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Fast Depth and Mode Decision in Intra Prediction
for Quality SHVC

Dayong Wang, Yu Sun, Ce Zhu, Fellow, IEEE, Weisheng Li, Member, ACM,
Frederic Dufaux, Fellow, IEEE,and Jiangtao Luo, Senior Member, IEEE

Abstract—Scalable High Efficiency Video Coding (SHVC) is
the extension of High Efficiency Video Coding (HEVC). In intra
prediction for quality SHVC, a Coding Unit (CU) is recursively
divided into a quadtree-based structure from the largest 64×64
CU to the smallest 8×8 CU, in which 35 intra prediction modes
and Inter-Layer Reference (ILR) mode are checked to determine
the best possible mode. This leads to very high coding efficiency
but also results in an extremely high coding complexity. To
improve coding speed while maintaining coding efficiency, in
this paper, we propose a new efficient algorithm for fast intra
prediction for enhancement layer in SHVC. First, temporal and
spatial correlations, as well as their correlation degrees, are
combined in a Naive Bayes classifier to predict depth probabilities
and skip depths with low likelihood. Second, for a given depth
candidate, we combine ILR mode probability with Partial Zero
Blocks (PZBs) based on the Sum of Squared Differences (SSD)
to determine whether the ILR mode is the best one. In that
case, we can skip intra prediction, which requires very high
complexity. Third, initial Intra Modes (IMs) are obtained through
Sobel operator, and are combined with the relationship between
IMs and their corresponding Hadamard Cost (HC) values to
predict candidate IMs in Rough Mode Decision (RMD). Then,
an analytical criterion of early termination is developed based
on the HC values of two neighboring IMs in the Rate-Distortion
Optimization (RDO) process. Finally, we combine depth proba-
bilities and the distribution of residual coefficients at the current
depth to early terminate depth selection. The proposed scheme
can significantly decrease the complexity of depth determination
while reducing the complexity of mode decision for a depth can-
didate. Our experimental results demonstrate that the proposed
scheme can achieve a speed up gain of more than 80% in average,
while maintaining coding efficiency.

Index Terms—SHVC, depth decision, ILR mode, intra predic-
tion, early termination.
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I. INTRODUCTION

W ITH the rapid development of information technol-
ogy, videos are becoming ubiquitous nowadays. On

one hand, with the popularity of mobile devices, users can
easily access diverse video applications. On the other hand,
the rapid development of networks allows for the effective
transmission of videos. The diversity of video applications,
such as digital TV broadcasting, video conferencing, wireless
video streaming, and smart phone communications, has con-
sistently increased. Even for the same video application, users
may use different devices to access it, and thus may have
different needs in terms of resolution and quality. In addition,
heterogeneous networks, such as broadband networks and
wireless networks, may have different characteristics. Even
within the same network, the bandwidth may also change
through time. Based on these considerations, it is obvious
that video applications need to adapt to various devices and
network bandwidths. Scalable Video Coding (SVC) is a natural
and effective solution to these applications. As the scalable
extension of H.264/AVC, SVC consists of a Base Layer (BL)
and one or more Enhancement Layers (ELs). Through select-
ing an appropriate EL, SVC can adapt to a wide variety of
device capabilities, network conditions, and client applications
[1]. Since SVC needs to encode multiple layers and perform
inter-layer prediction, its encoding process is very complex.

The rapidly growing demand for high-resolution video
applications and services has stimulated the development of
the next generation video coding standard, i.e., High Efficiency
Video Coding (HEVC). Through adding more advanced fea-
tures and higher-efficiency coding tools, HEVC has higher
compression performances than previous video coding stan-
dards. However, its encoding coding complexity is about two
to four times higher than that of H.264/AVC [2]. In order to
accommodate different device capabilities, network conditions,
and client applications, Scalable High Efficiency Video Coding
(SHVC), the scalable extension of HEVC, has also been
developed [3]. When compared with HEVC, SHVC has even
higher coding complexity, which adversely impacts its wide
adoption. Therefore, it is very important to improve the coding
speed of SHVC, especially for wireless and real-time video
applications.

In this paper, we propose a fast depth and mode decision
algorithm to accelerate the coding speed of intra prediction
for quality SHVC (QS). The novelties and contributions of
the proposed algorithm are summarized hereafter:

(1) Spatial and temporal correlations, as well as their corre-
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lation degrees, are combined in a Naive Bayes classifier
in prediction.

(2) Inter-Layer Reference (ILR) mode probability is com-
bined with Partial Zero Blocks (PZBs) based on the Sum
of Squared Differences (SSD) to determine the necessity
of intra prediction checking.

(3) Initial Intra Modes (IMs) are obtained through Sobel
operator, and residual coefficients are used to develop the
relationship between two neighboring IMs in Hadamard
Cost (HC) values for early termination in the Rate-
Distortion Optimization (RDO) process.

(4) Depth probabilities are combined with the distribution
of residual coefficients at the current depth to determine
depth early termination.

Experimental results demonstrate that the proposed algo-
rithm can significantly improve coding speed with negligible
loss in coding efficiency.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 introduces the proposed
framework. The four fast decision methods are then presented
in details. Section 4 discusses the experimental results to
demonstrate the performance of the proposed algorithm. Fi-
nally, Section 5 concludes this research and discusses future
work.

II. RELATED WORK

Since there is a significant similarity among H.264/SVC,
HEVC and SHVC, we first discuss fast algorithms for
H.264/SVC, then review fast algorithms for HEVC, and finally
we analyze fast algorithms for SHVC.

To improve the coding speed for H.264/SVC, several al-
gorithms have been proposed. The authors of [4-6] use the
coding mode of the co-located MB in BL to predict the
current MB’s candidate modes and skip unlikely modes in
EL. Lee et al. [7] use motion vectors and All-Zero Blocks
(AZB) of the co-located MB in BL to predict the current
MB’s likelihood modes in EL. Kim et al. [8] combine the
co-located MB’s mode in BL with RD cost of BLskip and
Inter16×16 to predict the likelihood modes of the current MB
in EL. Shen et al. [9] identify and utilize motion and mode
characteristics of the current MBs, based on inter-layer and
spatial correlations, to predict motion estimation step, mode
decision, search-range selection, and direction selection. Shen
et al. [10] adopt the SKIP modes of the co-located MB in BL
and neighboring MBs in EL to predict the SKIP mode of the
current MB in EL. The research in [11] statistically derives
the Rate-Distortion (RD) cost expectation for each mode to
encode. According to this expectation from small to large, it
early terminates the encoding procedure when the RD cost is
smaller than a pre-set threshold. Yeh et al. [12] use Bayesian
theorem and Markov process to predict the best mode to
reduce coding complexity. Jung et al. [13] use the co-located
MB in BL and neighboring MBs to predict the probable AZBs,
and then further examine and terminate these MBs by the AZB
detection algorithm. Zhao et al. [14] use inter-layer and spatial
correlations to sort the candidate mode list by likelihood in a
descending order, and then early terminate the coding process

based on a constrained model with optimal stopping. Lu et al.
[15] predict candidate modes with early termination for the
encoding process based on inter-layer and spatial correlations,
textural features and motion activities. The work in [16] uses
inter-layer and spatial correlations to predict candidate modes
and stop the coding process early based on RD cost and
residual coefficients. Generally speaking, these algorithms use
correlations to separately predict candidate modes or early
terminate the coding process, or exploit mode prediction and
early termination together, to improve the coding speed.

Several fast algorithms have been proposed for HEVC in
order to improve the coding speed. Zhao et al. [17] calculate
gradient directions and obtain a gradient-mode histogram for
each Coding Unit (CU). Based on the distribution of the
histogram, only a small subset of candidate modes is selected
in the RMD and RDO processes to improve the coding speed.
Yan et al. [18] merge adjacent modes into groups based on
the size of CU and HC values. Then, early termination and
pixel-based edge detection methods are employed to further
reduce the number of candidates for the RDO process. Zhang
et al. [19] reduce IMs through the HC-based progressive rough
mode search, and early terminate CU split according to the
RD cost. Min et al. [20] calculate both global and local
edge complexities of horizontal, vertical, 45 diagonal, and
135 diagonal directions and use them to decide whether to
further divide a CU. In the same way, its four subCUs are
also processed to decide whether to further divide them. To
improve coding speed, Cho et al. [21] propose early CU split
decision and early CU pruning decision at each CU depth
level according to a Bayes decision rule method, based on
low-complexity RD costs and full RD costs. Shen et al. [22]
select likelihood depth levels based on spatial correlations, and
then select likelihood prediction modes based on RD cost and
prediction mode correlations among different depth levels or
spatial correlations. Jamali et al. [23] predict candidate modes
and skip some modes based on improved edge detection,
neighboring blocks and classification of the Sum of Absolute
Hadamard Transformed Difference (SATD) costs to improve
the coding speed. In [24-26], Bayesian methods are used in
intra prediction. Random forests via offline training [27] and
Decision Tree [28] are used to predict the CU size of 64×64 or
32×32. In [29], linear SVM classifiers use depth difference and
Hadamard/RD costs among spatial neighboring CUs to deter-
mine whether to early terminate the CU decision. Meanwhile,
intra modes are predicted based on the gradients of horizontal
and vertical directions. Liu et al. [30] use Convolutional Neural
Network (CNN) to reduce the intra CU/PU modes.

Although both SVC and HEVC have significant similar-
ities with SHVC, they also have some notable differences.
Compared to SVC, SHVC uses some advanced coding tools,
such as more CU sizes, more PU sizes and more intra modes.
In addition, although both SHVC and HEVC use the same
advanced coding tools, SHVC has a different architecture with
a BL and inter-layer prediction. Consequently, fast algorithms
developed for SVC and HEVC are often not applicable to
SHVC. Therefore, it is crucial to improve the coding speed
of SHVC based on its own features. In this paper, we mainly
focus on coding speed improvement for QS.
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Some techniques have been developed to improve the cod-
ing speed of SHVC. Tohidypour et al. [31-32] use the RD
costs of the co-located block of the CU in BL and its four
neighboring CUs in BL, and use the neighboring CUs’ RD
cost of the current CU in EL, to predict the current CU’s
RD cost in EL for early termination. In [33], the neighboring
CUs’ modes of the current CU in EL and the co-located
CU’s mode of the current CU in BL are used to predict the
current CU’s candidate modes in EL for quality SHVC [33].
Tohidypour et al. [34] use the depth and scalable layer of the
current CU to predict candidate modes and exclude unlikely
modes of the current CU in EL, and then exploit inter-layer
and spatial correlations to further eliminate candidate modes
to improve the coding speed. Based on spatial and inter-layer
correlations, a probabilistic approach is proposed to predict the
quad-tree structure of coding tree units (CTUs) for SHVC [35].
Tohidypour et al. [36] build a probabilistic model to predict
the candidate modes of the current CU in EL to improve the
coding speed based on relative CUs’ coding information. Wang
et al. [37] combine inter-layer correlation and the relationship
of sizes between a CU’s variance and the average variance of
its four sub-CUs to determine whether to encode or skip some
depths. Then, they select directional modes of relative CUs,
and the directional mode with the smallest HC cost in mode
2, 10, 18, 26, and 34, as initial modes, and finally combine
with the relationship between the modes and HC to obtain the
best directional mode. Wang et al. [38] first predict candidate
depths, then predict the best mode between ILR mode and intra
mode in each candidate depth, and finally test whether depth
early termination is satisfied to skip other depths to improve
the coding speed.

Although the above algorithms can improve the coding
speed, they have not considered some aspects to further speed
up the coding process, including: (1) combining spatial and
inter-layer correlations usually uses Bayes classifier in predic-
tion, however, their degree of correlation has not been fully
considered, which might affect the accuracy of prediction; (2)
AZBs are usually developed for early termination, but the
number of AZBs is limited, thus only exploiting AZBs restricts
the speed up gain. In addition, AZBs are developed based
on the Sum of Absolute Difference (SAD). Employing PZBs
based on SSD to estimate whether the ILR mode is the best
mode can significantly improve the coding speed; (3) Sobel
operator is often used to predict intra modes, and HC values
are also used to predict IMs. However, both Sobel operator and
HC values are not fully and simultaneously exploited, which
might cause insignificant improvement in coding speed; (4)
If the prediction is very accurate, residual coefficients should
obey a Laplacian distribution. In addition, depth probabilities
also influence depth selection. Combining depth probabilities
and the distributions of residual coefficients can significantly
improve the coding speed.

Based on the above observations, in this paper, we propose
a new and fast intra prediction algorithm for QS. First, spatial
and temporal correlation as well as their correlation degrees
are jointly used to calculate depth probabilities and skip depths
with low likelihoods. Then, the ILR mode probability is com-
bined with SSD based PZB to determine the necessity of intra

prediction checking, where RMD and RDO procedures are
included. In the RMD procedure, Sobel operator is combined
with the relationship between IMs and their corresponding
HC values to predict candidate IMs. The residuals of two
neighboring IMs are used to derive the early termination
condition for RDO procedure. Finally, the residual coefficients
of the current depth and its probability are tested to determine
early termination.

III. PROPOSED FAST INTRA PREDICTION
PROCESS

In order to improve intra coding speed and maintain coding
efficiency for QS, four strategies are proposed: Correlation-
Based Depth Prediction (CBDP); Mode Probability and Par-
tial Zero Block-Based ILR Mode Decision (MPPZBB-IMD);
Gradient and Hadamard-Cost Based intra Mode Prediction
(GHCB-IMP); and Depth Probability and Residual Distri-
bution Based Depth Early Termination (DPRDB-DET). The
right side of Fig.1 illustrates the flowchart of the proposed
algorithm, while the left side show the four strategies. First,
CBDP is used to obtain depth probabilities and skip depths
with low likelihood. For the selected current depth candidates,
MPPZBB-IMD determines whether the best mode is the ILR
mode. In the affirmative, intra prediction can be directly
skipped without the need of checking; otherwise the IM
candidates are predicted through GHCB-IMP. After the depth
has been checked, the best depth is predicted by DPRDB-DET
for early termination.

In order to develop the four strategies, the relative methods
and relationships in intra coding are investigated based on
extensive experiments. To meet the diverse requirements for
video resolutions, we use test sequences in class B, C, D
and E in our experiments, and select two test sequences in
each class: Sunflower and Tractor in class B; Flowervase and
PartyScene in class C; BlowingBubbles and RaceHorses in
class D; and Park and Town in class E. Since we study intra
only algorithm for QS, each test sequence is encoded using all
I-frame structure. According to common SHM test conditions
(CSTC) [39], the QPs used for the BL are set as (26, 30,
34, 38), and the corresponding QPs used for the EL are set
as (22, 26, 30, 34) and (20, 24, 28, 32), respectively. Since
the performances of the two QP settings are similar, only
the experimental results for QPs with (22, 26, 30, 34) are
provided for brevity. Based on these experiments, we propose
our efficient fast intra prediction methods as discussed below.

A. Correlation-Based Depth Prediction (CBDP)

Using a quadtree structure in SHVC, a CU is divided from
depth 0 to 3, with a corresponding CU size from 64×64 to 8×8.
For every depth, an encoder has to perform the whole intra
prediction and ILR prediction process. Therefore, SHVC needs
to encode four depths, which include four rounds of the entire
intra and ILR prediction processes. It is straightforward that
skipping depths with low likelihood can significantly improve
the coding speed. Since neighboring CUs are usually very
similar, their spatial correlation is very high. The current and
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Fig. 1: Flowchart of the overall proposed algorithm
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Fig. 2: Neighboring CUs of current CU in depth prediction.

previous frames have also high temporal correlation. There-
fore, we can use spatial and temporal correlations to predict
probable depths and skip unlikely ones, hence improving the
coding speed [40-41]. The spatial and temporal correlations
are exploited through the neighboring CUs of the current CU,
as shown in Fig.2. The current CU in the EL, its co-located
CU in the previous frame, its left CU, upper CU, upper-left
CU and upper-right CU are denoted as C, FC, L, U, UL and
UR, respectively. Accordingly, the collocated CUs of C, FC,
L, U, UL and UR in the BL are denoted as BC, BFC, BL,
BU, BUL and BUR, respectively.

As we know, since spatial and temporal correlations are
present, spatial and temporal neighboring CUs’ depths are
usually used to predict the current CU’s coding depth can-
didates. As different neighboring CUs may have different
degrees of correlation with the current CU, using neighbor-
ing CUs in prediction without considering this characteristic
may not obtain the best performance. Therefore, we should
combine neighboring CUs and their corresponding degrees of
correlation to calculate the depth probability of current depth
through the following Bayes rule. Assume cd is one of the
depth levels of the current CU in EL, nd and nr are the depth
level vector and correlation degree vector of neighboring CUs
of the current CU in EL. In this condition, the corresponding

probability of the current CU using depth level cd, fd(cd), is
derived as

fd(cd) = p (cd | (nd,nr)) =
p ((nd,nr) , cd)

p (nd,nr)
=

p ((nd,nr) |cd) p (cd)
p (nd,nr)

,

(1)
where p(cd) is the probability of the current CU using depth
level cd, p(nd,nr) is the probability of neighboring CUs with
a vector (nd, nr), p(nd,nr |cd) is the conditional probability
of neighboring CUs with a vector (nd, nr) given the current
CU using depth level cd. Since both CUs in the BL and the
co-located CUs in the EL are the same except for QPs, the
degrees of correlation of CUs in the EL can be set as equal
to the ones of the co-located CUs in the BL. Obviously, when
the absolute difference of neighboring CUs in depth is smaller,
their spatial correlation is stronger; and vice versa. In other
words, the relationship between the degrees of correlation and
the absolute differences of neighboring CUs in depth in the
BL is inversely proportional. Suppose nbd is the depth level
vector of neighboring CUs of the CU BC in BL. Since the
maximum absolute difference of neighboring CUs in depth is
3, the i-th (0 ≤ i ≤ 4) component of the correlation degree
vector, nri , can be written as

nri = 3 − |ndi − nbdi | , (2)

where ndi and nbdi refer to the i-th (0 ≤ i ≤ 4) component
of the depth level vector nd and nbd, respectively.

Since the current CU has five neighboring CUs, each vector
has five components, and each component takes four values,
namely 0, 1, 2 and 3. If we directly use Eq. (1) in calculation,
the process is very complex. In order to overcome this issue,
we can use the Naive Bayes classifier which can make a
conditional independence assumption. In other words, we
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TABLE I: Depth probability distribution p(ndi,nri)

ndi

nri 0 1 2 3

0 8.1% 6% 2.3% 3.6%
1 4.7% 2.7% 1.4% 0.7%
2 13.3% 1.7% 1.1% 0.6%
3 47.6% 3% 2.1% 1.1%

assume that the depth and degree of correlation of each CU is
independent of each other. That is to say, different components
of a vector are independent. According to this independence
assumption, Eq.(1) can be computed as follows:

fd (cd)=
p ((nd,nr) |cd) p (cd)

p (nd,nr)
=

p (cd)
4∏
i=0

p ((ndi,nri)|cd)

4∏
i=0

p (ndi,nri)
.

(3)
Since these depth probability distributions in different po-

sitions have small differences, for the convenience of cal-
culation, we use their average values instead. For example,
p(0,0) in CU C, FC, L, U, UL and UR are set as their
average values. Therefore, these depth probability distributions
have no relationship with their positions. In other words,
different components should have the same depth probability
distribution. Therefore, we only need to list the probability
distribution of one component. According to the experimental
conditions mentioned above, we can obtain the depth probabil-
ity distributions of the i-th (0 ≤ i ≤ 4) component in the vector
(nd, nr) and (nd, nr|cd), which are respectively denoted as
p(ndi,nri) and p((ndi,nri)|cd). They are listed in Table I and
Table II, respectively.

From the experiments, p(cd) in depth level 0, 1, 2 and 3 are
16.6%, 9.2%, 15.4% and 58.8%, respectively. The conditional
probability of the current CU using depth level cd, fd(cd),
can be obtained according to Eq. (3). Since the computation
may involve some rounding errors, the sum of probabilities of
four depth levels may not always be equal to 1, we can amend
it as follows

fd (cd) =
fd (cd)

fd (0) + fd (1) + fd (2) + fd (3)
. (4)

In this way, we can obtain the probabilities of all four depth
levels. The probability threshold can be set to 0.95 according
to [35]. If the probability is larger than or equal to 0.95,
the current CU will almost certainly select the corresponding
depths, and the other depths are very unlikely. Based on the
above analysis, we propose our depth selection method below:

(1) If the probability of depth level 0 is smaller than 0.05,
the depth level is very unlikely to be selected, thus depth
level 0 can be directly skipped.

(2) If the sum of probabilities of depth level 0 and 1 are
smaller than 0.05, these depth levels are very unlikely to
be selected and can be directly skipped.

(3) If the sum of depth probabilities from depth level 0 to the
current depth is larger than or equal to 0.95, the current
CU almost certainly use one of these depth levels. Thus,
we can skip subsequent depth levels.

(4) If the depth 3 needs to be checked, extensive experiments
show that 4×4 CUs are seldom selected. Thus 4×4 CUs
are directly skipped.

In order to demonstrate the effectiveness of the proposed
depth selection method, the corresponding performance is
listed in Table III, in which BDBR [42] measures the bitrate
difference compared with the SHVC reference software (SHM
11.0) at an equal PSNR in the EL. A positive BDBR indicates
a decrease in coding efficiency, while a negative value indi-
cates an improvement. TS denotes the percentage of encoding
run-time savings in the EL only.

In Table III, we observe that the average BDBR is 0.44%
and the average TS is 52.16%. Therefore, the proposed depth
selection method can significantly improve the coding speed
with negligible losses in coding efficiency.

B. Mode probability and Partial Zero Block-Based ILR Mode
Decision (MPPZBB-IMD)

In QS, since frame resolutions between the BL and EL are
the same, the inter-layer correlation is very high. Therefore,
a CU in the EL searches for the best matching CU in the
reconstructed pixels in BL, by using the ILR mode. It is
usually an accurate prediction and many CUs may select it as
the best mode. Nevertheless, there is a low, but non-negligible,
probability that intra mode is optimal [38]. If we always
check intra mode, unnecessary time will be spent. However,
if intra mode is completely skipped, coding efficiency will
be obviously degraded. In this condition, we can check the
ILR mode, and then determine whether it is the best mode. In
the affirmative, intra mode can be directly skipped. Otherwise,
intra mode needs to be further tested. The key problem is how
to determine if the ILR mode is the best one. In general, if
a mode is a good predictor, the residue is usually very small,
with many quantized residual coefficients being zero. There-
fore, AZBs are usually used to predict early termination, as
in [13]. However, since the number of AZBs is limited, when
only using AZBs in prediction, the coding speed improvement
is limited. In order to further improve coding speed, we do
not need to use the above strict condition. In practice, the
percentage of zero quantized coefficients in a CU could also
be an indicator of the best prediction mode. Therefore, we can
use PZBs to early terminate intra prediction.

PZBs can be calculated based on the distribution of residual
coefficients. Residual coefficients are typically modeled using
a Laplacian distribution [43]. In SHVC, there are four different
CUs with 64×64, 32×32, 16×16 and 8×8 sizes. We can
calculate the PZB of 8×8 CU, and then calculate the other
three CUs’ PZBs. Since different CUs may have different
probabilities to use ILR mode, using a uniform condition
for all CUs cannot achieve the best performance. Therefore,
we should combine probabilities with PZBs to set early
termination condition of ILR.

In addition, AZBs (PZBs) are generally predicted based
on SAD of residual coefficients. Obviously, SSD of residual
coefficients is more accurate than SAD to predict PZBs.
Therefore, we first obtain the probability of using ILR of a
CU, then we derive PZBs based on square roots of SSD of
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TABLE II: Conditional depth probability distribution p((ndi,nri)|cd)

ndi

nri cd

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 20.6% 11.9% 3.3% 1.1% 10.8% 8.5% 2.5% 1.5% 5.3% 3.9% 2.7% 3.5% 3% 2% 2% 6%
1 5.3% 3.4% 1.5% 1.2% 12.5% 5.5% 1.9% 0.7% 6% 2.8% 1.8% 0.9% 2.8% 1.4% 1.2% 0.7%
2 11.4% 2.5% 1.4% 1% 15.5% 2.5% 1.5% 1% 27.4% 3% 1.7% 0.8% 10.8% 1.2% 0.8% 0.6%
3 27% 4.2% 2.4% 1.8% 28.9% 3.2% 2.1% 1.4% 34.7% 3% 1.7% 0.8% 61% 3.2% 2.2% 1.1%

TABLE III: The performances for the CBDP

Sequence BDBR TS
Sunflower 0.1% 55.05%

Tractor 0.1% 49.8%
Flowervase 0.5% 54.65%
PartyScene 0.3% 53.35%

BlowingBubble 0.5% 52.08%
RaceHorses 0.8% 53.3%
Parkrunner 0.2% 45.03%

Town 1.0% 54.03%
Average 0.44% 52.16%

residual coefficients, and finally we combine probabilities with
PZBs to develop early termination condition of ILR.

1) Correlation-Based Mode Prediction (CBMP): In QS, the
BL only encodes in intra mode, whereas the EL uses both
intra and ILR modes. Since intra mode in BL cannot provide
any information to predict ILR mode in EL, we therefore
only use relative CUs in EL to predict ILR mode in EL. The
neighboring CUs in EL are the same as in Fig.2. As mentioned
above, exploiting both spatial and temporal correlations, we
can use neighboring CUs in EL to predict the probability of the
current CU using mode cm, fm(cm), by the following Bayes
rule

fm (cm) = p (cm|nm) =
p (nm, cm)

p (nm)
=

p (nm|cm) p (cm)
p (nm)

, (5)

where nm is the mode vector of neighboring CUs of the
current CU in EL. Similar to depth prediction, we can use
the Naive Bayes classifier. We can assume that the mode of
each CU is independent of each other. In other words, the
different components of nm are independent. According to this
independence assumption, Eq. (5) can be rewritten as follows

fm (cm) =
p (nm|cm) p (cm)

p (nm)
=

4∏
i=0

p (nmi |cm) p (cm)

4∏
i=0

p (nmi)

. (6)

Similar to depth prediction, since mode probability dis-
tribution in different positions have small differences, we
also use their average value. Therefore, different components
should have the same mode probability distribution. We only
need to list the probability distribution of one component.
According to the experimental conditions mentioned above, we
can obtain the conditional mode probability distribution of the
i-th (0 ≤ i ≤ 4) component in the vector nm|cm, p(nmi |cm),
which is listed in Table IV.

TABLE IV: Conditional mode probability distribution
p(nmi |cm)

cm

nmi ILR intra

ILR 83.6% 16.4%
intra 73.2% 26.8%

Since the computation may involve some rounding errors,
the sum of probabilities of two modes may not always be equal
to 1, we can amend it as follows

fm (cm) =
fm (cm)

fm (mILR) + fm (mintra)
, (7)

where mILR and mintra refer to ILR and intra modes, respec-
tively. In this way, we can obtain the probabilities of both
modes. We also use 0.95 as the mode probability threshold
[35]. If the probability of ILR is larger than or equal to 0.95,
the current CU only uses ILR mode to encode. We evenly
divide mode probabilities into three classes: (1) high mode
probability (probability is larger than or equal to 0.64); (2)
medium mode probability (probability is larger than or equal
to 0.32); (3) low mode probability (probability is smaller than
0.32).

2) Partial Zero Block-Based SSD (PZBB-SSD): Supposing
an 8×8 residual block x(i, j), (0 ≤ i, j ≤ 7), are approximated
by a Laplacian distribution with zero mean and variances σ2

[43], the PZBs based on SSD are then calculated as described
below.

The expected value of x(i, j)2 is given by

E
(
x(i, j)2

)
= D (x(i, j)) − (E (x(i, j)))2, (8)

where E(x(i, j)) is the expected value of x(i, j), D(x(i, j)) is
the variance of x(i, j). Since E (x(i, j))=0 [43], we can derive

E
(
x(i, j)2

)
= D (x(i, j))=σ2. (9)

From probability theory, the average approximates the ex-
pected value, and then

σ2=
SSD
64

, (10)

where SSD is the Sum of Squared Differences of the residual
coefficients for an 8×8 block. The variance of the (i, j)th DCT
coefficient, σ2

F (i, j), can be written as [43]

σ2
F (i, j) = σ2 [ARAT

]
i,i

[
ARAT

]
j , j
, (11)
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0.7219 0.9439 1.2095 1.5480 1.8720 2.1496 2.3606 2.4902
0.9439 1.2342 1.5814 2.0240 2.4476 2.8105 3.0864 3.2560
1.2095 1.5814 2.0265 2.5935 3.1364 3.6014 3.9550 4.1722
1.5480 2.0240 2.5935 3.3192 4.0140 4.6092 5.0616 5.3397
1.8720 2.4476 3.1364 4.0140 4.8541 5.5739 6.1211 6.4573
2.1496 2.8105 3.6014 4.6092 5.5739 6.4004 7.0287 7.4148
2.3606 3.0864 3.9550 5.0616 6.1211 7.0287 7.7187 8.1427
2.4902 3.2560 4.1722 5.3397 6.4573 7.4148 8.1427 8.5900


. (15)

where [.]i,i is the (i, i)th component of a matrix, A is an 8×8
integer DCT transform divided by 128

√
2 in SHVC, R is

R =


1 ρ · · · ρ7

ρ 1 · · · ρ6

...
...

...
...

ρ7 ρ6 · · · 1


, (12)

where ρ is the correlation coefficient, which is set to 0.6 [43].
For a zero-mean Laplacian distribution, the probability of a
value falling within (−3σ,3σ) is about 99.73%. If the value
is quantized to zero, it must satisfy the following

3σF (i, j) < 5Qstep

/
6. (13)

Combining Eqs. (10), (11) and (13), the following expres-
sion is obtained

√
SSD ≤ 20Qstep

/(
9
√[

ARAT
]
i,i

[
ARAT

]
j , j

)
. (14)

The right-hand coefficient value of Eq. (14) corresponding
to the threshold matrix is given in Eq. (15).

After the threshold matrix is obtained, we should select a
threshold value in the matrix based on mode probability.

3) ILR mode early termination based on mode probabilities
and PZBs (IMETB-MPP): We have divided mode probabilities
into high, medium and low mode probabilities. We should
select the best threshold value in the matrix based on mode
probabilities, and then the corresponding PZB can be obtained.
For example, if

√
SSD < 0.7219Qstep , the whole quantized

residual coefficients are zero; if
√

SSD < 0.9439Qstep , only
the quantized residual coefficient in (0, 0) is not zero; if√

SSD < 1.2095Qstep , only quantized residual coefficients
in (0, 0), (0, 1) and (1, 0) are not zero; and so on. In the same
way, we can obtain other PZBs. If we select too small values
to test, the coding speed improvement will remain limited. On
the other hand, if we select too large values to test, the coding
efficiency will be degraded significantly.

For ILR with high probabilities, we can select some larger
values in the matrix to test. In order to select the best threshold
value, we have therefore used 2.3606, 2.4902, 3.256, 4.1722,
5.3397 and 6.4573 in our experiments.

From Table V, we can observe that when the threshold value
is larger than 4.1722, sequence “flowervase” has obviously
changed in BDBR. Therefore, we select 4.1722 as the best
threshold value. In the same way, for ILR with medium
probabilities, the best threshold value is set to 2.4902. For
depths with low probabilities, the best threshold value is set
to 2.1496.

Through the above process, the best threshold values for
ILR with high, medium and low probabilities are 4.1722,
2.4902 and 2.1496, respectively. The threshold values are only
developed for 8×8 CUs, we can obtain threshold values for
other size CUs based on 8×8 CUs. Since each 64×64, 32×32,
16×16 CU includes respectively 64, 16 and 4 8×8 CUs, the
corresponding thresholds for 64×64, 32×32, 16×16 and 8×8
CU can be written as

√
SSD ≤


4.1722mQstep high probability
2.4902mQstep medium probability,
2.1496mQstep low probability

(16)

where m is the number of 8×8 CUs included and is 64, 16, 4
and 1 for 64×64, 32×32, 16×16 and 8×8 CUs, respectively.
It is worth noting that there are some sequences with negative
BDBR values, which suggests that the proposed scheme
obtains small BD rate savings for some sequences. Possible
reasons will be discussed at the end of Section 4.

C. Gradient and Hadamard-Cost Based Intra Mode Predic-
tion (GHCB-IMP)

Similar to HEVC, there are 35 IMs including DC and Planar
modes in SHVC. During the RMD process, all the 35 IMs are
checked to select the first N IMs with the smallest SATD costs.
N takes different values according to the corresponding CU
size. If the size of a CU is equal or greater than 16 × 16, N
is 3; otherwise N is 8. Afterwards, the IMs of the left and
upper partition units (PUs) in EL and the co-located PUs in
BL are further selected as candidate modes. Then, the best IM
is obtained among those candidates in the RDO process.

From the above description, we can see that the intra
prediction for SHVC employs both RMD and RDO processes.
In order to improve the coding speed, we propose the below
new methods to speed up these two processes respectively.

1) Improved Gradient for Rough Mode Prediction: Gradi-
ent has been widely used in prediction for intra modes [17]
[23]. Due to the diverse video sequences, it is very difficult to
obtain the optimal number of gradients. If more gradients are
selected, coding speed will not be significantly improved. On
the contrary, if few gradients are selected, coding efficiency
will be obviously degraded. To overcome the problem, we
propose to first obtain the most probable gradients, and then
integrate the relationship between IMs and their corresponding
HC values to predict the first N IMs. The details are discussed
below.

By using a classical Sobel operator with two 3 × 3 convo-
lution masks, we can compute both components of a gradient
for a pixel
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TABLE V: Threshold values and the corresponding BDBR

Sequence
threshold values

2.3606 2.4902 3.256 4.1722 5.3397 6.4573

Sunflower 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Tractor -0.10% -0.10% -0.10% -0.10% -0.10% -0.10%

Flowervase -0.20% -0.30% -0.30% -0.30% -0.50% -0.50%
PartyScene 0.00% 0.00% -0.10% -0.10% -0.10% -0.10%

BlowingBubble 0.00% -0.10% 0.00% -0.10% -0.10% -0.10%
RaceHorses -0.10% -0.10% -0.10% -0.10% -0.10% -0.10%
Parkrunner 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Town -0.10% -0.10% -0.20% -0.20% -0.20% -0.20%
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Fig. 3: Gradient Histogram for PU size 32 × 32

Gx
i, j = pi−1, j+1 + 2 × pi, j+1 + pi+1, j+1 − pi−1, j−1−

2 × pi, j−1 − pi+1, j−1

Gy
i, j = pi+1, j−1 + 2 × pi+1, j + pi+1, j+1 − pi−1, j−1−

2 × pi−1, j − pi−1, j+1,

(17)

where pi, j is the pixel value at (i,j), Gx
i, j and Gy

i, j represent the
vertical and horizontal components of a gradient, respectively.
We can calculate the amplitude of the gradient by

Amp
(
Gi, j

)
=

���Gx
i, j

��� + ���Gy
i, j

��� . (18)

The direction of the gradient is obtained according to

Ang
(
Gi, j

)
= arctan

(
Gy

i, j

Gx
i, j

)
. (19)

In order to simplify calculation, Gy
i, j

/
Gx

i, j is actually used
instead of arctan for optimization.

From the above process, the gradient of each pixel can
be obtained, and then the amplitudes of similar gradients are
summed up. According to the IMs in SHVC, we can calculate
the limit of any IM in Table VI. If the directions of gradients
are within the same scope, these gradients are similar. Since
modes 0 and 1 are non-directional, only 33 directional modes
are listed in Table VI.

We can obtain a gradient histogram by using the above
method. Fig.3 illustrates a gradient histogram for PU size
32 × 32 for the “PartyScene” sequence. Obviously, gradients

TABLE VI: Upper & lower limits of Gy
i, j/G

x
i, j for intra modes

mode lower upper mode lower upper
2 -1.10879 -0.90189 19 1.108785 1.367109
3 -0.90189 -0.73147 20 1.367109 1.689078
4 -0.73147 -0.59204 21 1.689078 2.140169
5 -0.59204 -0.46725 22 2.140169 2.919258
6 -0.46725 -0.34255 23 2.919258 4.588474
7 -0.34255 -0.21794 24 4.588474 9.162712
8 -0.21794 -0.10914 25 9.162712 32.03108
9 -0.10914 -0.03122 26 32.03108 +∞

10 -0.03122 0.03122 26 −∞ -32.0311
11 0.03122 0.109138 27 -32.0311 -9.16271
12 0.109138 0.217937 28 -9.16271 -4.58847
13 0.217937 0.342553 29 -4.58847 -2.91926
14 0.342553 0.467253 30 -2.91926 -2.14017
15 0.467253 0.592039 31 -2.14017 -1.68908
16 0.592039 0.731471 32 -1.68908 -1.36711
17 0.731471 0.901888 33 -1.36711 -1.10879
18 0.901888 1.108785 34 -1.10879 -0.90189

with greater larger sums have larger probabilities of being the
best intra mode. However, gradients obtained by Sobel oper-
ator are different from IMs obtained by Hadamard transform.
Therefore, it is very difficult to accurately predict the best
IM only through gradients. We propose to integrate gradients
with the relationships between IMs and their corresponding
HC values to obtain the first N IMs.

Fig. 4 shows the relationship between IMs and their corre-
sponding HC values for “PartyScene” sequence. For different
sequences, we can divide 35 IMs into different numbers
of intervals. In Fig. 4, the horizontal axis represents IMs
and the vertical axis corresponds to HC values. Within each
interval, both the left and right neighboring IMs monotonically
approach to their local minimum points (LMPs) along with the
decreasing of HC values [37-38]. There are five zones A, B, C,
D and E, and each zone contains a LMP. Since RD costs have
very strong correlations with HC values, it is highly possible
that the best IM is included in the LMPs and their neighbors.
Therefore, we should definitely search the LMPs. According
to the above observation, by following the descent direction
of the HC values, we can obtain the LMP within each zone.
Here, how to select the best initial IMs is the key point.

Since gradients with larger sums have higher probabilities
of being the best IM, we can choose some gradients with the
highest sums as the initial IMs, and then follow the descent
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Fig. 4: The relationship between IMs and HC values

TABLE VII: BDBR corresponding to the number of gradients
selected

Sequence
BDBR

One Two Three
Sunflower 0.1 0 0

Tractor 0 0 0
Flowervase -0.1 -0.1 -0.1
PartyScene 0 0 0

BlowingBubbles 0 0 0
RaceHorses 0 0 0

Park 0 0 0
Town 0 0 0

Average 0 -0.013 -0.013

direction of the HC values to search the first N modes. The
selection of the number of gradients with the highest sums
is very crucial. We have conducted experiments to investigate
the best number of gradients to be selected.

For large CUs, such as 64 × 64, 32 × 32, 16 × 16, since
3 candidate modes need to be checked in the RDO process,
we have selected the first three gradients as initial IMs to
search. According to our experimental results, the correspond-
ing BDBRs are listed in Table VII, in which “One”, “Two”
and “Three” represent the number of gradients selected.

From Table VII, we can observe that selecting two gradients
gives the same coding efficiency as three gradients. It is very
straightforward that the fewer gradients selected, the more the
coding speed is improved. As a result, we adopt the first two
gradients in our experiments. Using the same approach, we
have tested CUs with 8 × 8 and 4 × 4. Our experiments also
demonstrate that selecting the first two gradients as initial IMs
achieves the best performance.

For the usage of the HC, since we only select two initial
IMs and then follow the descent direction of the HC values
to search the LMP within each zone, many unnecessary IMs
are skipped in prediction and much unnecessary coding time
can be saved. From Table VII, we can observe that the
number of gradients selected has a very marginal impact on
performance. The reason is that intra mode represents only a
small percentage, no more than 30%, as shown in Table IV.

2) Hadamard-Cost Based Early Termination for RDO:
After the RMD process, large CUs (64× 64, 32× 32, 16× 16)

with 3 IMs and small CUs (8 × 8, 4 × 4) with 8 IMs
will be further tested in the RDO process to select the best
IM. In order to improve the coding speed, we investigate
the Hadamard costs of neighboring intra modes and propose
to exploit them to make the decision for early termination.
Suppose R1 and R2 are the CU residuals of two neighboring
IMs, their difference R is

R = R1 − R2. (20)

Through Hadamard transform, we have

HRH = HR1H − HR2H, (21)

where H is a Hadamard matrix. Based on Cauchy-inequality,
we obtain

HRH ≤

������ m∑
i=0

m∑
j=0

(
HHT

)2
������

1
2

×

������ m∑
i=0

m∑
j=0

r2 (i, j)

������
1
2

≤
√

m

������ m∑
i=0

m∑
j=0

r2 (i, j)

������
1
2

,

(22)

where m is the corresponding CU size. Through inequality
(22), we derive

√
m

������ m∑
i=0

m∑
j=0

r2 (i, j)

������
1
2

≤
√

m
m∑
i=0

m∑
j=0
|r (i, j)|. (23)

Any value of (i,j) in HRH is given by

xi, j =
m∑
k=0

m∑
p=0

hikrkphpj ≤

m∑
k=0

m∑
p=0

��hikhpj

�� ��rkp �� ≤ m∑
k=0

m∑
p=0

��rkp ��.
(24)

If R1 and R2 have no significant differences, any quantized
values of HRH should be equal to 0. Then we can derive

m∑
k=0

m∑
p=0

��rkp �� < Qstep . (25)

Combining Eq. (21), (22), (23), (25), we finally obtain

|HR1H − HR2H | <
√

mQstep . (26)

Eq.(26) can be written as

|HC1 − HC2 | <
√

mQstep, (27)

where HC1 and HC2 refers to Hadamard transform values
of two neighboring IMs. In other words, if two neighboring
IMs satisfy the condition in Eq. (27), we can assume that
they have no significant difference. However, this is only the
theoretical condition. We can further adjust experimentally the
right side of Eq. (27) to further improve the coding speed.
More precisely, we divide the right side of Eq. (27) by 1, 2,
4, 8, 16 and 32. Based on experimental results, we can adjust
the condition as follows.
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|HC1 − HC2 | <
√

mQstep

/
k . (28)

When two neighboring IMs are the first two intra modes,
k = 4; when the neighboring modes are the second mode and
the third mode, k = 8; when the neighboring modes are the
third mode and the fourth mode (only for CU with 8 × 8 and
4×4), k = 32. Since the other modes have low probabilities to
be selected as the best mode, we have not further tested them
in our experiments.

D. Depth Probability and Residual Distribution Based Depth
Early Termination (DPRDB-DET)

In the above-described process, both spatial and temporal
correlations are used to predict candidate depths and skip
depths with low probabilities, in order to improve the coding
speed and maintain the coding efficiency. As mentioned above,
if a depth is predicted accurately, residual coefficients will
obey a Laplacian distribution [43]. Therefore, the distribution
of residual coefficients can be checked for early termination.
For this purpose, we propose an experiment based on χ2 fitting
test. Since depth early termination is only used for depth
0, 1 and 2, the corresponding CU sizes are 64×64, 32×32,
and 16×16, respectively. In order to test whether the residual
coefficients obey a Laplacian distribution, we evenly divide
residual coefficients into 16 zones, from the minimum value
-255 to the maximum one 255, in increasing order. Suppose
x1, x2, · · · , xn are residual coefficients, with n the number of
residual coefficients, the probability density function of the
Laplacian distribution is

f (x) =
1

2λ
e−
|x−µ |
λ . (29)

The corresponding expected value E(x) and variance D(x)
are

E (x) =
1
2λ

∫ ∞

−∞

xe−
|x−µ |
λ dx = µ, (30)

D (x) = E(x − E (x))2 =
1
2λ

+∞∫
−∞

(x − µ)2e−
|x−µ |
λ dx = 2λ2.

(31)
The corresponding expected value E(x) and variance D(x)

can also be calculated by

E (x)=

n∑
i=1

xi

n
, (32)

D (x)=

n∑
i=1
(xi − x)2

n − 1
. (33)

Combining Eqs. (30), (31), (32) and (33), we derive

µ=

n∑
i=1

xi

n
, λ=

√√√√√ n∑
i=1
(xi − x)2

2 (n − 1)
. (34)

Let us define the maximum value, minimum value and the
number of residual coefficients in the i-th zone as ai , bi and

mi respectively. After µ and λ have been obtained in Eq. (34),
the probability pi of the i-th zone is given by

pi =


e
µ−ai
λ −e

µ−bi
λ

2 ai > µ

e
bi−µ
λ −e

ai−µ
λ

2 bi < µ

2−e
ai−µ
λ −e

µ−bi
λ

2 ai ≤ µ ≤ bi

(35)

According to probability theory and mathematical statistics,
we obtain

χ2=

16∑
i=1

m2
i

npi
− n ∼ χ2 (k − r − 1) , (36)

where k is the number of zones, i.e. k=16; r is the number
of estimated parameters µ and σ, i.e. r=2. Then, we can
determine whether the residual coefficients obey the Laplacian
distribution with expected values and variances. According to
statistical hypothesis testing, a significance level α refers to the
probability of wrongly rejecting the null hypothesis that the
distribution is Laplacian. Its corresponding test critical value
χ2
α (13) can be obtained by checking Laplacian distribution

table. The decision of Laplacian distribution is then expressed
as

16∑
i=1

m2
i

npi
− n < χ2

α (13) . (37)

If the condition defined in Eq. (37) is satisfied, residual
coefficients can be assumed to obey a Laplacian distribution. In
that case, the depth is considered as optimal, and consequently
the other depths are skipped.

In order to significantly improve the coding speed and
maintain the coding efficiency, obtaining an optimal value of
α and the corresponding χ2

α (13) is key. Similarly to mode
prediction, we also evenly divide depths into three classes
with high, medium and low probabilities. We should select
the best threshold value based on these probabilities. Toward
this end, some commonly used α values are selected for
testing under different depth probabilities. The corresponding
coding efficiency represented by BDBR for depths with high
probabilities is shown in Table VIII.

From Table VIII, we observe that there is a turning point
in sequence “flowervase” when χ2

α (13) is equal to 3.565. If
χ2
α (13) is smaller than or equal to 3.565, the corresponding

absolute BDBR in all these sequences are 0.1%. Obviously, the
larger χ2

α (13) is, the more the encoding speed increases. Based
on the above analysis, χ2

α (13) is set to 3.565. In the same way,
for depths with medium probabilities, the best χ2

α (13) is set
to 1.783; for depths with low probabilities, the best χ2

α (13) is
set to 0.446.

Through the above process, the best threshold values
χ2
α (13) for depths with high, medium and low probabilities

are 3.565, 1.783 and 0.446, respectively.

IV. EXPERIMENTAL RESULTS

In order to test the performance of the proposed fast intra
prediction algorithm for QS, we have used the SHVC reference
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TABLE VIII: Threshold values and the corresponding BDBR

Sequence

BDBR threshold values
0.892 1.783 3.565 4.107 5.009 5.892

Sunflower 0.10% 0.10% 0.10% 0.10% 0.10% 0.10%
Tractor 0.00% 0.10% 0.00% 0.00% 0.00% 0.00%

Flowervase -0.10% -0.10% -0.10% -0.20% -0.40% -0.50%
PartyScene 0.00% 0.00% 0.00% -0.10% -0.10% -0.10%

BlowingBubble 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
RaceHorses 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Parkrunner 0.00% 0.00% 0.00% -0.10% -0.10% 0.00%

Town 0.00% -0.10% -0.10% -0.20% -0.20% -0.20%

TABLE IX: Performance comparison with QP (22, 26, 30, 34)

Sequence
CBDP MPPZBB-IMD GHCB-IMP DPRDB-DET

BDBR TS BDBR TS BDBR TS BDBR TS
Traffic 0.80% 47.69% -0.3% 81.55% -0.2% 33.19% -0.3% 23.65%

PeopleOnStreet 0.60% 47.93% -0.2% 82.14% -0.1% 33.87% -0.2% 21.98%
Kimono 0.20% 56.18% -0.2% 73.58% -0.3% 32.58% -0.1% 22.51%

ParkScene 0.80% 49.40% -0.2% 69.07% -0.1% 32.86% -0.3% 26.52%
Cactus 0.50% 49.02% -0.2% 70.74% -0.2% 32.59% -0.1% 22.34%

BasketballDrive 0.30% 47.26% -0.3% 69.29% -0.1% 32.99% -0.1% 20.17%
BQTerrace 0.70% 52.65% -0.3% 68.93% -0.1% 33.70% 0.0% 21.03%

Average 0.56% 50.02% -0.26% 73.61% -0.16% 33.11% -0.16% 22.6%

software (SHM 11.0) on a server with Intel (R) 2.0 GHz CPU
and 30 GB memory for testing. The experimental parameters
are set according to the CSTC [39]. Since the proposed
algorithm is developed for all intra coding, both GOPSize and
IntraPeriod are set to be 1. The QPs in the BL are (26, 30, 34,
38), and the corresponding QPs used for the EL are (22, 26,
30, 34) and (20, 24, 28, 32), respectively. To fairly demonstrate
the performance of our proposed algorithm, we do not use the
eight training sequences in our performance testing. Therefore,
our proposed algorithm is generic and effective for different
types of video sequences. Coding efficiency is measured by
BDBR. A negative BDBR represents an increase in coding
efficiency compared with the reference software. Coding speed
is evaluated by encoding run-time only in the EL, and “TS”
represents the percentage of encoding run-time savings in the
EL only.

The proposed algorithm includes four strategies, namely
“CBDP”, “MPPZBB-IMD”, “GHCB-IMP”, and “DPRDB-
DET”. Our experimental results show that the EL with (22,
26, 30, 34) and (20, 24, 28, 32) provide similar performances,
therefore only the results for the EL with (22, 26, 30, 34)
are provided in this section. The performances of the different
strategies are shown in Table IX.

From Table IX, the average coding speed improvements
in “CBDP”, “MPPZBB-IMD”, “GHCB-IMP” and “DPRDB-
DET” are 50.02%, 73.61%, 33.11%, and 22.6%, respec-
tively. In parallel, the average BDBR in “CBDP”, “MPPZBB-
IMD”, “GHCB-IMP” and “DPRDB-DET” are 0.56%, -0.26%,
-0.16%, and -0.16%, respectively. Since every depth in-
cludes the whole intra prediction and ILR prediction process,
“CBDP” reaches remarkable coding speed improvements. As
the coding process of intra is very complex, skipping intra
coding by checking “MPPZBB-IMD” can also achieve sig-

TABLE X: Performance comparison with Q1

Sequence
Proposed EMSIP [38] PAPS [35]

BDBR TS BDBR TS BDBR TS
Traffic -0.4% 86.03% -0.2% 72.35% 1.28% 72.02%

PeopleOnStreet -0.2% 85.49% -0.1% 70.80% 1.91% 60.36%
Kimono -0.1% 84.27% -0.2% 77.06% 0.78% 51.96%

ParkScene -0.2% 80.79% 0.0% 75.87% 0.65% 63.78%
Cactus -0.2% 81.16% -0.1% 76.48% 0.98% 58.42%

BasketballDrive -0.2% 81.67% 0.2% 81.87% 1.33% 59.36%
BQTerrace 0.0% 81.40% -0.1% 72.88% 0.65% 58.23%

Average -0.19% 82.97% -0.07% 75.33% 1.16% 60.59%

nificant computational complexity gains. Since only partial
intra modes are checked in both RMD and RDO process,
“GHCB-IMP” provides smaller, but nonetheless important,
time savings. Since threshold values are set to be very small,
DPRDB-DET leads to the least significant time savings.

We have compared the overall performance of our al-
gorithm, including the integration of these four strategies,
with PAPS algorithm [35] and EMSIP algorithm [38]. For
fair comparisons, we have tested all algorithms on the same
computing platform. Two settings of QPs: Q1 = (22, 26,
30, 34) and Q2 = (20, 24, 28, 32) are used. The overall
performance comparisons in terms of the coding efficiency
and the coding speed are shown in Table X and Table XI,
with Q1 and Q2, respectively.

From Table X, we find that the averages of BDBR and TS of
the proposed algorithm are -0.19% and 82.97% respectively,
those of the EMSIP algorithm are -0.07% and 75.33%, and
those of the PAPS algorithm are 1.16% and 60.59%. From
Table XI, we observe that the averages of BDBR and TS of
the proposed algorithm are -0.17% and 81.59% respectively,
those of the EMSIP algorithm are -0.17% and 75.07%, and
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TABLE XI: Performance comparison with Q2

Sequence
Proposed EMSIP [38] PAPS [35]

BDBR TS BDBR TS BDBR TS
Traffic -0.4% 84.23% -0.3% 71.63% 1.30% 71.56%

PeopleOnStreet -0.3% 84.02% -0.3% 71.08% 1.94% 68.78%
Kimono -0.2% 83.57% 0.0% 77.14% 0.80% 52.23%

ParkScene -0.2% 80.04% 0.0% 76.08% 1.20% 63.78%
Cactus -0.2% 79.50% -0.2% 76.51% 0.96% 58.34%

BasketballDrive 0.1% 80.35% -0.2% 81.40% 1.32% 59.64%
BQTerrace 0.0% 79.44% -0.2% 71.63% 0.67% 59.13%

Average -0.17% 81.59% -0.17% 75.07% 1.17% 60.79%

those of the PAPS algorithm are 1.17% and 60.79%. Compared
with EMSIP algorithm, the BDBR of the proposed algorithm
is equal or better. Meanwhile, our algorithm is faster than
EMSIP. Compared with PAPS algorithm, the proposed algo-
rithm outperforms PAPS in terms of BDBR. Simultaneously,
our algorithm is significantly faster than PAPS. Therefore, the
proposed algorithm significantly improves the performance,
both in coding speed and coding efficiency, when compared
to EMSIP and PAPS algorithms.

The main reasons why the proposed algorithm can signif-
icantly improve the coding speed are: (1) Since the current
CU in EL and the co-located CU in BL are the same except
their QPs in quality SHVC, the inter-layer correlation is very
strong and ILR mode can predict the corresponding CU in EL
very well. Therefore, many CUs only use smaller depths in
prediction. We develop CBDP to efficiently predict smaller
depths and skip many larger ones. Since the complexity
of coding larger depths is very high, skipping these depths
can significantly improve the coding speed; (2) Since the
ILR correlation is very strong, most CUs use ILR mode in
prediction. In addition, the coding process of ILR mode is
very simple and takes less time. We develop MPPZBB-IMD
to predict ILR mode and skip time-consuming intra encoding
process which includes RMD and RDO; (3) Since intra mode
represents only a small proportion, we develop GHCB-IMP
to only encode a small part of intra mode in RMD, and early
terminate the RDO process. Therefore, much coding time can
be saved. In addition, a small portion of intra mode leads to a
very small coding efficiency lose; (4) We use DPRDB-DET to
early terminate depth selection to further improve the coding
speed.

In short, the main reason for obtaining our experimental
results is that many CUs use smaller depths and most CUs
adopt ILR mode, both of which are very simple and take little
time. As we develop the proposed algorithm to predict these
smaller depths and ILR mode, many larger depths and intra
modes can be skipped accordingly.

From Table X and Table XI, we can find that the BDBR
of our scheme can achieve BDBR savings of 0.19% and
0.17% in average, respectively, compared against the SHM
reference software. Generally speaking, the improvements of
coding speed usually lead to BDBR increase, namely coding
efficiency decrease. But it is possible to also obtain BDBR
decrease, i.e., coding efficiency increase. One major reason
is the strong dependency among CUs, mainly due to the

TABLE XII: RD costs in MPPZBB-IMD and SHM reference
software

MPPZBB-IMD SHM
521(UL) 3398(U) 521(UL) 3392(U)
1311(L) 4321(C) 1306(L) 4405(C)

TABLE XIII: RD costs and modes of different methods

Number
SHM MPPZBB-IMD Intra-only ILR-only

RD cost mode RD cost mode RD cost RD cost
1 362 intra 360 intra 324 392
2 641 intra 628 intra 692 717
3 272 intra 277 intra 250 286
4 326 ILR 318 intra 344 326

extensive use of predictive coding. For the proposed algorithm,
the explanation lays in the intra prediction process. The results
of our investigation and analysis are presented below.

To investigate the RD costs, we select the MPPZBB-IMD
to test the sequence "Flowervase", with QP=22 in EL. The RD
costs in PZBB-IMD and the SHM reference software for the
4 CTUs (2 rows and 2 columns) with the upper left location at
(64, 64) in the first frame are shown in Table XII. As shown
in Table XII, three RD costs of our method are equal or slight
larger than the corresponding RD costs of SHM. However,
the RD cost of the bottom right CTU by our method is
significantly smaller than its counterpart in the SHM. The sum
of the 4 RD costs in our method and SHM are 9552 and 9616,
respectively. We have also calculated the sum for the whole
first frame. The sum with our method is also smaller than that
with SHM. Thus, our scheme can occasionally achieve BDBR
decrease when compared to SHM.

Since the larger CUs may include different modes, only 8×8
CUs are selected in our investigation. We further use intra-only
mode and ILR-only mode in evaluating RD costs and modes.
Table XIII lists the corresponding RD costs and modes of four
typical 8×8 CUs.

From Table XIII, we can observe that both SHM and
MPPZBB-IMD use intra mode in the first three CUs, but
their corresponding RD costs are different from those of intra-
only method in each CU. In the first two CUs, RD costs
in MPPZBB-IMD are smaller than those in SHM. In the
third CU, RD cost in MPPZBB-IMD is larger than that in
SHM. From the first three CUs, we can observe that even the
same CU uses intra mode in prediction, its corresponding RD
costs are different. In the fourth CU, SHM uses ILR mode,
MPPZBB-IM uses intra mode, and RD costs in MPPZBB-IM
and intra-only are different. Therefore, we can conclude that
not only the RD cost changes, but the mode may also change
in different methods.

The reason is that CUs are predicted by their reference
pixels in intra prediction, as shown in Fig.5. When reference
pixels are more similar with the texture of CUs, intra mode can
predict more accurately and the corresponding RD costs are
smaller, and vice versa. In Fig. 5, using different methods may
lead to different predictions in CU L and U, so the reference
pixels L-pixels and U-pixels, shown in black dots, will also
be different. Obviously, it will lead to different RD costs for
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Fig. 5: Intra prediction in CTU

CU C. If L-pixels and U-pixels in SHM are more similar with
the texture of CU C, SHM can predict more accurately and
the corresponding RD costs are smaller, such as the first two
CUs in Table XIII. Otherwise, MPPZBB-IM can predict more
accurately and the corresponding RD costs are smaller, e.g.,
the third CU in Table XIII. Similarly, in Table XII, RD Costs
of CTU L and CTU U with SHM are smaller than those with
MPPZBB-IMD, thus SHM can provide a better prediction
for CTU L and CTU U than MPPZBB-IMD. However, left
reference pixels and upper pixels in SHM cannot with certainty
predict CTU C better than those in MPPZBB-IMD method.
Thus, MPPZBB-IMD method can still occasionally achieve a
little BDBR decrease.

In summary, in intra prediction, different methods may lead
to differences in reference pixels, and the corresponding RD
costs are also different. Compared to SHM, our method may
therefore occasionally achieve either a decrease or an increase
in BDBR.

V. CONCLUSION

In this paper, we have proposed a new and effective intra
prediction algorithm for Quality SHVC. The encoding proce-
dure includes four fast strategies: “CBDP” combines spatial
and temporal correlations as well as their correlation degrees
in Naive Bayes classifier to obtain depth probabilities, and skip
depths with low likelihood; “MPPZBB-IMD” combines with
ILR mode probabilities and SSD based PZBs to skip unnec-
essary intra prediction; “GHCB-IMP” uses Sobel operator to
theoretically obtain two gradients with greatest amplitudes as
initial modes to search the first N candidate modes in RMD,
which are early terminated based on the HC values of two
neighboring IMs in RDO. Thus, only a subset of IMs instead
of all 35 IMs are used in both RMD and RDO processes; and
“DPRDB-DET” jointly uses depth probabilities and residual
distribution for early termination of depth selection. Therefore,
the proposed algorithm can significantly accelerate the coding
speed with negligible decreases in coding efficiency. In our
future research activities, we will use deep learning to further
improve the coding speed of SHVC.
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