Knight. It is eloquently expressed by

Mukerjee (2015) as applied to medical research:

“We have invented many rules to understand normalcy - but we still lack a deeper,

more uniform understanding of physiology and pathology. This is true for even the most

common and extensively studied diseases - cancer, heart disease, and diabetes. ... Why

do certain immune diseases cluster together in some people, while others have only one

variant? Why do patients with some neurological diseases such as Parkinson, have a

reduced risk on cancer?

“These ‘outlying’ questions are the Mars problems of medicine...”

In all these questions there is ‘awareness’ of several different outcomes, but ‘unawareness’ of what

the cause of these different outcomes might be, and how they apply in particular cases.

Suppose indeed, that the reality in our epidemic example is more complicated: whether or not a

low-cost program succeeds depends not only on the population compliance, p1 but also on whether

household size is small, p2. What is more, these two factors are interrelated.

In particular, traditional societies with large families are more inclined to follow directives from

established authorities. Suppose no other factors are relevant.
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Thus the set of propositions P = (q, p1, p2) defines an eight element ‘small world’ in the sense of

Savage (1954).

The following table gives the joint probability of the validity of the relevant propositions, p1 and

p2 for the population in question.

p2: small household ¬p2: large household

p1: compliant. 1/8 3/8

¬p1: not compliant 1/3 1/6

(1)

For later reference, Pr(p1|p2) = 3/11, Pr(p1|¬p2) = 9/13.

Given the interplay between p1, p2 and q explained above, we specify the following conditional

probabilities of q given the truth realizations of p1 and p2:5

p2: small household ¬p2: large household

p1: compliant. Pr {q | p1, p2} = 1 Pr {q | p1,¬p2} = 1/2

¬p1: not compliant Pr {q | ¬p1, p2} = 1/2 Pr {q | ¬p1,¬p2} = 0

(2)

This implies that the joint probability distribution of the truth values of q, p1 and p2 is:

q: low-cost success p2: small household ¬p2: large household

p1: compliant. 1/8 3/16

¬p1: not compliant 1/6 0

(3)

¬q: low-cost failure p2: small household ¬p2: large household

p1: compliant. 0 3/16

¬p1: not compliant 1/6 1/6

and the joint (marginal) probability distribution of q, p1 is:

q: low cost success ¬q: failure

p1: compliant. 5/16 3/16

¬p1: not compliant 1/6 1/3

(4)

A fully aware PM can thus state the unconditional probability of q as Pr {q} = 23/48.

In this context, learning the truth value of p2 generates a partition

F1 =

 {(q, p1, p2) , (q,¬p1, p2) , (¬q, p1, p2) , (¬q,¬p1, p2)} ,

{(q, p1,¬p2) , (¬q, p1,¬p2) , (q,¬p1,¬p2) , (¬q,¬p1,¬p2)}


5In the general model specified in Section 6, we require that all relevant events be non-null so as to avoid discussing

updating of beliefs upon the occurrence of a null event. For the purposes of the example, we assume that some of the

states do occur with probability 0. Note that this does not generate a contradiction in as far as the example does not

require updating conditional on such 0-probability events.
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and the updated conditional probabilities are calculated as usual, e.g.,

Pr {q, p1 | p2} =
Pr {(q, p1, p2)}

Pr {(q, p1, p2)}+ Pr {(q,¬p1, p2)}+ Pr {(¬q, p1, p2)}+ Pr {(¬q,¬p1, p2)}
.

Hence, for each realization of the truth value of p2, we obtain the probability distribution on the

state space SA:

Pr {q, p1 | p2} = 3/11 Pr {q, p1 | ¬p2} = 9/26

Pr {¬q, p1 | p2} = 0 Pr {¬q, p1 | ¬p2} = 9/26

Pr {q,¬p1 | p2} = 4/11 Pr {q,¬p1 | ¬p2} = 0

Pr {¬q,¬p1 | p2} = 4/11 Pr {¬q,¬p1 | ¬p2} = 4/13

(5)

Now consider a partially aware PM. We suppose that the PM entertains two priors over SA,

corresponding to the possible truth values of p2. These priors represent the PM’s perception of the

ambiguity of the information she has available concerning SA.

We will be particularly concerned with the case of coherent priors. Coherent priors correspond

to the conditional probabilities the agent would assign if she were actually aware of the truth values.

The underlying idea is that, while the PM cannot articulate p2, her beliefs on SA correctly reflect

the beliefs she would hold if she were fully aware. That is, each row in (5) defines an interval of

probabilities a PM may entertain about the occurrence of a state in SA.

In our example, the probability distribution in the right column in (5) corresponds to a data set

from an RCT study conducted in a country with small households whereas the left column would

correspond to RCT data generated in a country with large households.

Thus, with k ∈ {1, 2}, where p2 is true for country 1 and ¬p2 holds for country 2, we would have

π1 (q | p1) = 1, π1 (q | ¬p1) =
1

2

π2 (q | p1) =
1

2
, π2 (q | ¬p1) = 0

Realistically, for most countries, the proportions of households would be between the extreme values,

giving rise to a convex set of probabilities.

The range of possible probabilities over SA are given by an interval in [0, 1]
4

with extreme points

given by the two conditional distributions (3/11, 0, 4/11, 4/11) and (9/26, 9/26, 0, 4/13) identified in

(5).

Upon learning the truth value of p1, that is, the compliance characteristics of the population,

and using full Bayesian updating on the set of priors, the beliefs over the value of q reduce to:

q: low-cost program successful

p1: compliant. Pr {q | p1} ∈ [π1 (q | p1) , π2 (q | p1)] = [1/2, 1]

¬p1: not compliant Pr {q | ¬p1} ∈ [π2 (q | ¬p1) , π1 (q | ¬p1)] = [0, 1/2]

(6)
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where the extreme points of the interval in each case reflect the two distributions conditional on the

truth of p2 presented in Table 2.

The resulting convex set of priors is illustrated in Figure 1. The upper red line shows the set of

priors for the pair (Pr (p1) ,Pr (q | p1)). Point A represents the prior belief derived from the implicit

assumption of p2. Point B represents the prior belief derived from the implicit assumption of ¬p2.

Similarly, the lower blue line represents the set of priors for the pair (Pr (p1) ,Pr (q | ¬p1)). Point

A′ represents the prior belief conditional on the implicit assumption of p2. Point B′ represents the

prior belief conditional on the implicit assumption of ¬p2.

The information represented by Points A and A′ is sufficient to represent the prior belief over

the state space {(q, p1) , (q,¬p1) , (¬q, p1) , (¬q,¬p1)} derived from the implicit assumption of p2.

Similarly, the information represented by Points B and B′ is sufficient to represent the prior belief

derived from the implicit assumption of ¬p2.

Now suppose our PM becomes aware of p2 and assigns the ‘correct’ prior probability 11/24 to p2

being true. (If the available data is representative, this prior could also be inferred from the data,

once the truth value of p2 has been measured for each observation). Now the two priors on SA,

(3/11, 0, 4/11, 4/11) and (9/26, 9/26, 0, 4/13), are collapsed into one, namely that given by (4):

Pr (p2)π1 (q | p1) + Pr (¬p2)π2 (q | p1)

=
11

24

(
3

11
, 0,

4

11
,

4

11

)
+

13

24

(
9

26
,

9

26
, 0,

4

13

)
=

(
5

16
,

3

16
,

1

6
,

1

3

)
and the interval convex hull shrinks to a single point.

Note that the so-obtained probability distribution will coincide with π∗ if and only if the relative

frequency of p2 observed in the RCTs, coincides with the actual probability of p2 for the population

in question.

In Figure 1, upon becoming aware of p2, the pairs (A,B) and (A′, B′) are replaced by the

single priors C and C ′ respectively, where C = λA + (1− λ)B with λ = Pr (p2 | p1), and similarly

C ′ = λ′A′ + (1− λ′)B′ with λ′ = Pr (p2 | ¬p1). The vertical axis values of C and C ′ are the prior

conditional probabilities Pr (q | p1) and Pr (q | ¬p1), taking account of available information about

p2.6

As we will show below, under appropriate conditions on beliefs and preferences, this coherence

result holds in general. Becoming aware of some new propositions, while remaining unaware of

others, and updating each element of the set of coherent priors according to Bayes rule yields a set

of posteriors which is the same as the set of coherent priors obtained by beginning with expanded

awareness and information, and then deriving priors as above. Moreover, the derivation above shows

6Similarly, the horizontal axis values of C and C′ are convex combinations of the probability of p1 conditional on

the realization of p2 with the same coefficients λ and λ′. The interpretation of these values is more complicated due

to the fact that the figure is attempting to represent an 8-dimensional state space in a two-dimensional graph.
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that coherence is, in principle, testable. Once the PM is fully aware, a probability distribution over

Ω can be elicited, and this is sufficient to derive the set of priors associated with any state of partial

awareness and any information set.

Now consider the choice faced by the PM, between the low-cost and high-cost responses. We

may consider three possible outcomes: an uncontrolled pandemic, a successful high cost response

and a successful low-cost response. We will associate these outcomes with payoffs 0, 1/2, and 1.

The high-cost option αh generates an unambiguous lottery yielding 1/2 with probability r = 4/5

and 0 with probability 1− r = 1/5. The expected utility of this lottery is 2/5.

Under full awareness, the low cost option α` also generates an unambiguous lottery yielding 1

with probability 23/48 and 0 with probability 25/48.

By contrast, a PM unaware of p2 entertains the two priors (3/11, 0, 4/11, 4/11) and (9/26, 9/26, 0, 4/13).

If the PM is uncertain about the degree of voluntary compliance of the population (the validity

of p1), the MMEU of αl is determined using the minimal probability of success for the low-cost

option, Pr {q} = min {7/11, 9/26} = 9/26.

With these parameter values

9/26 < 2/5 < 23/48.

That is, under full awareness the low-cost option α` will be preferred to the high cost option, but
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under partial awareness with MMEU preferences, the high-cost option αh will be preferred. The

PM, realizing that there are relevant factors of which she is yet unaware, might thus prefer to choose

a costlier and more aggressive course of action, which would however help control the pandemic with

a known probability r, rather than facing the worst possible scenario, in which the unknown factor

drives the probability of success to its lowest possible value 9/26. This can be interpreted as an

instance of the precautionary principle in face of unawareness.

3 Setup

3.1 The state of the world: propositional and state-space descriptions

Information and awareness evolve over time. However, we will initially consider an individual with

fixed information and awareness, suppressing time subscripts.

The world is described by the truth values of a finite set of elementary propositions P =

{p1 , ... , pN}. Compound propositions formed by conjunction and negation of elementary propo-

sitions are denoted by boldface p.

Individuals have bounded awareness, represented by a set A ⊆ P of elementary propositions

which they can express. Awareness and information are mutually dependent. On the one hand, as

will be described in more detail below, the individual’s awareness depends on the information they

have. On the other hand, that information must be expressed in terms of propositions p ∈ A ⊆ P

expressible by the individual.

This propositional description of the world may be represented equivalently in state space terms

more familiar to decision theorists. The state space associated with the truth table for P may be

represented by Ω = 2N with ω a representative element/state.7 Let Σ denote the field of subsets of

Ω with elements E.

Similarly, for an individual with awareness A the state space of which she is aware can be

expressed as

SA = 2A,

with a generic element sA and field of subsets ΣA with elements EA, referred to as events. Note

that each event EA corresponds to the truth of a compound proposition p made up of elementary

propositions in PA.

Clearly, each state ω ∈ Ω uniquely identifies a state sA ∈ SA by its projection to SA denoted

by ωSA . Conversely, each sA ∈ SA corresponds to an event in Ω, that is, the set of states ω whose

7Since a state specifies the truth value of each proposition in P , it can be expressed as a binary number, i.e.,

ω ∈ {0, 1}N . While such a representation may be useful in some contexts, it is mostly unnecessary for the purposes

of this paper and is thus evoked only once in Section 6.2.
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projection to SA is exactly sA: EsA =
{
ω | ωSA = sA

}
. Such events are measurable with respect to

ΣA. More generally, an event E ⊆ Ω is measurable with respect to ΣA iff

ω ∈ E implies ω′ ∈ E for all ω′ ∈ Ω with ωSA = ω′SA . (7)

We define a probability as a mapping π : ΣA → [0, 1] with the usual properties, and define the

conditional probability operator π (· | E) according to Bayes rule

π (E′ | E) =
π (E ∩ E′)
π (E)

whenever π (E) > 0.

Note that a probability measure π on Σ induces a unique probability measure π̃ on ΣA by setting

π̃ (E) = π {ω | ωSA ∈ E} .

Let Ā = P\A be the set of propositions of which the individual is unaware. The “complementary

state space” of which she is unaware can be expressed as S̄A = 2Ā, with generic element s̄A. Notice

that Ω = SA × S̄A.

Furthermore, each (awareness) state sA ∈ SA corresponds to the event
{
sA
}
× S̄A in Ω and

each s̄A ∈ S̄A corresponds to the event SA ×
{
s̄A
}

in Ω. That is, awareness of the form described

above leads to a ‘coarsening’ of the state space as, for example, in Quiggin (2016), represented by

the projection of Ω onto SA. In the case of full awareness, S̄A must be a singleton and similarly for

SA in the case of maximal unawareness.

Unawareness in this sense may be distinguished from the case of ‘reduction’ or ‘restriction’ of the

state space, in which some possible elements of Ω are disregarded or, equivalently, in which some

propositions that are possibly true are implicitly assumed to be false. This leads to the possibility

of ‘surprise’, see, for example, Grant and Quiggin (2015).

3.2 Acts

Acts will be represented formally in the usual Anscombe-Aumann framework. To understand how

this framework is applicable in situations of differential awareness, it is useful to recall that each

state and event in Ω corresponds to the truth value of a (typically compound) proposition.

In order to focus on beliefs rather than preferences over outcomes, we concentrate on a set

comprising just two final consequences Z = {0, 1}.8 Hence, each simple act may be expressed in

8In this paper, we abstract from the problem of how the agent deals with ambiguity and explore the relation

between the perception of ambiguity and partial awareness concentrating on agent’s beliefs. Since only two outcomes

are necessary for belief elicitation, the binary outcome assumption is without loss of generality and all results in

the paper hold for more general finite sets of outcomes. Using a richer set of outcomes would allow us (as in the

standard Anscombe-Aumann setting) to uncover the agent’s risk attitude, and, under some additional conditions, as

for instance in Ghirardato et al. (2004) elicit his attitude towards ambiguity.
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propositional terms as a bet of the form “If p, receive 1, otherwise receive 0”. The extension to

general outcome sets is straightforward but adds complexity without additional insight.

Let ∆ (Z) denote the set of all lotteries on Z, with a generic element denoted by x ∈ [0, 1],

yielding the (‘good’) outcome 1 with probability x and the (‘bad’) outcome 0 with complementary

probability 1− x.

An act α maps Ω to ∆ (Z). The set of acts available under full awareness is denoted A, and is

equal to Ω∆(Z). Let C denote the set of all constant acts. Let B denote the set of ‘bets (on events)’,

that is, α ∈ B if and only if α (ω) ∈ {0, 1} for all ω ∈ Ω.

The outcomes of acts considered by an individual with limited awareness must be conditional on

propositions of which the individual is aware. Hence, for given awareness A ⊆ P , any act α must be

measurable with respect to ΣA, and we denote by A (A) the subset of such acts. Formally:

A (A) = {α : Ω→ [0, 1] | α (ω) = α (ω′) for all ω, ω′ with ωSA = ω′SA} .

Clearly, an agent with limited awareness cannot perceive such mappings. Hence, the set of acts

available to an agent with awareness A is given by:

AA =
{
α : SA → [0, 1]

}
.

Note that there is a one-to-one correspondence between the acts in A (A) and those in AA, but that

the mappings defining these acts have different domains (Ω vs. SA). Analogously, CA denotes the

set of constant acts AA and BA denotes the set of bets in AA.

Each act in AA induces a mapping of elements of SA into lotteries on Z. In particular, for any

sA an act α specifies the probability of obtaining 1, which with slight abuse of notation we shall

denote by α
(
sA
)
.

As is standard, convex mixtures of acts are defined as state-by-state probability mixtures: for α

and α′ ∈ A, and λ ∈ (0, 1), we define λα+ (1− λ)α′ by

(λα+ (1− λ)α′) (ω) = λα (ω) + (1− λ)α′ (ω)

for all ω ∈ Ω. Convex mixtures in AA are defined analogously with respect to the state space SA.

Example Suppose that an agent’s initial awareness consists of a single proposition, A = {p1}, and

that the agent later becomes aware of the full set of propositions P = {p1, ..., pN}. In the initial

condition of partial awareness, the state space is S{p1} = SA = {p1,¬p1}, and an act may be

represented as an ordered pair of consequences: (α (p1) , α (¬p1)). There are only four simple acts

available to the agent: the two constant acts (0, 0) and (1, 1) the bet on p1 (1, 0) and the bet against

p1, (0, 1). The set of acts AA = [0, 1]
2

consists of convex mixtures over these simple acts. Trivially,

each of these acts corresponds to an act in Ω measurable with respect to ΣA. For example, the bet

on p1 can be represented as α (ω) = 1 if p1 is true in ω and α (ω) = 0 if ¬p1 is true in ω. The logic

of this simple example is fully general.
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4 Preferences and ambiguity

For each level of awareness A ⊆ P we define preferences on AA by %A. We will denote %=%P

preferences under full awareness. That is, we consider an agent with a family of preference orderings

over state spaces SA, one for each A.

4.1 The GMM approach

We first impose the Ghirardato et al. (2004) (hereafter, GMM) axioms: for each AA, we assume the

preference relation %A satisfies:

Axiom 1 Completeness and transitivity

Axiom 2 Archimedean axiom: for all α, α′, α′′ ∈ AA, if α �A α′ �A α′′, then there are λ and

µ ∈ (0, 1) such that

λα+ (1− λ)α′′ �A α′ �A µα+ (1− µ)α′′.

Axiom 3 (a) Certainty independence: for α, α′ ∈ AA and ᾱ ∈ CA, α %A α′ iff λα+ (1− λ) ᾱ %A

λα′ + (1− λ) ᾱ for all λ ∈ [0, 1].

(b) Independence under full awareness: if A = P , then for any α, α′, α′′ ∈ A, α %P α′ iff

λα+ (1− λ)α′′ %P λα′ + (1− λ)α′′ for all λ ∈ [0, 1].

Axiom 4 Monotonicity: for α, α′ ∈ AA if α
(
sA
)
≥ α′

(
sA
)

for all sA ∈ SA, then α %A α′.

Axiom 5 Non-degeneracy: there are α and α′ ∈ AA such that α �A α′.

Axiom 2 is purely technical, Axiom 4 is intuitive and uncontroversial, while Axiom 5 ensures

the setting and the analysis that follows is not vacuous. Axiom 1 is of more interest. The standard

completeness axiom, adopted by GMM, is very demanding, since it requires agents to have complete

preferences over all conceivable acts with respect to a state space which may be arbitrarily large.

Since we are restricting the axiom to apply to acts expressed in terms of propositions of which the

agent is explicitly aware, our Axiom 1 is consistent with reasonable bounds on cognitive capacity.

The same reasoning extends to transitivity.

For the case of partial awareness A ⊂ P , Axiom 3 is less restrictive than the standard inde-

pendence axiom (as in GMM) except in the special case of full awareness, for which independence

does hold. This implies that in our setting partial awareness is the only source of deviations from

expected utility.

Definition 1 For α, α′ ∈ AA, α is %A-unambiguously preferred to α′, if

λα+ (1− λ)α′′ %A λα′ + (1− λ)α′′ for all λ ∈ [0, 1] and all α′′ ∈ AA. (8)
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Whenever (8) is satisfied for two acts α and α′, we write α %A∗ α
′. As in GMM, the relationship

%A∗ is a preorder satisfying all the Anscombe-Aumann axioms (except completeness), and so admits

a representation as given in the Lemma below, GMM, Proposition 5, p. 144. For the case of full

awareness, this relationship is complete.

Lemma 1 Axioms A1-A5 imply for each A the existence of a unique convex and (weak*) closed set

of priors ΠA such that for any two acts α and α′ ∈ AA

α %A∗ α
′ iff

∑
sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ ΠA. (9)

In particular, ΠP is a singleton {π∗}.

Remark 1 Just as in Anscombe-Aumann, for the case of full awareness, Axiom 3(b) allows us to

define conditional preferences and thus, identify conditional beliefs π∗ (· | E) which satisfy Bayes

rule.

Since each constant act can be identified with the probability x ∈ [0, 1], with which it results in

the outcome 1 in every state, we write αx ∈ C. As in GMM (pp. 153-4), for α ∈ AA, define the

interval of possible certainty equivalents:

CE∗ (α) =

 x ∈ [0, 1] | for any y ∈ [0, 1] , αy %A∗ α implies y ≥ x and

α %A∗ αy implies x ≥ y

 .

GMM show that x ∈ CE∗ (α) iff

min
π∈ΠA

∑
sA∈SA

π
(
sA
)
α
(
sA
)
≤ x ≤ max

π∈ΠA

∑
sA∈SA

π
(
sA
)
α
(
sA
)
.

Interpreting constant acts x as utilities, and noting that we have restricted utilities to the unit

interval, CE∗ (α) corresponds to the set of utilities for α consistent with some π ∈ ΠA. In the case

of full awareness, CE∗ (α) is a singleton.

4.2 Unawareness and ambiguity

The preferences described in the previous section are normally interpreted in terms of ambiguity.

Given our setup, there is a natural interpretation in terms of awareness.

Consider EU preferences over A, %, described by the full awareness probability distribution π∗

derived using Axiom 3(b) in the previous section.9 In this setting, conditional preferences can be

defined as usual.

9Without loss of generality, we assign utilities 0 and 1 to the final consequences 0 and 1, respectively.

15



Definition 2 For α̂, α̂′ ∈ A, α̂ is preferred to α̂′ conditional on event E ∈ Σ, denoted α̂ %E α̂′ iff

α̃ % α̃′ holds for some (and thus, by Axiom 3(b), for all) α̃, α̃′ ∈ A with α̃ (s) = α̂ (s), α̃′ (s) = α̂′ (s)

for all s ∈ E and α̃ (s) = α̃′ (s) for all s 6∈ E.

Remark 2 The so-defined conditional preferences under full awareness can be shown to satisfy the

same Axioms 1–5 as above.

For any s̄A ∈ S̄A, that is, for any set of truth values for the propositions outside of a given

set A ⊆ P (which describes a possible level of awareness), π∗ induces a conditional probability

distribution π∗
(
·|s̄A

)
over SA. Correspondingly, the induced conditional preferences %s̄A over A (A),

are given by α̂ %s̄A α̂′ iff

∑
sA∈SA

π∗
(
sA | s̄A

)
α̂
(
sA
)
≥

∑
sA∈SA

π∗
(
sA | s̄A

)
α̂′
(
sA
)
.

Now consider the family of preferences
(
%A
)
A

which satisfy Axioms 1–5. The following axiom

relates the preference relation at a level of awareness A to the conditional preferences under full

awareness.

Axiom 6 Unanimity: for α, α′ ∈ AA, α %A∗ α′ if and only if for every s̄A ∈ S̄A and every α̂s̄A ,

α̂′s̄A ∈ A with α̂s̄A
(
s× s̄A

)
= α (s) and α̂′s̄A

(
s× s̄A

)
= α′ (s) for each s ∈ SA and α̂s̄A

(
s× s̃A

)
=

α̂′s̄A
(
s× s̃A

)
for all s ∈ SA and s̃A ∈ S̄A\s̄A, âs̄A % â′s̄A .

Note that this condition can be equivalently rewritten in terms of the conditional preferences in

Definition 2. Recall that to each act α ∈ AA paying off on the state-space SA, there corresponds

an act α̂ ∈ A (A) paying off on the state-space Ω and measurable with respect to ΣA such that

α̂ (s̃) = α (s) for each each s̃ ∈ Es and each s ∈ SA. Then Axiom 6 says that for any two acts

α, α′ ∈ AA, α is unambiguously preferred to α′, α %A∗ α′, if and only if for α̂, α̂′ ∈ A (A) with

α̂ (s̃) = α (s) and α̂′ (s̃) = α′ (s) for each s̃ ∈ Es and each s ∈ SA, α̂ is preferred to â′ conditionally

on any state s̄A ∈ S̄A, α̂ %s̄A α̂′. Recalling that α̂ and α̂′ are measurable with respect to SA,

the only effect of s̄A is to determine the conditional probability distribution π∗
(
· | s̄A

)
. So, we are

evaluating α and α′ with respect to a set of probability distributions. Axiom 6 says that if α is

preferable with respect to each such distribution, then it must be preferred unambiguously.

This property may be viewed as a version of the sure-thing principle. Unambiguous preferences

of the type α %A∗ α
′ here correspond to comparisons for which existing evidence is uncontroversial,

i.e., for which the truth realizations of the yet unknown propositions and thus of the states in Ā all

yield the same preference ranking for a given choice. Axiom 6 then requires a certain consistency

when the preferences of a decision maker in a state in which he is not yet aware of Ā are revised

upon becoming fully aware of all propositions in Ā. If it is the case that the realizations of the

uknown states were irrelevant for the comparison between α and α′ ex-ante, then this should also
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be true ex-post for every such possible realization, i.e., conditional on any possible truth value of

the propositions in Ā. Vice versa, if there is a truth value specification for the propositions in Ā for

which the comparison between α and α′ is reversed, representative and accurate empirical evidence

would reflect this, even if the decision maker is yet unaware of the cause for such a reversal. Thus,

the decision maker would not have unambiguously preference for α versus α′ at awareness level A.

Since Axiom 6 uses the conditional preferences derived from the full awareness preference relation

for each level of awareness A, its effect is to tie all the preference relations %A to the fully aware

preferences % and thereby to each other.

4.3 The awareness-based multiple priors model

We now establish the claim that unawareness, as we have defined it, naturally lends itself to a

multiple priors model to represent preferences.

Definition 3 Multiple priors preferences are awareness-based if for each A ⊆ P , the set of proba-

bilities ΠA derived in Lemma 1 satisfies:

ΠA = CH
{
π∗
(
·|s̄A

)
|s̄A ∈ S̄A

}
,

where CH stands for the convex hull of a set, and π∗ is a probability as described in Section 1.

Clearly, for awareness-based preferences, under full awareness, Π is a singleton (recall that in

this case S̄A is a singleton).

Given these definitions we have the following implication of the axioms, the proof of which is

relegated to the Appendix:

Proposition 2 Under axioms A1–A6, the family of preferences
(
%A
)
A

are awareness-based.

Notice that we do not expect the converse to hold. As we shall show, in the absence of changes

in awareness, the probabilities Π derived as conditional distributions based on unawareness follow

Bayesian updating in response to the arrival of new information. Axioms 1–6 are insufficient to

ensure this – we need additional properties as discussed by Ghirardato et al. (2008). These additional

properties give rise to a coherent multiple priors model.

5 Time, information, awareness and histories

We now consider changes in information as well as awareness over time, and the induced changes

in beliefs and preferences. Time t = 0, 1, 2, . . . , T is discrete and finite.

Information is formally modeled by partitions: Ft denotes a partition of Ω at time t. As with

acts, understanding is assisted by considering the interpretation in terms of propositions. Each
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element of a partition corresponds to the truth value of a compound proposition, and the set of

such propositions must be exhaustive and mutually exclusive. Information consists of learning that

precisely one of these propositions is true.

The element of Ft that obtains at time t is denoted ft ∈ Ft. The collection F ={Ft}Tt=0 consti-

tutes a filtration. That is, for each t = 0, . . . , T−1, Ft+1 is a refinement of Ft, or equivalently, if

ft+1 ∈ Ft+1 then ft+1 ⊆ ft for some ft ∈ Ft. We write ρt (f) for the element of the partition at

time t which contains f ⊆ Ω (provided such an element exists). That is,

ρt (f) = {ft ∈ Ft | f ⊆ ft}

In particular, for ft+1 ∈ Ft+1, ρt (ft+1) is the immediate predecessor of ft+1.

We write σt′ (ft) =
{
f̃t′ ∈ Ft′ | ρt

(
f̃t′
)

= ft

}
for the set of successors of ft at time t′ > t. In

particular, σt+1 (ft) is the set of immediate successors of ft.

Without loss of generality, we will assume that non-trivial new information arrives only at odd

periods, that is, |σt+1 (ft)| > 1 only if t = 2k for some k ∈ N0. For even periods, t = 2k+ 1 for some

k ∈ N0, we have Ft+1 = Ft and no new information is revealed.

We assume that no uncertainty is resolved at date t = 0, that is, F0 = {Ω} and all uncertainty

is resolved by date T , so that for each ω ∈ Ω, {ω} ∈ FT .10

The explanation above shows that information must be measurable with respect to the awareness

of the agent. An agent cannot learn the truth of a proposition of which she is unaware. It is possible

to become aware of a proposition because its truth becomes evident. Next, we introduce the joint

dynamics of information and awareness.

To do so, we associate with each pair (t, f) such that f ∈ Ft, an awareness level A (t, f). We

impose the following restrictions on the awareness structure defined by A (t, f):

Definition 4 An awareness structure
{
A (t, ·) : Ft → 2P \ {∅}

}T
t=0

is admissible relative to an in-

formation partition F if:

(i) Awareness is non-empty, increasing and can only change in even periods: ∅ 6= A (t, f) ⊆
A (t+ 1, σt+1 (f)) for all t and A (t+ 1, σt+1 (f)) = A (t, f) if t = 2k for some k ∈ N0.

(ii) Information is measurable with respect to awareness: for an even period t = 2k for some k ∈ N0

and a given f ∈ Ft, each ft+1 ∈ σt+1 (ft) is measurable with respect to ΣA(t,f) as defined in

(7).

We will assume that at time T , the decision maker is fully aware: A (T, f) = P for all f ∈ FT .

10Alternatively, we may assume that logical contradictions such as ‘the weather is sunny’AND ‘the weather is rainy’

are ruled out at t = 0, and that information received after t = 0 relates only to conceivable states, which may therefore

be assumed to have non-zero probability.
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Remark 3 The fact that for even t = 2k, σt+1 (ft) is measurable with respect to the awareness

level at t, A (t, ft) = A implies that ft itself is measurable with respect to ΣA. We write fAt for the

projection of ft to A, whenever measurability is satisfied.

Definition 5 An information structure {Ft}Tt=0 and an admissible awareness structure{
A (t, ·) : Ft → 2P \ {∅}

}T
t=0

give rise to a set of histories

H = {h = (t, f, A) | t ∈ {0, 1...T} , f ∈ Ft, A = A (t, f)} .

For a given h = (t, f, A), the set of one-step-ahead histories is:

Hh+1 = {h+1 = (t+ 1, f ′, A′) |f ′ ∈ σt+1 (f) , A′ = A (t+ 1, f ′)}

Definition 6 The awareness-adapted history hA corresponding to h = (t, f, A) is given by:

hA =
(
t, fA, A

)
where fA is the projection of f on ΣA. For t = 2k, k ∈ N, and h = (t, f, A), the set of one-step-ahead

awareness-adapted histories is:

Hh,A+1 =
{
hA+1|h+1 ∈ Hh+1

}
.

For t = 2k, and a history h = (t, f, A), we recall that both f and every f ′ ∈ σt+1 (f) are

measurable with respect to ΣA. Thus, for every such h and the corresponding awareness-adapted

history hA, the set of one-step-ahead awareness-adapted histories, i.e., histories expressible in terms

of propositions in A is well-defined.

Remark 4 For a given information structure F and an admissible awareness structure{
A (t, ·) : Ft → 2P \ {∅}

}T
t=0

, consider two consecutive periods t̂ = 2k, and t̂ + 1 = 2k + 1. Setting

F̂0 = {f}, F̂1 = σt+1 (f), and the corresponding awareness structure to Â (0, f) = A (t, f) =

A (t+ 1, f ′) = A for all f ′ ∈ σt+1 (f) results in an information structure together with an awareness

structure admissible with respect to F̂ . For h0 = (0, f, A), the corresponding set of one-step-ahead

awareness-adapted histories is given exactly by:

Hh0,A
1 =

{
hA1 = (1, f ′, A) |f ′ ∈ σt+1 (f)

}
Note that up to renumbering of the periods, these histories correspond to the one-step-ahead aware-

ness adapted histories starting at h = (t, f, A) under the original partition structure F and awareness

structure A (t, f):

Hh,A+1 =
{
hA+1 | h+1 = (t+ 1, f ′, A) , f ′ ∈ σt+1 (f)

}
.
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5.1 Conditional Preferences over Acts

For a given history h = (t, f, A), the acts of which the decision-maker is aware at h are those

measurable with respect to her awareness level A, that is,

AA =
{
α : SA → [0, 1]

}
.

As usual, the information f available to the decision maker at history h allows us to define conditional

preferences.

In particular, for t = 2k and h = (t, f, A), let ΣH
h,A
+1 be the σ-algebra (the set of all subsets) of all

one-step-ahead awareness adapted histories. Preferences on AA conditional on an event H ∈ ΣH
h,A
+1

are written %AH . Such conditional preferences reflect the fact that for a given awareness level, the

arrival of information that the true state is in H will in general change the beliefs of the decision

maker and thus, the evaluation of each of the available acts.

In contrast, for t = 2k + 1 and h = (t, f, A), the direct successor of h is h′ = (t+ 1, f, A′),

where A ⊆ A′ with strict inclusion being the non-trivial case. The transition between h and h′ is a

change in awareness level, the information f remaining unchanged. Thus, an agent with conditional

preferences %Ah on AA =
{
α : SA → [0, 1]

}
will adjust her preferences to the new awareness level,

that is, to %A
′

h on AA′ =
{
α : SA

′ → [0, 1]
}

.

These two adjustment processes will obey different principles. The former will incorporate new

information in a deductive, Bayesian way, leaving existing ambiguity unchanged. The latter will

incorporate newly learned states into the model by expanding the state-space and simultaneously

reducing the level of perceived ambiguity, that is, the set of priors.

We now describe our desideratum, the coherent multiple prior model, which explains how these

principles can be combined in a coherent way.

5.2 The coherent multiple prior model

The following definition of the coherent multiple prior model combines the intuition presented so

far. For a probability distribution π ∈ ∆ (Ω), denote by πh the Bayesian update of π conditional on

history h.

Definition 7 For a given information structure {Ft}Tt=0 and an admissible awareness structure{
A (t, ·) : Ft → 2P \ {∅}

}T
t=0

, let H be the set of corresponding histories. The beliefs of an agent

satisfy the coherent multiple prior model (CMP) if there exists a probability distribution π∗ ∈ ∆ (Ω)

and for each h = (t, f, A) ∈ H a set of priors Πh ⊆ ∆
(
SA
)

s.t.

(i) for t = 0, and h0 = (0,Ω, A0 = A (0,Ω)),

Πh0 = CH
{
π∗
(
· | s̄A0

)
| s̄A0

∈ S̄A0
}
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(ii) for any t = 2k, k ∈ N, and any h+1 = (t+ 1, f ′, A) ∈ Hh+1, with f ′ ∈ σt+1 (f)

Πh+1 =
{
πh

A
+1 | π ∈ Πh

}
(iii) for any t = 2k + 1, k ∈ N0 and the direct successor of h, h′ = (t+ 1, f, A′) ∈ H,

Πh′ = CH
{
π∗h

(
· | s̄A

′
)
| s̄A′ ∈ S̄A

′
}

.

Part (i) states that for the trivial history, h0, the model mimics the static awareness-based

multiple prior model presented above. That is, there exists a probability distribution π∗ of the fully

aware agent, which, when applied to the situation with partial awareness A0 results in multiple

priors π∗
(
· | s̄A0

)
, one for each of the states of which the agent with awareness level A0 is unaware.

Part (ii) is an analogue of the generalized Bayesian updating rule for multiple priors introduced

by Ghirardato et al. (2008) and is applied to those periods, in which new information arrives.

Finally, Part (iii) is the inductive extension of the static awareness-based multiple prior model:

whenever awareness increases, the set of priors is redefined on a larger set of states and the number of

priors is reduced to the number of those states S̄A
′
, of which the agent is still unaware. In particular,

this part of the definition implies that as long as information remains unchanged, the sequence in

which awareness is updated does not matter for the final set of priors.

6 Axiomatizing the coherent multiple prior model

In this section, we provide axiomatic foundations for the coherent multiple prior model. We already

provided a condition, Axiom 6, that relates beliefs under full awareness to beliefs under partial

awareness and thus, establishes property (i) of the coherent multiple prior model. This axiom will

now be extended to hold at all conceivable histories, which will allow us to establish property (iii).

In contrast, to obtain generalized Bayesian updating upon arrival of new information, we will make

use of the axiomatization of this updating rule in Ghirardato et al. (2008).

6.1 Updating with constant awareness

In Definition 2, we defined conditional preferences for the case of full awareness. Here, we first

extend this definition to arbitrary levels of awareness and provide a characterization of multiple

prior updating with partial, but constant awareness. In a second step, we incorporate changes in

awareness and characterize beliefs satisfying the coherent multiple prior representation.

For the remainder of the subsection, we will focus on the process of belief updating between two

consecutive periods t = 2k, and t+ 1 = 2k + 1. As explained in Remark 4, for a given h = (t, f, A),

setting F̂0 = {f}, F̂1 = σt+1 (f), and the corresponding awareness structure to Â (0, f) = A (t, f) =
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A (t+ 1, f ′) = A for all f ′ ∈ σt+1 (f) results in an information structure together with an admissible

awareness structure. For h0 = (0, f, A), the corresponding set of awareness-adapted histories is given

exactly by:

Hh,A+1 =
{
hA1 | h1 = (1, f ′, A) , f ′ ∈ σt+1 (f)

}
Let ΣH

h,A
+1 denote the σ-algebra on such histories and define for each H ∈ ΣH

h,A
+1 the conditional

preferences %AH on AA. Recall that the unconditional preferences are given by %Ah .

For a fully aware agent, conditional preferences are defined on the one-step-ahead histories

Hh+1= {h1 = (1, f ′, A = P ) | f ′ ∈ σt+1 (f)}

In fact, for a fully aware agent, awareness can no longer change and thus, only the information

partition matters. Thus a history h = (1, f, A = P ) can be uniquely identified by f . The relevant

events are given by the algebra generated by F̂1, ΣF̂1 . The conditional preferences of a fully aware

agent are defined using Definition 2 for each E ∈ ΣF̂1 .

We are, in a first step, interested in the change in beliefs of an agent who observes and reacts to

changes in information while keeping awareness constant at A. In order to ensure that such beliefs

are well-defined we require in the following all information events to be non-null, regardless of the

relevant awareness level. For an act α ∈ AA, let α−1 (1) (respectively, α−1 (0)) denote the event in

SA, on which α pays 1 (respectively 0).

Axiom 7 Non-null (information-)events: Let h = (t, f, A) and the corresponding F̂1 and Hh,A+1 be

defined as above:,

(a) For any H ∈ ΣH
h,A
+1 , for the bets α, α0 ∈ AA ∩ B defined as α−1 (1) = H and α−1

0 (0) = H,

we have α �AH α0.

(b) For any E ∈ ΣF̂1 , for the bets α and α0 defined as α−1 (1) = E and α−1
0 (0) = E we have

α �E α0.

The first part of the axiom ensures that an agent with awareness A at a given history h considers

every information event H corresponding to an element of the information partition F̂1 adapted

to her level of awareness, A as non-null. The second part ensures the same property for the agent

who observes the same history h, but is aware of all possible propositions. In particular, since

FT =
{
{ω}ω∈Ω

}
, applying Axiom 7(b) to histories at T − 1 ensures that each state ω is considered

non-null by the fully aware agent.

First consider the case of a fully-aware individual. As usual, Axiom 3(b) implies Bayesian updat-

ing at every possible history h = (t, f, P ): a fully aware individual, A = P , with prior probabilities

π∗ replaces them by the conditional at history h, π∗h = π∗ (· | f) upon learning f . Under Axiom

7(b), conditional preferences are not-trivial and thus, every history and thus, every f is not null with

respect to the preferences %. It follows that the Bayesian updating process is always well-defined.
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Extending this reasoning to all possible subsets of histories, E measurable with respect to the

information partition F , Axioms 1–3(b), 4, 5 and 7(b) imply:

Lemma 3 The class of fully-aware preferences (%E)E∈ΣFt , t∈{0...T} has an expected utility repre-

sentation with a prior given by π∗ and a system of conditional beliefs
(
π∗E

)
E

which satisfy Bayesian

updating, i.e., π∗E = π∗ (· | E) for every E ∈ ΣFt , t ∈ {0...T}.

In particular, the so-defined system of beliefs uniquely identifies, for each history h = (t, f, A),

beliefs conditional on events of the type11
(
h, s̄A

)
, π∗h

(
· | s̄A

)
.

We next turn to an agent who at history h = (f, t, A) has awareness level A. We assume that

for each H ∈ ΣH
h,A
+1 , conditional preferences %AH over awareness adapted acts AA satisfy the same

set of axioms, 1–3(a), 4, 5, as the unconditional preferences %A. Adding 7(a), implies that for

each H, %AH is non-degenerate. Unambiguous preferences %A∗H are defined in analogy to %A∗ . Thus,

since A remains constant, for any H, we can associate with the preference %A∗H a set of probability

distributions ΠH on SA such that for α, α′ ∈ AA,

α %A∗H α′ iff
∑

sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ ΠH .

The next two axioms suggested by Ghirardato et al. (2008) impose the desired structure on ΠH

across all possible measurable events H ∈ ΣH
h,A
+1 .

Axiom 8 Consequentialism: For a given h = (t, f, A) and H ∈ ΣH
h,A
+1 , if α and α′ ∈ AA such that

α
(
h̃
)

= α′
(
h̃
)

for all h̃ ∈ H, α ∼AH α′.

Axiom 9 Dynamic consistency of %A∗H : For a given h = (t, f, A) and H ∈ ΣH
h,A
+1 , and any acts α

and α′ ∈ AA such that α
(
h̃
)

= α′
(
h̃
)

for all h̃ 6∈ H, α %A∗h α
′ iff α %A∗H α′.

Intuitively, Axiom 8, Consequentialism, requires that acts which have identical payoffs on any

element of a set H are considered indifferent given H. Notably, this axiom is weaker than the

corresponding version in Ghirardato et al. (2008), since it is only imposed on acts of which the agent

is aware, i.e., on acts measurable with respect to ΣA. Axiom 9 requires unambiguous preferences

to be dynamically consistent for a given level of awareness A. No such restriction is imposed across

histories with different levels of awareness.

The following corollary follows from the main result in Ghirardato et al. (2008):

11Eliciting such beliefs can be done by offering the agent at history h, an act α paying 1 in case s̄A occurs and

nothing otherwise (α (s) = 1 if s ∈ SA × s̄A, α (s) = 0, else) and asking him to identify the constant lottery α′ ∈ C

(α′ (s) = x for all s ∈ Ω) he considers indifferent to α conditional on h, α ∼h α
′.
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Corollary 4 If for a given t = 2k, and a corresponding history h = (t, f, A) the family of preferences

%Ah and
(
%AH
)
H∈Σ

Hh,A
+1

satisfies Axioms 1–3(a), 4, 5, 7(a), 8 and 9, then there exist sets of probability

distributions, Πh and
(
ΠH
)
H∈Σ

Hh,A
+1

such that

(i) unambiguous preferences at h, %A∗h=%A
∗Hh,A

+1

are represented by:

α %A∗h α
′ iff

∑
sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ Πh;

(ii) unambiguous preferences conditional on H ∈ ΣH
h,A
+1 are represented by:

α %A∗H α′ iff
∑

sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ ΠH ;

(iii) for every H the set of posteriors ΠH is given by the generalized Bayesian updating of Πh:

ΠH =
{
πH | π ∈ Πh

}
,

where πH is the Bayesian update of π conditional on H.

Proposition 5 For any given even period t = 2k, and a corresponding history h = (t; f ;A), the

coherent multiple prior model satisfies consequentialism. Furthermore, if πh ∈ int
(
∆
(
SA
))

for all

πh ∈ Πh, the coherent prior model at h satisfies dynamic consistency.

6.2 Changes in awareness

We now consider pure changes in awareness. For t = 2k + 1, consider a history h = (t, f, A).

To simplify the exposition, we first consider the case in which the individual becomes aware of

a single new proposition p. Suppose the individual’s beliefs at h can be represented by a set of

coherent probability measures Πh ⊆ ∆
(
SA
)

generated by the prior probability π∗ ∈ ∆ (Ω) and the

information f available at h. Now suppose the individual becomes aware of a proposition p ∈ Ā at

h′ = (t+ 1, f, A′) so that A′ = A ∪ {p}.12 Consider any sA ∈ SA corresponding to a set of truth

values for all propositions pA ∈ PA, and giving rise to a compound proposition pA.

For each such pA, the individual at h′ considers two possible compound propositions pA ∧ p,
pA∧¬p corresponding to the truth or falsity of p. Noting that sA ∈ {0, 1}|A| is a binary number, we

may define the states
(
sA, 1

)
(for p true) and

(
sA, 0

)
(for p false) in SA

′
. Similarly, any s̄A

′ ∈ S̄A′

corresponds to two complementary states
(
s̄A
′
, 1
)

(for p true) and
(
s̄A
′
, 0
)

(for p false) in S̄A.

We wish to compare the priors of the agent at h′ with those she would have held at h if she were

already aware of p. As we showed in our example in Section 2, under coherence these will coincide.

12Given the alternating dates setup the individual at h+1 does not learn whether p is true, although this may be

resolved by subsequent revelation of information.

24



Proposition 6 Consider an information structure {Ft}Tt=0 and an admissible awareness structure{
A (t, ·) : Ft → 2P \ {∅}

}T
t=0

such that at history h = (t, f, A) for t = 2k+1 the change in awareness

involves a single elementary proposition p: that is, h+1 = (t+ 1, f, A′ = A ∪ {p}) for some p 6∈ A.

The coherent multiple prior model implies

Πh = CH
{
π∗h

(
· |
(
s̄A
′
, 0
))

, π∗h
(
· |
(
s̄A
′
, 1
))
| s̄A

′
∈ S̄A

′
}

Πh+1 = CH
{
π∗h

(
· | s̄A

′
)
| s̄A

′
∈ S̄A

′
}

(10)

where π∗h and π∗h+1 represent the conditional beliefs of the fully aware agent and for each of the

priors π∗h
(
· | s̄A′

)
,

π∗h
(
· | s̄A

′
)

=
π∗h

(
s̄A
′
, 1
)

π∗h+1 (s̄A′)
π∗h+1

(
· |
(
s̄A
′
, 1
))

+
π∗h

(
s̄A
′
, 0
)

π∗h+1 (s̄A′)
π∗h+1

(
· |
(
s̄A
′
, 0
))

(11)

We next adapt Axiom A6 to the intertemporal setting. Recall that definition 2 specifies the

conditional preferences under full awareness for each subset in Σ and hence, allows us to talk about

preferences conditional on the realization of any event in Σ in conjunction with any history h.

Axiom 10 Conditional Unanimity: Let h = (t, f, A). For α, α′ ∈ AA, α %A∗h α
′ if and only if for

every s̄A ∈ S̄A and every α̂s̄A , α̂′s̄A ∈ A with α̂s̄A
(
s× s̄A

)
= α (s) and α̂′s̄A

(
s× s̄A

)
= α′ (s) for

each s ∈ SA and α̂s̄A
(
s× s̃A

)
= α̂′s̄A

(
s× s̃A

)
for all s ∈ SA and s̃A ∈ S̄A\s̄A, âs̄A %h â′s̄A .

Just as Axiom 6, Axiom 10 can be equivalently expressed in terms of conditional preferences

to state that an act α is unambiguously preferred to act α′ at history h and awareness level A,

α %A∗h α
′, if and only if for every two acts α̂, α̂′ ∈ A (A) with α̂ (s̃) = α (s) and α̂′ (s̃) = α′ (s) for

each s̃ ∈ Es and each s ∈ SA, α̂ is preferred to α̂′ conditional on history h and state s̄A, α̂ %s̄A,h α̂
′,

for all s̄A ∈ S̄A. Axiom 10 thus requires that at any history h = (t, f, A) an act α is unambiguously

preferred to α′ if and only if this ranking is preserved for a fully aware agent, conditional on every

possible truth value of the propositions not contained in A.

Proposition 7 Consider an information structure {Ft}Tt=0 and an admissible awareness structure{
A (t, ·) : Ft → 2P \ {∅}

}T
t=0

with a corresponding set of histories H. If

(i) for each h, (conditional) preferences under full awareness (%h)h∈H satisfy Axioms 1–3(b), 4, 5

and 7(b);

(ii) for each t = 2k, h = (t, f, A), (conditional) preferences under partial awareness
(
%AH
)
H∈Σ

Hh,A
+1

satisfy Axioms 1–3(a), 4, 5, 7(a), 8 and 9;

(iii) for each h = (t, f, A), %Ah satisfies Axiom 10,
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then there exists a prior π∗ on (Ω,Σ) and for each h = (t, f, A) ∈ H a set of priors Πh on(
SA,ΣA

)
s.t. for any two acts α and α′ ∈ AA and the corresponding α̂, α̂′ ∈ A (A) with α̂ (s̃) = α (s)

and α̂′ (s̃) = α′ (s) for each s̃ ∈ Es and each s ∈ SA,

α %A∗h α
′ iff (12)

α̂ %s̄A,h α̂
′ for all s̄A ∈ S̄A iff∑

sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ Πh

and for any two acts α and α′ ∈ A, any h and any s̄A,

α %h α
′ iff

∑
s∈Ω

π∗h (s)α (s) ≥
∑
s∈Ω

π∗h (s)α′ (s) and (13)

α %s̄A,h α
′ iff

∑
s∈Ω

π∗h
(
s | s̄A

)
α (s) ≥

∑
s∈Ω

π∗h
(
s | s̄A

)
α′ (s)

Furthermore, π∗, together with the family of multiple priors
(
Πh
)
h∈H is a coherent multiple prior

model.

Proposition 7 shows that under Axiom 10, Conditional Unanimity, the set of priors the decision-

maker entertains at h, before becoming aware of a certain set of propositions is given exactly by

the convex hull of the posteriors conditional on the truth values of these propositions once she has

become aware of them at h+1. Using the fact that under Axioms 1–5 and 7–9, conditional beliefs

are formed via generalized Bayesian updating, we obtain the coherent multiple prior representation

of beliefs.

Finally, since for each history h = (t, f, A), the extreme points of the set Πh are derived from

conditional probabilities obtained from the (full awareness) prior π∗ ∈ ∆ (Ω), conditioning on h and

in turn on each s̄A in S̄A, it follows that π∗h ∈ Πh, since from the iterative law of expectations, we

have:

π∗h =
∑

s̄A∈S̄A
π∗h

(
s̄A
)
π∗h

(
· | s̄A

)
.

More generally, for any history h = (t, f, A), with t odd, and with an immediate successor h+1 =

(t+ 1, f, A′) embodying a pure increase in awareness (that is, A ⊂ A′), we have from the construction

that Πh+1 ⊂ Πh. That is, the mapping from Πh to Πh+1 may be viewed as a contraction with π∗h

as a fixed point.

7 An application: Latent variables and mixture models

The interpretation of multiple priors models offered here may be considered in relation to mixture

and latent variables used in a variety of statistical settings. Consider a model in which the dataset
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consists of M observations, with each observation consisting of a variable of interest y, taking the

values 0 and 1, and a vector of explanatory variables X.

Begin by considering a standard binary response model

y =

 1 if f (X,β, ε) > 0

0 otherwise

where β is a vector of parameters and ε is a random variable determined by the state of nature and

characterized by parameters θ.

The parameters β and θ may be estimated by maximizing the log-likelihood function

` (β, θ) =
∑
m

log p (ym | Xm, β, θ)

In particular, if β is known, this estimation procedure amounts to Bayesian updating with respect

to θ.

To relate this model to the decision theory problems discussed suppose that the variables in X

may be partitioned into a vector of exogenous variables X1 and a vector of control variables X2. As

before, utility may be given as u (y) = y. The agent seeks to choose X2 to maximize expected utility

p (y = 1), given the observable value of X1 and the estimated parameters (β, θ).

A latent variable model associates with each m a vector of K unobserved latent variables

(ukm)
K
k=1, commonly taken to be discrete. We will focus on the case where each ukm is a dummy

variable taking the values 0 and 1. Hence, each latent variable may be interpreted as the truth

value of a proposition. Consider for simplicity the case K = 1. In this case, the distribution of ε is

determined by parameters θ0 if ukm = 0, and θ1 if ukm = 1.

One way to approach this problem would be to formulate two separate models, one assuming

uk = 0, and the other assuming ukm = 1. Now, we have two possible likelihoods, p0 (ym | Xm, β) =

p (ym | Xm, β, θ0) and p1 (ym | Xm, β) = p (ym | Xm, β, θ1). This corresponds to the simplest case of

multiple priors discussed above. Hence, expected utility lies in the interval [p0, p1] and the choice of

X2 might be given by a criterion such as maxmin. In terms of the discussion above, this approach

corresponds to the case where the agent is unaware of the latent variable u.

Now consider the case where the agent is aware of u but cannot observe its value, instead assigning

a probability pm = p (um = 1 | X1m). Hence, the log-likelihood is given by a weighted sum

` (β, θ0, θ1) =
∑
m

log p (ym | Xm, β, θ0, θ1)

where

p (ym | Xm, β, θ0, θ1) = p (ym | Xm, β, θ1) (1− p (um = 1 | X1m))

+ p (ym | Xm, β, θ1) p (um = 1 | X1m)
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This corresponds to a latent variable model, more precisely a mixture model. A standard iterative

algorithm for estimating the parameters of a model of this kind is expectation-maximization or EM,

due to Dempster et al. (1977). The algorithm proceeds with alternating steps: an ‘expectation’ step

in which estimates of pm = p (um = 1 | X1m) are updated and a maximization step in which the

log-likelihood ` (β, θ0, θ1) is maximized with respect to the parameter vector (β, θ0, θ1) .

There is an obvious analogy with the dynamic process set out above, where the alternating steps

involve changes in awareness of previously unconsidered propositions (that is, latent variables) and

updating in response to new information. We conjecture that it might be possible to represent a

boundedly rational individual as following a real-time dynamic version of the Dempster et al. (1977)

algorithm in which the expectation and maximization steps incorporate changes in awareness and

information respectively.

Finally, note that in the case when the agent is aware of u and can observe its value, we have a

standard dummy variable.

8 Related literature

Our paper is related to the growing literature on unawareness, see Schipper (2014) for an introduc-

tion. Two main approaches have arisen in this literature: the first relies on explicitly modelling the

knowledge and the awareness of the decision maker at each possible state of the world. The second,

consists in axiomatizing choice behavior: either for a given awareness structure which is exogenously

specified, or for a subjective awareness structure, which can then be deduced from preferences.

Fagin and Halpern (1988) were the first to introduce awareness structures into a model of knowl-

edge. Their approach was then followed by that of Heifetz et al. (2006). The main characteristic

of this approach is the exogenous specification of awareness at each state of the world. Combined

with the information structure, which at each state specifies the event the agent is informed about,

this gives rise to two knowledge operators: implicit knowledge – that captured by the information

partition and explicit knowledge, which necessitates the agent to simultaneously implicitly know the

event and be aware of it.13

A simple awareness structure, which captures this distinction is provided by Li (2009). In the

present paper, we adopt her framework by modeling unawareness of propositions (“questions” in

her framework). At each state, the model exogenously defines the subset of propositions the agent

is aware of, as well as the event known to have occurred. Li (2009) shows that such structures can

be used to generate meaningful “knowledge” and “unawareness” operators. Our structure is simpler

13Less expressive structures, in which the exact specification of awareness at each state are replaced by less infor-

mative propositions such as: “the agent is (is not) fully aware at this state” have been introduced by Agotnes and

Alechina (2008) and further developed by Walker (2014).
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in that we require information obtained at each state (node) to be measurable with respect to the

agent’s awareness at this node, which need not be the case in Li (2009). This simplification proves

convenient for the analysis and the resulting model captures well the phenomena we have in mind. A

generalization to information structures non-measurable with respect to the awareness level would

involve techniques similar to those used by Li (2009), whereby the information actually revealed

to the agent is the finest coarsening measurable with respect to her current awareness level. This

complicates the notation without providing meaningful insights into our main results.

The relation between the model of Li (2009) and the awareness structures of Fagin and Halpern

(1988) and unawareness structures by Heifetz et al. (2006) are discussed in Schipper (2014, p. 4). In

as far as these models rely on implicit knowledge, Schipper (2014, p. 3) suggests that such awareness

structures can be viewed as capturing “features of logical non-omniscience”.

The class of axiomatic models of unawareness can be roughly divided into two: in the first cate-

gory fall the models, which take the awareness structure as exogenously given and model preferences

related to such structures. This comprises the work by Ahn and Ergin (2010), Grant and Quiggin

(2013, 2015), Karni and Viero (2013, 2017), Viero (2018), Lehrer and Teper (2014), Alon (2015),

Dominiak and Tserenjigmid (2018), Dietrich (2018). These papers study conditions, which relate

preferences across different levels of awareness.

In a seminal paper, Karni and Viero (2013) study growing awareness as a consequence of discov-

ering new acts or new consequences.14 This results in a refinement or in an expansion of the original

state space. Karni and Viero (2013) impose a restriction on beliefs – reverse Bayesianism, which

implies that relative likelihoods of events considered at lower levels of awareness are preserved when

awareness increases.

Dietrich (2018) also considers partial awareness in terms of both coarsening and reduction of both

the state-space and the outcome space. He models a subjective expected utility maximizer, who

satisfies Savage axioms at all levels of awareness. His axiomatization imposes stringent constraints

on utility and beliefs across awareness structures: both utility and probability at lower awareness

levels are intimately related to those utilities and probabilities the agent would entertain were she

fully aware.15 While we study ambiguity as arising from partial awareness, our approach is similar

14In this model, we are primarily interested in predictions (i.e., in agent’s beliefs). Hence, we keep the binary set

of outcomes {0, 1} constant. Acts can be thought as bets on the occurrence of an event. Thus, the framework of Li

(2009), in which the agent becomes aware of finer contingencies through new propositions (which in turn expands the

set of possible predictions / available acts) is more appropriate for our purposes than that of Karni and Viero (2013),

where new states have to be constructed either from new acts or new outcomes.
15Dietrich (2018) views such consistency requirements as normative. “One may legitimately question the plausibility

of such a hybrid agent: why should someone who can come up with objective evaluations fail to come up with objective

outcomes, states and acts in the first place? The point of defining classical EU rationalizations is not to defend

‘objective evaluations of subjective objects’ as genuinely realistic, but to spell out the classical benchmark from which

our less classical rationalizations depart.”
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both to those of Karni and Viero (2013) and Dietrich (2018) in that beliefs under full awareness

uniquely pin down beliefs at lower levels of awareness.16 The normative aspect of such constraints as

captured by the axioms we propose is of interest in problems of inference, such as the latent variable

model discussed in Section 7.

While the approach taken by Karni and Viero (2013) and Dietrich (2018) is purely Bayesian,

Grant and Quiggin (2015), Karni and Viero (2017) and Viero (2018) introduce the notion of unknown

contingencies and associate with them a decision weight and a utility. In a similar spirit, Alon

(2015) models awareness of unforeseen contingencies by introducing an “unforeseen event” with an

associated weight and an associated “worst-case-contingency”. While in these models, such decision

weights and utilities are purely subjective, our coherent multiple prior model imposes restrictions

on the way in which a partially aware agent incorporates the possibility of becoming more aware

into her decisions. In particular, partial awareness leads to ambiguity, and thus, multiple priors

reflecting all possible ways in which the realization of the yet undiscovered states might affect the

probabilities of the currently known ones.

The papers by Lehrer and Teper (2014) and Dominiak and Tserenjigmid (2018) advance the

idea that the agent’s confidence / perception of ambiguity may depend on her awareness. Both

papers consider two preference relations, one corresponding to a larger state-space (higher level of

awareness), the other to a coarsening of it. Both papers argue that the agent behaving as an EUM

when partially aware might face more ambiguity / be less confident with a larger state-space. This

is captured by incompleteness of preferences on the larger state-space in Lehrer and Teper (2014)

and by perceived ambiguity on the expanded state-space in Dominiak and Tserenjigmid (2018). In

a similar spirit, Grant et al. (2019) characterize a family of beliefs conditional on realizations of a

stochastic process such that: (i) as new states are observed, there is maximal ambiguity with respect

to the probability of these new states; (ii) as information about already known states accumulates,

the agent updates her priors in a Bayesian way, eventually learning the correct probabilities of each

state. In the limit, the expectations taken with respect to the posterior of each of the initial priors

are arbitrarily close.

Similarly to these works, we establish a relation between preferences and beliefs with “varying

degrees of awareness” and impose consistency requirements across such beliefs. Our point of depar-

ture, however is that ambiguity arises due to partial awareness and disappears as the agent becomes

fully aware. We thus propose a deductive (forward-looking) rather than an inductive approach in

that beliefs at lower levels of awareness already incorporate all possible unforeseen contingencies as

multiple priors. Furthermore, we concentrate on the characterization of ambiguous beliefs (multiple

priors) for partial awareness and remain agnostic as to how the agent deals with such ambiguity. This

16Karni and Viero (2015) allow for non-additivity by modelling unawareness with probabilistically sophisticated

beliefs. While this captures Allais-style violations of additivity, it does not incorporate ambiguity.
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allows for a simpler framework with a binary outcome space and fewer restrictions on preferences.

Finally, Ahn and Ergin (2010)’s model of framing effects can be interpreted as a model of pref-

erences for different levels of awareness. Similarly, to the models in the preceding paragraph, their

premise is that the agent has non-additive beliefs on the complete state-space, but forms additive

beliefs for each subset of this space (each possible frame). These additive beliefs are derived from

the non-additive capacity over the complete state-space.

The second class of axiomatic models uses preferences over extended classes of objects (e.g.,

menus or consumption streams) and proposes behavioral conditions to identify the awareness of the

agent. In Epstein et al. (2007) the coarse state space is subjective and derived from preferences over

menus, which violate indifference to randomization. When choosing over menus, the agent takes into

account for each such coarse state, the worst payoff realization, thus exhibiting complete ignorance

about the probability of the individual utility realizations.

Preferences on richer domains can provide a distinction between ambiguity and unawareness in an

axiomatic framework. In particular, Piermont (2017) relates awareness of unawareness to the agent’s

unwillingness to commit to any contingent plan even when delaying the decision is costly. Kochov

(2017) interprets awareness of unawareness as the agent recognizing her inability to correctly judge

the autocorrelation of payoffs over time. In his framework, awareness of unawareness is revealed

whenever a payoff stream with state-contingent outcomes to which the agent assigns identical utility

is assigned a utility different from that assigned to the outcomes.

In contrast, our paper seeks to deduce ambiguity from unawareness rather than distinguishing

the two concepts. In that sense, it is related to the papers by Mukerji (1997), Ghirardato (2001),

Epstein et al. (2007) and Billot and Vergopoulos (2018). For example, Mukerji (1997) shows that

probability weighting may be derived from a decision-maker’s anticipation that her perception of

future contingencies is incomplete. Ghirardato (2001) models ambiguity as a consequence of the

coarse perception of state-contingent payoffs. Billot and Vergopoulos (2018) show how ambiguity

can arise when the observable state space differs from the relevant state space.

The difference between these papers and our model is two-fold: first, we study changes in aware-

ness and in information and impose consistency requirements across preferences and beliefs at dif-

ferent levels of awareness and information for the same agent. To do so, we rely extensively the

model of generalized Bayesian updating for multiple prior preferences as developed by Ghirardato

et al. (2008).

Second, we constrain the agent to reason only about acts which are measurable with respect

to her coarse state space. Thus, ambiguity is not due to the fact that the agent conceives of

multiple outcomes related to a given coarse contingency, but to the fact that the probabilities of the

contingencies of which the decision maker is aware depend on factors of which she is not. Rather

than assuming that such ambiguity leads to full ignorance and to behavior which is guided by the
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worst possible outcome, in our context, ambiguity is objectively related to the stochastic process

which determines the realization of the factors of which the decision maker is unaware.

Finally, there is a well-known formal result, see Ghirardato and Breton (2000) and Gilboa and

Schmeidler (1994), showing that the Choquet integral (the standard tool for modelling ambiguity-

sensitive preferences) can be represented in an additive way on an extended state-space (the set of

{0, 1}-valued capacities). Our construction is different: we do model additive beliefs on a larger

state space and non-additive ones on a smaller state-space, but the two spaces are not related as in

Ghirardato and Breton (2000) and Gilboa and Schmeidler (1994) and the resulting evaluations of

acts in general differ between the two spaces, reflecting the decrease in ambiguity which accompanies

growing awareness.

9 Conclusion

Beginning in the late 1970s, alternatives to and generalizations of Expected Utility theory have

proliferated in response to behavioral violations of EU predictions and theoretical criticism of the

axiomatic foundations of EU. Examples have included probability weighting models for choice under

risk (Allais (1953), Kahneman and Tversky (1979), Quiggin (1982), Yaari (1987)), ambiguity models

for choice under uncertainty (Gilboa and Schmeidler (1989), Schmeidler (1989), Ghirardato et al.

(2004), Klibanoff et al. (2005)) and the rapidly growing literature on unawareness (Schipper (2014)).

We reviewed some of the attempts at unification of the two theories in Section 1. Similarly, in

this paper, we have shown that the invariant biseparable model of Ghirardato et al. (2004) model

of choice under ambiguity (which incorporates α-maxmin EU as a special cases), may be derived

from the preferences of an EU maximizer with coarse awareness. Updating in response to both new

information and refined awareness is well-behaved.

This development raises the possibility of a more general unified theory of EU behavior with

bounded awareness that might encompass a wide range of observed behavior as well as being con-

sistent with the fundamental postulate that all humans have bounded cognitive capacity.

Such models can prove useful as a decision-theoretical underpinning of statistical methods related

to latent variables.

Appendix

Proof of Proposition 2:

Suppose that the family of preferences
(
%A
)
A

satisfies Axioms 1–6. Fix an awareness level A.

By Lemma 1, for the so-chosen A, there exists a unique closed and convex set of priors ΠA such

that the unambiguous preferences induced by %A, %A∗ can be represented by (9). Furthermore, by
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Axiom 6 and by Definition 2 of conditional preferences, we obtain α %A∗ α
′ iff for any s̄A ∈ S̄A, the

corresponding acts α̂s̄A and α̂′s̄A defined in statement of Axiom 6, satisfy α̂s̄A % α̂′s̄A , or, equivalently:∑
s∈S

π∗ (s) α̂s̄A (s) ≥
∑
s∈S

π∗ (s) α̂′s̄A (s) . (14)

Furthermore, since α̂s̄A (s) = α̂′s̄A (s) for every s ∈ SA × S̄A\s̄A, we have that (14) is equivalent to:∑
sA∈SA

π∗
(
sA | s̄A

)
α̂s̄A

(
sA
)
≥

∑
sA∈SA

π∗
(
sA | s̄A

)
α̂′s̄A

(
sA
)

and since α̂s̄A (s) = α (s) and α̂′s̄A (s) = α′ (s) for every s ∈ SA × s̄A, we have:∑
sA∈SA

π∗
(
sA | s̄A

)
α
(
sA
)
≥

∑
sA∈SA

π∗
(
sA | s̄A

)
α′
(
sA
)
. (15)

We thus conclude that the requirement that α̂s̄A % α̂′s̄A for every s̄A ∈ S̄A is satisfied if and only if

(15) holds for every s̄A ∈ S̄A, or, equivalently, if and only if∑
sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ Π̂ = CH
{
π∗
(
· | s̄A

)
| s̄A ∈ S̄A

}
. (16)

Axiom 6 requires (16) to be equivalent to α %A∗ α
′. But from Axioms 1–5 and Lemma 1, we have

that α %A∗ α
′ iff ∑

sA∈SA

π
(
sA
)
α
(
sA
)
≥

∑
sA∈SA

π
(
sA
)
α′
(
sA
)

for all π ∈ ΠA,

where ΠA is unique. Thus, we obtain Π̂ = ΠA = CH
{
π∗
(
· | s̄A

)
| s̄A ∈ S̄A

}
as required by the

definition of awareness-based beliefs. Since the awareness level A was chosen arbitrarily, this holds

for every A and the claim of the proposition obtains.

Proof of Proposition 5:

Assume a representation by an CMP model. Fix h = (t, f, A). To see that Consequentialism

holds, note that generalized Bayesian updating implies that conditional on H ∈ ΣH
h,A
+1 , all h̃ 6∈ H

are assigned 0-probability under all π ∈ ΠH . Let

Sh =
{
sA ∈ SA | sA ∈ f

}
SH =

{
sA ∈ SA | sA ∈ σt+1 (f) with (t+ 1, σt+1 (f) , A) ∈ H

}
be the set of states in SA consistent with histories in H. By the definition of α and α′ in A8, we

have that for all π ∈ ΠH , ∑
sA∈SH

π
(
sA
)
α
(
sA
)

=
∑

sA∈SH

π
(
sA
)
α′
(
sA
)

so that α ∼A∗H α′, which implies α ∼AH α′.
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As for dynamic consistency of %∗H , note that for any acts α and α′ as defined in A9 and every

π ∈ Πh

∑
sA∈Sh

π
(
sA | Sh

)
α
(
sA
)
−
∑
sA∈Sh

π
(
sA | Sh

)
α′
(
sA
)

= π (SH)

 ∑
sA∈Sh

π
(
sA | SH

)
α
(
sA
)
−
∑
sA∈Sh

π
(
sA | SH

)
α′
(
sA
) .

α %A∗h α
′ holds iff the first difference is positive for all π ∈ Πh and, as long as all such π are in the

interior of ∆
(
SA
)
, this is clearly equivalent to the last difference being positive for all π ∈ ΠH , or

to α %A∗H α′.

Proof of Proposition 6:

Notice that

π∗h+1

(
s̄A
′
)

= π∗h+1

(
s̄A
′
, 1
)

+ π∗h+1

(
s̄A
′
, 0
)

where π∗ is the probability on Ω and its arguments are considered as events. Furthermore, by

condition (iii) of the definition of CMP,

Πh+1 = CH
{
π∗h+1

(
· | s̄A

′
)
| s̄A

′
∈ S̄A

′
}

= CH
{
π∗h

(
· | s̄A

′
)
| s̄A

′
∈ S̄A

′
}

where the second equality follows from the fact that no new information arrives between h and h+1,

and hence π∗h = π∗h+1 .

For h−1 = (t− 1, ρt−1 (f) , A), we have by property (iii) of CMP,

Πh−1 = CH
{
π∗h−1

(
· | s̄A

)
| s̄A ∈ S̄A

}
and hence, by property (ii),

Πh =
{
π (· | h) | π ∈ Πh−1

}
=
{
π∗h

(
· | s̄A

)
| s̄A ∈ S̄A

}
= CH

{
π∗h

(
· | s̄A

)}
= CH

{
π∗h

(
· |
(
s̄A
′
, 0
))

, π∗h
(
· |
(
s̄A
′
, 1
))
| s̄A

′
∈ S̄A

′
}

.

Hence, Bayesian updating of the beliefs of the fully aware agent π∗, together with π∗h = π∗h+1

implies:

π∗h
(
· | s̄A

′
)

=
π∗h

(
s̄A
′
, 1
)

π∗h+1 (s̄A′)
π∗h+1

(
· |
(
s̄A
′
, 1
))

+
π∗h

(
s̄A
′
, 0
)

π∗h+1 (s̄A′)
π∗h+1

(
· |
(
s̄A
′
, 0
))

.

Proof of Proposition 7:

The representation of %h follows directly from the conditions in (ii) and Lemma 3. These

conditions uniquely identify π∗ and ensure Bayesian updating of fully aware beliefs.

The representation of the conditional %A∗h preference relations follows from Axioms 1–3(a), 4, 5,

7(a) stated in condition (i) and Lemma 1. These axioms identify the corresponding sets of priors
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Πh. Axiom 10 relates the partially aware preferences conditional on h to the conditional preferences

under full awareness and implies condition (12).

Just as Axiom 6 for the static case, Axiom 10 relates Πh0 (the partially aware preference with

no information) to the conditionals of π
(
· | s̄A0

)
and by Lemma 2 implies property (i) of the CMP

model.

Property (ii) of the CMP model follows from Axioms 8 and 9, which by Corollary 4, imply

generalized Bayesian updating of every prior in Πh.

Finally, the proof of property (iii) of the CMP model is a consequence of Axiom 10 and is shown

exactly as in the proof of Proposition 2. Indeed, fix a history h and in the proof of Proposition

2, replace preferences %A∗ by %A∗hand % by %h, whereas the set of priors ΠA is replaced by Πh

and the full awareness probability distribution π∗ is replaced by π∗h. Repeating the arguments in

the proof of Proposition 2 gives property (12). Property (13) follows from the fact that the fully

aware preference at history h satisfies all axioms of expected utility maximization for the probability

distribution π∗h, Axioms 1–3(b), 4, 5 and by Axiom 7(b) all relevant events are non-null.
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