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In this work, we provide updated constraints on coupled dark energy (CDE) cosmology with Peebles-
Ratra (PR) potential and constant coupling strength β. This modified gravity scenario introduces a fifth
force between dark matter particles, mediated by a scalar field that plays the role of dark energy. The mass
of the dark matter particles does not remain constant, but changes with time as a function of the scalar field.
Here we focus on the phenomenological behavior of the model, and assess its ability to describe updated
cosmological datasets that include the Planck 2018 cosmic microwave background (CMB) temperature,
polarization and lensing, baryon acoustic oscillations, the Pantheon compilation of supernovae of Type Ia,
data on HðzÞ from cosmic chronometers, and redshift-space distortions. We also study the impact of the
local measurement of H0 from SH0ES and the strong-lensing time delay data from the H0LICOW
Collaboration on the parameter that controls the strength of the interaction in the dark sector. We find a peak
corresponding to a coupling β > 0 and to a potential parameter α > 0, more or less evident depending on
the dataset combination. We show separately the impact of each dataset and remark that CMB lensing is
especially the one dataset that shifts the peak the most towards ΛCDM. When a model selection criterion
based on the full Bayesian evidence is applied, however, ΛCDM is still preferred in all cases, due to the
additional parameters introduced in the CDE model.

DOI: 10.1103/PhysRevD.101.123513

I. INTRODUCTION

Important observational hints in favor of the positive
acceleration of the Universe appeared already more than
twenty years ago, thanks to the detection of standardizable
high-redshift supernovae of Type Ia (SNIa) and the meas-
urement of their light curves and redshifts [1,2]. Since then,
many other probes have contributed to increase the evi-
dence in favor of the late-time accelerated phase. They
range, e.g., from the detection of the baryon acoustic peak
in the two-point correlation function of matter density
fluctuations [3,4] to the very accurate measurement of
the cosmic microwave background (CMB) temperature
anisotropies by WMAP [5] and Planck [6–8]. At the
phenomenological level, the easiest explanation for such
acceleration is given by the presence of a very tiny
cosmological constant in Einstein’s field equations, with
an associated energy density which is orders of magnitude
lower than the quantum field theoretical estimates made for
the vacuum energy density. Protecting such a low value
from radiative corrections is extremely difficult and con-
stitutes the core of the so-called “old” cosmological

constant problem, cf. e.g., Refs. [9–11]. In addition,
explaining why the current value of this energy density
is of the same order of magnitude as the matter energy
density, the so-called “coincidence problem” is considered
by part of the cosmological community as another problem
that needs to be addressed. The cosmological constant is
a pivotal ingredient of the standard cosmological model,
also known as ΛCDM or the concordance model (cf. e.g.,
the reviews in Refs. [12,13]), which can explain most
of the cosmological observations with high proficiency.
Nevertheless, the aforementioned theoretical conundrums,
together with a few persistent tensions in some relevant
parameters of the model as the Hubble parameterH0 [8,14]
and the root-mean-square of mass fluctuations at scales of

8h−1 Mpc [15], σ8 [or S8 ¼ σ8ðΩð0Þ
m =0.3Þ0.5 [16] ],1 with h

being the reduced Hubble parameter, motivate theoretical
cosmologists to look for alternative scenarios in which
these problems can be solved, or at least alleviated; see
Refs. [17,18] and references therein. Wherever the solution
comes from—i.e., a departure from general relativity or
some sort of new field describing dark energy (DE)—it
must mimic very well the behavior of a cosmological
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constant at low redshifts, meaning that the corresponding
effective equation of state (EOS) parameter must be very
close to−1, and that the new component must not be able to
cluster efficiently at low scales.
In this paper, we consider a scenario in which dark matter

(DM) particles interact via a force mediated by a scalar
field, which in turn drives cosmic acceleration. This
scenario is referred to as coupled dark energy (CDE). It
was originally proposed as a means of alleviating the
coincidence problem [19,20], considering not only a
potential energy density for quintessence to generate its
dynamics, but also allowing an interaction with other
sectors of the theory. These interactions extended the
original quintessence models [21–24]. They cannot be
ruled out a priori, and hence, they must be duly constrained
by experiments and observations.
Some works already set constraints on this model, but

using older cosmological datasets—for instance, CMB data
from the WMAP satellite and the South Pole Telescope
[25], or considering past (2013, 2015) releases of Planck
CMB data in combination with other datasets, as, e.g., from
baryon acoustic oscillations (BAO) and SNIa [26,27].
Intriguingly, these works detected a likelihood peak at a
nonvanishing value of the coupling constant. One of the
main goals of this paper is then to critically revisit and
update these results in the light of the recent strengthening
of the H0 tension and of the rich amount of currently
available data at our disposal, in particular the Planck
2018 CMB temperature, polarization, and lensing data,
but also other new cosmological data—for instance,
Refs. [28,29]. For constraints on other models with DM-
DE interactions, see, e.g., Refs. [30–43], and when the
interaction is motivated in the context of the running
vacuum models [39,40,44–46].

II. COUPLED DARK ENERGY

We consider a CDE scenario, as studied in Refs. [20,
47,48], to which we refer for a detailed description. We here
briefly recall the main equations. This CDE model is
formulated in the so-called Einstein or observational frame
[49]. Apart from the standard model of particle physics and
a potential extension accounting for the origin of the
neutrino masses, we consider a dark sector described by
the following Lagrangian density:

Ldark ¼ −∂μϕ∂μϕ − VðϕÞ −mðϕÞψ̄ψ þ Lkin½ψ �; ð1Þ

where ϕ is the scalar field that plays the role of DE, with
potential VðϕÞ, and ψ is the DM field, considered here to be
of fermionic nature, just for illustrative purposes. The DM
particles interact with the DE due to the ϕ-dependent mass
term appearing in Eq. (1). Such interaction introduces a
fifth force that alters the trajectory in space-time of the DM
with respect to the one found in the uncoupled case.
Depending on the strength of the force, this model can

be force-accelerated, as opposed to fluid-accelerated,
adopting the terminology of Ref. [49]. As we do not
couple ϕ to the standard model sector, we avoid the
stringent local (Solar System) constraints on the violation
of the weak equivalence principle [50], and also on
screened fifth forces that couple ϕ to nondark matter,
e.g., from Casimir experiments [51], precision measure-
ments of the electron magnetic moment [52], or measure-
ments of the Eötvös parameter [53]. They have no impact
on the CDE model under study.
The variation of the total action with respect to the metric

leads as usual to Einstein’s equations, and the covariant
energy of the joint system DM-DE is conserved. Hence,
∇μTϕ

μν ¼ þQν and ∇μTdm
μν ¼ −Qν, with Qν defined as

Qν ¼ βκTdm∇νϕ; ð2Þ

where κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
, Tdm is the trace of the DM energy-

momentum tensor, and β controls the strength of the
interaction and is in general a function of ϕ. If it is set
to zero, we recover the equations of uncoupled quintes-
sence. In this work, we consider β to be a positive constant.
We assume that the Universe is spatially flat, as

supported by CMB information from Planck 2018 when
combined with BAO [8] and/or SNIa [54], with the
curvature parameter Ωð0Þ

K constrained to be lower than
∼2% at 68% C.L. in ΛCDM. Thus, we can make use
of the Friedmann-Lemaître-Robertson-Walker metric,
which at the background level reads ds2 ¼ a2ðτÞ½−dτ2 þ
δijdxidxj�, with a being the scale factor, τ the conformal
time, and xi for i ¼ 1, 2, 3 the spatial comoving coor-
dinates. In addition, we treat DM as a pressureless perfect
fluid, so the conservation equations for DE and DM can be
written, respectively,

βκa2ρdm ¼ ϕ00 þ 2Hϕ0 þ a2
∂V
∂ϕ ; ð3Þ

ρ0dm þ 3Hρdm ¼ −βκρdmϕ0; ð4Þ

with ρdm being the DM energy density, H ¼ a0=a, and the
primes denoting derivatives with respect to the conformal
time. All the functions entering these equations are back-
ground quantities. If we assume the conservation of the
number density of DM particles, then their mass evolves
as mðϕÞ ¼ mð0Þeβκðϕð0Þ−ϕÞ.
A feature of the model is that for β2 < 3=2, it has an

unstable (saddle) fixed point at ðΩdm;ΩϕÞ ¼ ð1 − 2β2=3;
2β2=3Þ, whereΩi ¼ ρi=ρc, with ρc being the critical energy
density. This fixed point (dubbed ϕMDE in Ref. [20])
cannot be reached exactly, since there is also a non-null
fraction of baryons, but the system can be quite close to it,
since the DM energy density is much larger than the
baryonic one (cf. Fig. 1). During this phase, the effective
EOS parameter—i.e., the ratio of the total pressure and the
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critical energy density in the Universe, is given by
weff ¼ Ωϕ, and hence the deceleration parameter reads
q ¼ 1

2
ð1þ 3weffÞ ¼ 1

2
þ β2. Thus, the coupling between

DM and DE makes the Universe more decelerated with
respect to the uncoupled quintessence case during the
matter-dominated epoch (MDE). This fact, together with
the fifth force that enters now as a new source term in the
Poisson equation, helps matter inhomogeneities to grow
faster for larger values of β. We also remark that for fixed
values of the present energy densities, matter becomes
dominant over radiation earlier in time when β > 0, with
respect to the uncoupled case. In the CDE scenario, the
equation for the DM density contrast δdm ¼ δρdm=ρdm, at
deep subhorizon scales (k ≫ H) and when nonlinear
processes are unimportant, reads

δ00dm þ ðH − βκϕ0Þδ0dm
− 4πGa2½ρbδb þ ρdmδdmð1þ 2β2Þ� ¼ 0: ð5Þ

If we neglect the contribution of baryons, δmðaÞ ∼ a1þ2β2 .
Hence, larger values of β enhance the matter power
spectrum (see the left plot of Fig. 2) and leave an imprint
on the CMB temperature anisotropies. First, the integrated
Sachs-Wolfe effect [55] is enhanced during the MDE
earlier than in the uncoupled scenario, in which such effect
is only relevant after matter-domination; second, the
coupling affects the lensing of CMB by large-scale struc-
ture; the interaction also shifts the position of the acoustic
peaks to larger multipoles due to the decrease of the sound
horizon at the baryon-drag epoch, which is caused by the
increase of the mass of the DM particles (this latter effect is,
however, typically very small and subdominant). Finally,
the amplitude is suppressed, because of the decrease of
ρb=ρdm at recombination. These two effects explain why
the coupling strength is degenerate with the Hubble
parameter today [26], whose value is related to the position
and overall amplitude of the first peak. These and other
aspects of the structure formation were already discussed in

FIG. 1. Left:Normalized densitiesΩdmðzÞ þ ΩbðzÞ andΩϕðzÞ for four alternative values of β and considering a constant potential. The
other parameters (including the current energy densities) have been set to the best-fit ΛCDM values from the TTTEEEþ lowE Planck
2018 analysis [8]. Right: Here we zoom in the range z ¼ ½2; 200� of the Ωdm þΩb curves in order to better visualize their evolution
during the matter-dominated epoch, when the system is near the ϕMDE fixed point. See the text for details.

FIG. 2. Theoretical curves of the current matter power spectrum (left plot) and CMB temperature anisotropies (right plot) for the
ΛCDM, two CDE models with β ¼ 0.1, 0.15 and flat potential, and also for the uncoupled Peebles-Ratra model with α ¼ 0.4. We set
the other parameters as in Fig. 1. In the right plot, we also include the observational data from Ref. [8] (in red). These figures show (i) the
enhancement of the growth of matter perturbations caused by β > 0, and the opposite effect produced by α > 0; and (ii) the shift to larger
multipoles and the amplitude suppression of the acoustic peaks induced by increasing values of β. See the text for further details.

UPDATE ON COUPLED DARK ENERGY AND THE H0 … PHYS. REV. D 101, 123513 (2020)

123513-3



Refs. [48,56–58]. See therein for further details, and also
the plots in Fig. 2.
The quintessence potential only rules the dynamics of ϕ

in the late-time universe, after the MDE, when the
interaction term appearing on the lhs of Eq. (3) becomes
subdominant. It helps to slow down structure formation
processes with respect to the flat-potential scenario (for a
fixed value of the current DE density). Hence, it can
compensate in lesser or greater extent (depending on its
steepness) the enhancement of power generated by the fifth
force during the MDE (cf. the left plot of Fig. 2 and its
caption).
We employ the Peebles-Ratra (PR) potential [23,24],

VðϕÞ ¼ V0ϕ
−α; ð6Þ

with V0 and α > 0 being constants, and the former having
dimensions of mass4þα in natural units, since ϕ has
dimensions of mass. We want to update the constraints
on the parameters of the CDE model with PR potential that
were obtained in some past works using older CMB data,
from WMAP and/or past releases of Planck (cf. Refs. [25–
27,59]), so it is natural to stick to Eq. (6) here. Another
reason is that it has proved to be capable of improving the
description of some cosmological datasets with respect to
the ΛCDM model in the noninteractive case [60–62].
The CDE model we are considering (i.e., CDE with PR

potential) has three nested models—namely the ΛCDM,
the PR model, and the CDE model with flat potential. They
are obtained from the full CDE model with Eq. (6) in the
limits ðα; βÞ → ð0; 0Þ, β → 0, and α → 0, respectively. We
also provide constraints on these scenarios in Appendix B.

For recent studies on CDE with an exponential potential,
see Refs. [30,32,33,42]. We report fitting results for this
model too, in Appendix C.

III. METHODOLOGY

We have implemented the CDE model described in
Sec. II in our own modified version of the Einstein-
Boltzmann system solver CLASS2 [63], which allows us
to solve the background and linear perturbations equations
and produce the theoretical quantities of interest, as, e.g.,
the matter power spectrum, the CMB anisotropies, the
cosmological distances, etc. This implementation has been
compared and validated with the interacting dark energy
anisotropy (IDEA) code, used in Refs. [25,27,64,65]. The
Bayesian exploration of the parameter space of the model
in the light of the various datasets described in Sec. IV
has been carried out with the Monte Carlo sampler
MontePython

3 [66]. Our code lets us skip the shooting method
that is employed in IDEA to match the initial conditions
with the current values of the cosmological energy den-
sities, and this allows us to improve the com-
putational efficiency of our Markov chain Monte Carlo
(MCMC) analyses, cf. Appendix A for details. We have
also used the PYTHON package GetDist

4 [67] to process the
chains and obtain the mean values and uncertainties of the
parameters reported in Tables I–III, as well as the contours
of Figs. 3 and 4. Finally, we have computed the full

TABLE I. Constraints obtained using the dataset combinations described in Sec. IV B on the following parameters of the CDE model:
the reduced DM and baryon energy densities, Ωð0Þ

dmh
2 and Ωð0Þ

b h2; the reionization optical depth, τ; the Hubble parameter,H0 (in units of
km=s=Mpc); the power of the primordial power spectrum, ns; the current amplitude of mass fluctuations at 8h−1 Mpc, σ8; the coupling
strength β; and the power of the PR potential [Eq. (6)]. We remark that these are not the primary parameters that are varied in the
Monte Carlo analyses (cf. Appendix A for details). We provide the mean values and 68% confidence intervals for each of them. In the
last two rows, we show the differences with respect to the ΛCDM of the minimum values of the χ2 function, and also the natural
logarithm of the Bayes ratio BCDE;Λ, as defined in Eqs. (11) and (12). The (small) negative values of χ2min :CDE − χ2min;Λ tell us that CDE is
able to fit slightly better the data than the ΛCDM; if we use as an alternative estimator the Bayes factor, we find negative values of
lnðBCDE;ΛÞ, indicating a preference for the ΛCDM model. See Sec. V for a thorough discussion of the results.

Parameter P18 P18þ BSC
P18þ SH0ESþ
H0LICOW P18þ BSCþ RSDP18lensþ BSCþ RSD

P18þ BSCþ SH0ESþ
H0LICOW

P18lensþ SH0ESþ
H0LICOW

Ωð0Þ
dmh

2 0.1207þ0.0014
−0.0013 0.1192� 0.0008 0.1172þ0.0012

−0.0014 0.1187� 0.0008 0.1191� 0.0007 0.1185� 0.0008 0.1182þ0.0011
−0.0010

Ωð0Þ
b h2 0.02237� 0.00015 0.02242þ0.00010

−0.00015 0.02262þ0.00016
−0.00014 0.02253þ0.00010

−0.00012 0.02253þ0.00013
−0.00011 0.02253þ0.00011

−0.00013 0.02259þ0.00014
−0.00016

τ 0.0538� 0.0070 0.0532þ0.0075
−0.0087 0.0594� 0.0074 0.0501� 0.0052 0.0525þ0.0052

−0.0064 0.0579þ0.0069
−0.0078 0.0637þ0.0065

−0.0096
H0 67.74þ0.57

−0.66 68.41� 0.38 69.43þ0.72
−0.53 68.64þ0.30

−0.38 68.45� 0.34 68.79þ0.35
−0.40 68.99� 0.51

ns 0.9654þ0.0035
−0.0042 0.9690� 0.00380.9731� 0.0042 0.9701þ0.0029

−0.0033 0.9685� 0.0034 0.9705� 0.0034 0.9713� 0.0037

σ8 0.8164� 0.0076 0.8104� 0.0076 0.8121þ0.0065
−0.0080 0.8048� 0.0052 0.8073þ0.0048

−0.0056 0.8120� 0.0074 0.8160� 0.0068

α <0.50 0.52� 0.17 1.32� 0.18 0.67þ0.11
−0.16 0.25þ0.09

−0.20 0.73þ0.11
−0.27 0.33þ0.19

−0.23
β 0.0158þ0.0067

−0.0120 0.0206þ0.0070
−0.0095 0.0294þ0.0120

−0.0076 0.0151þ0.0073
−0.0083 0.0095þ0.0030

−0.0087 0.0206þ0.0076
−0.0100 0.0197þ0.0094

−0.0084
χ2min;CDE − χ2min;Λ −0.02 −0.28 −0.58 −1.56 −0.90 −1.34 −1.46
lnBCDE;Λ −8.05 −9.95 −7.57 −8.33 −7.83 −7.95 −8.75

2http://lesgourg.github.io/class_public/class.html.
3http://baudren.github.io/montepython.html.
4https://getdist.readthedocs.io/en/latest/.
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Bayesian evidences for all the models and under the various
datasets, by processing the corresponding Markov chains
with the code MCEvidence5 [68]. This has allowed us to
carry out a rigorous model comparison analysis, which we
present in Sec. V.

IV. DATA

Since the last fitting analysis of the CDE model with PR
potential, in Ref. [27], new and more precise data have
appeared in the literature. In this paper, we perform an
exhaustive update of the datasets with respect to those used
in Ref. [27]. The most important changes are that (i) here
we make use of the Planck 2018 CMB data [8] instead of
the 2015 release [7]; (ii) we fully update our BAO and
redshift-space distortion (RSD) datasets, using now, e.g.,
the data of the last release of the Baryon Oscillation
Spectroscopic Survey6 (BOSS); (iii) we substitute the
SNIa sample from the Joint-Light-curve Analysis (JLA)
[69] by the PantheonþMCT compilation [70,71], which
contains the former and includes 323 additional SNIa;
(iv) we study the impact of the data on HðzÞ obtained from
cosmic chronometers (CCH); (v) instead of using the prior
on H0 from Ref. [72], H0 ¼ ð70.6� 3.3Þ km=s=Mpc, we
use the measurement by the SH0ES Collaboration reported
in Ref. [14] (see Sec. IVA 6 and comments therein); and
(vi) we also study the effect that the inclusion of the strong-
lensing time delay distances measured by H0LICOW has

on our constraints. We use, therefore, a much richer dataset
here than the one employed in Ref. [27].
Our dataset is very similar to the one used by the Planck

Collaboration in their 2018 analysis of the ΛCDM and
minimal extensions of it [8]. There are some differences,
though—e.g., we analyze here the effect of cosmic chronom-
eters and the H0LICOW data, something that was not done
there.We refer the reader to Sec. IVA andRef. [8] for details.

A. Description of the individual datasets

Here we list and describe the individual datasets that we
employ in this work to constrain the CDE model that we
have presented in Sec. II, and its nested models. We will
study their impact by considering different dataset combi-
nations, as explained in Sec. IV B.

1. Cosmic microwave background

We derive all the main results of this paper, making use
of the full TTTEEEþ lowE CMB likelihood from Planck
2018 [8], which includes the data on the CMB tempera-
ture (TT) and polarization (EE) anisotropies, and their
cross-correlations (TE) at both low and high multipoles. We
also study what is the impact of also including the CMB
lensing likelihood [73]. Temperature and polarization
spectra are already lensed; however, the CMB lensing
likelihood includes on top of lensed spectra also the four-
point correlation function. Lensing peak sensitivity is to
lenses at z ≈ 2, halfway to the last scattering surface, with
deflection effects at redshifts which are relevant for
dark energy models such as CDE. It has in particular been

FIG. 3. 1σ and 2σ confidence contours obtained using some of the combined datasets described in Sec. IV B in the ðH0; βÞ, ðσ8; βÞ,
and ðα; βÞ planes, together with the marginalized one-dimensional posterior distributions for these parameters. See the discussion of
these results in Sec. V.

5https://github.com/yabebalFantaye/MCEvidence.
6http://www.sdss3.org/surveys/boss.php.
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shown in Ref. [27] that CMB lensing pushes constraints
towards ΛCDM. As stated in Ref. [8], we note that the
lensing likelihood assumes a fiducial ΛCDM model, with
linear corrections to the fiducial model accounted for self-
consistently. According to Ref. [8], this procedure is
unbiased, at least up to when the lensing spectrum differs
from the fiducial spectrum by as much as 20%, estimated to
be larger than the differences allowed by the CMB lensing
data. While further independent validation of such tests
would be interesting for future analyses on modified
gravity, we find it important to comment on results with/
without CMB lensing inclusion for the purpose of testing
nonminimal extensions of ΛCDM, such as CDE.

2. Baryon acoustic oscillations

Baryon acoustic oscillations are a direct consequence
of the strong coupling between photons and baryons in

the pre-recombination epoch. After the decoupling of
photons, the overdensities in the baryon fluid evolved
and attracted more matter, leaving an imprint in the two-
point correlation function of matter fluctuations with a
characteristic scale of around 147 Mpc that can be used as a
standard ruler and to constrain cosmological models. It was
first measured by Refs. [3,4] using the galaxy power
spectrum. Since then, several galaxy surveys have been
able to provide precise data on BAO, either in terms of the
dilation scale DV ,

DVðzÞ
rd

¼ 1

rd

�
D2

MðzÞ
cz

HðzÞ
�
1=3

; ð7Þ

with DM ¼ ð1þ zÞDAðzÞ being the comoving angular
diameter distance and rd the sound horizon at the baryon
drag epoch, or even by splitting (when possible) the
transverse and line-of-sight BAO information and hence

FIG. 4. 1σ and 2σ confidence contours obtained with the P18þ BSCþ RSD and P18lensþ BSCþ RSD datasets in the most relevant
two-dimensionalplanesof theCDEmodelparameterspace.Theyallowustoseewhat is the impactof theCMBlensingonourresults.Wealso
show the corresponding marginalized one-dimensional posterior distributions for all the parameters. See the related comments in Sec. V.
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being able to provide data on DAðzÞ=rd and HðzÞrd
separately, with some degree of correlation. The surveys
provide the values of the measurements at some effective
redshift(s). We employ the following BAO data points:
(1) DV=rd at z ¼ 0.122 provided in Ref. [74], which

combines the dilation scales previously reported
by the 6dF Galaxy Survey7 (6dFGS) [75] at z ¼
0.106 and the one obtained from the Sloan Digital
Sky Survey8 (SDSS) Main Galaxy Sample at z ¼
0.15 [76].

(2) The anisotropic BAO data measured by BOSS using
the LOWZ (z ¼ 0.32) and CMASS (z ¼ 0.57)
galaxy samples [77].

(3) The dilation scale measurements by WiggleZ9 at
z ¼ 0.44, 0.60, 0.73 [78]. The galaxies contained in
the WiggleZ catalog are located in a patch of the
sky that partially overlaps with those present in the
CMASS sample by BOSS. Nevertheless, the two
surveys are independent, work under different see-
ing conditions, instrumental noise, etc., and target
different types of galaxies. The correlation between
the CMASS and WiggleZ data has been quantified
in Ref. [79], were the authors estimated the corre-
lation coefficient to be ≲2%. This justifies the
inclusion of the WiggleZ data in our analysis,
although their statistical weight is much lower than
those from BOSS, and in practice their use does not
have any important impact on our results.

(4) DA=rd at z ¼ 0.81 measured by the Dark Energy
Survey (DES)10 [80].

(5) The anisotropic BAO data from the extended BOSS
Data Release (DR) 14-quasar sample at z ¼ 1.19,
1.50, 1.83 [29].

(6) The combined measurement of the anisotropic
BAO information obtained from the Ly α-quasar
cross- and autocorrelation of eBOSS DR14 [81,82],
at z ¼ 2.34.

3. Supernovae of Type Ia

We consider six effective points on the Hubble rate—i.e.,
EðzÞ≡HðzÞ=H0, and the associated covariance matrix.
They compress the information of 1048 SNIa contained in
the Pantheon compilation [70] and the 15 SNIa at z > 1
from the Hubble Space Telescope Multi-Cycle Treasury
programs [71]. The compression effectiveness of the infor-
mation contained in such SNIa samples is extremely good,
as is explicitly shown in Ref. [71]. See, e.g., Fig. 3 of
that reference and the corresponding explanations in the
main text.

4. Cosmic chronometers

Spectroscopic dating techniques of passively evolving
galaxies—i.e., galaxies with old stellar populations and low
star formation rates—have become a good tool to obtain
observational values of the Hubble function at redshifts
z≲ 2 [83]. These measurements do not rely on any
particular cosmological model, although they are subject
to other sources of systematic uncertainties, such as the
ones associated with the modeling of stellar ages—see,
e.g., Refs. [84,85]—which is carried out through the so-
called stellar population synthesis (SPS) techniques, and
also with a possible contamination due to the presence
of young stellar components in such quiescent galaxies
[86–88]. Given a pair of ensembles of passively evolving
galaxies at two different redshifts, it is possible to infer
dz=dt from observations under the assumption of a con-
crete SPS model and compute HðzÞ ¼ −ð1þ zÞ−1dz=dt.
Thus, cosmic chronometers allow us to obtain the value of
the Hubble function at different redshifts, contrary to other
probes which do not directly measure HðzÞ, but integrated
quantities such as, e.g., luminosity distances.
In this work, we use the 31 data points on HðzÞ from

CCH provided in Refs. [84,85,89–94]. More concretely, we
make use of the processed sample provided in Table 2 of
Ref. [95], which is more conservative, since it introduces
corrections accounting for the systematic errors men-
tioned above.
Several authors have employed these data to recon-

struct the expansion history of the Universe using
Gaussian processes and/or the so-called Weighted
Function Regression method [96–98]. These approaches
do not rely on a particular cosmological model. They find
extrapolated values of the Hubble parameter that are closer
to the best-fit ΛCDM value reported by Planck [8], around
H0 ∼ ð67.5–69.5Þ km=s=Mpc, but still compatible at ∼1σ
C.L. with the local determination obtained with the distance
ladder technique [14,99]. When BAO data and/or the
SNIa from the Pantheon compilation are also incorporated
in the analyses together with the CCH, the tension between
the local measurement and the one inferred from the
reconstruction arises again, but only at a small ∼2σ C.L.
[96–98].

5. Redshift-space distortions

Measurements of the peculiar velocities of galaxies can
be obtained from observations of their anisotropic clus-
tering in redshift space. They allow galaxy redshift
surveys to obtain constraints on the product of the

growth rate of structure, fðzÞ ¼ d ln δmðaÞ
d ln a , and the rms

of mass fluctuations at scales of 8h−1 Mpc, σ8ðzÞ. Much
of the statistical signal comes, though, from scales where
nonlinear effects and galaxy bias are significant, and they
must be accurately modeled. The modeling techniques
have been improved in the last few years, making data on

7http://www.6dfgs.net/.
8https://www.sdss.org/.
9http://wigglez.swin.edu.au/site/.
10https://www.darkenergysurvey.org/es/.
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RSD to be a reliable tool to constrain cosmological
models. These are the measurements that we include in
our RSD dataset:
(1) The data point at z ¼ 0.03 obtained upon combining

the density and velocity fields measured by the
2MASS Tully-Fisher (2MTF) and 6dFGS peculiar
velocity surveys [100].

(2) The point reported by SDSS DR7 at z ¼ 0.1 [101].
(3) The two data points provided by the Galaxy and

Mass Assembly survey (GAMA) at z ¼ 0.18 [102]
and z ¼ 0.38 [103].

(4) The four points at z ¼ 0.22, 0.41, 0.60, 0.78
measured by WiggleZ [104].

(5) The RSD measurements by BOSS from the power
spectrum and bispectrum of the DR12 galaxies
contained in the LOWZ (z ¼ 0.32) and CMASS
(0.57) samples [77].

(6) The two points at z ¼ 0.60, 0.86 reported by the
VIMOS Public Extragalactic Redshift Survey
(VIPERS) [105].

(7) The point at z ¼ 0.77 by the VIMOS VLT Deep
Survey (VVDS) [106,107].

(8) The measurement by eBOSS DR14 at z ¼ 1.19,
1.50, 1.83 [29].

(9) The Subaru FMOS galaxy redshift survey (Fast-
Sound) measurement at z ¼ 1.36 [108].

The internal correlations between the BAO and RSD data
from Refs. [77,29] have been duly taken into account
through the corresponding covariance matrices provided in
these two references.

6. Prior on H0

In some of our dataset combinations (cf. Sec. IV B), we
include the prior on the Hubble parameter

H0;SH0ES ¼ ð74.03� 1.42Þ km=s=Mpc; ð8Þ

reported by the SH0ES team in Ref. [14]. It is obtained
from the cosmic distance ladder and uses an improved
calibration of the Cepheid period-luminosity relation, based
on distances obtained from detached eclipsing binaries
located in the Large Magellanic Cloud, masers in the
galaxy NGC 4258, and Milky Way parallaxes. This value
of the Hubble parameter is in 4.4σ tension11 with the
TTTEEEþ lowEþ lensing best-fit ΛCDM model of
Planck 2018 [8], H0 ¼ 67.36� 0.54 km=s=Mpc.
It has been recently argued in Ref. [109] (and later on

also in Refs. [110,111]) that in cosmological studies it is
better to use the SH0ES constraint on the absolute
magnitude of the SNIa rather than the direct prior on H0

when combined with low-redshift SNIa data. This is to
avoid double-counting issues. We do not have this problem,
though, since we do not combine the Pantheon compilation
with the prior from SH0ES in any of our main analyses
(cf. Sec. IV B).

7. Strong-lensing time delay distances

In combination with the prior on H0 from SH0ES, we
also use the angular diameter distances reported by the
H0LICOW Collaboration.12 They analyze six gravitation-
ally lensed quasars of variable luminosity. After measuring
the time delay between the deflected light rays and model-
ing the lenses, they are able to measure the so-called time-
delay distances DΔt (cf. Ref. [28] and references therein).
We use their reported six time-delay distances (one for
each lensed system), and one distance to the deflector
B1608þ 656, which according to the authors of Ref. [28] is
uncorrelated with the corresponding DΔt. The relevant
information for building the likelihood can be found in
Tables 1 and 2 of Ref. [28] and their captions. Assuming the
concordance model, these distances lead to a value of
H0 ¼ ð73.3þ1.7

−1.8Þ km=s=Mpc, which is in 3.2σ tension with
the one obtained from the TTTEEEþ lowEþ lensing
analysis by Planck [8].

B. Combined datasets

We proceed now to describe the dataset combinations
under which we have obtained the main results of this
work. They are discussed in detail in Sec. V. We set con-
straints using the following combinations: (i) TTTEEEþ
lowE CMB data from Planck 2018 [8], in order to see the
constraining power of the CMB when used alone, and also
to check whether these data lead to a higher value of H0

than in the ΛCDM. For simplicity, we will refer to this
dataset as P18 throughout the paper. (ii) P18þ BSC, with
BSC denoting the background dataset BAOþ SNIaþ
CCH. (iii) We add on top of the latter the linear structure
formation information contained in the RSD data, P18þ
BSCþ RSD. (iv) We study the impact of the CMB lensing
by also adding the corresponding likelihood, P18lensþ
BSCþ RSD. (v) Finally, we analyze the impact of the prior
on H0 from SH0ES [14] and the H0LICOW angular
diameter distances [28] by using the datasets P18þ
SH0ESþ H0LICOW, P18lensþ SH0ESþ H0LICOW,
and P18þ BSCþ SH0ESþ H0LICOW. The distance lad-
der and strong-lensing time delay measurements of the
Hubble constant are completely independent (see, e.g., the
reviews in Refs. [112,113]). When combined, they lead to

H0;comb ¼ ð73.74� 1.10Þ km=s=Mpc; ð9Þ
in 5.2σ tension with the best-fit ΛCDM value reported by
Planck 2018 [8]. Hence, it is interesting to check what is the

11The tension (in terms of the number of σ) between two
quantities A� σA and B� σB is estimated in this work by using
the formula jA − Bj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2A þ σ2B

p
, which strictly speaking is only

valid if the two values are normally distributed and independent. 12http://shsuyu.github.io/H0LiCOW/site/.
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response of the CDE model under these concrete datasets,
and to compare the results with those obtained using only
the CMB likelihood.

V. RESULTS

Our main results are presented in Tables I–II and Figs. 3
and 4. When we only employ the CMB temperature and
polarization data from Planck 2018 [8] (i.e., the P18
dataset) to constrain the CDE model, the fitting values
obtained for α and β are compatible at a 1σ C.L. with 0—
i.e., with a cosmological constant and no interaction in the
dark sector (cf. the first column in Table I). The value ofH0

remains low, roughly 4.1σ below the cosmic distance
ladder measurement of Ref. [14]. Similarly, when we
combine Planck with BSC background data or with BSCþ
RSD, we get values of H0 which are 3.8σ and 3.7σ away
from the SH0ES value, respectively.
As we have explained in Sec. II, there is a degeneracy

between the strength of the fifth force, i.e., the parameter β,
and the Hubble parameter. CDE is in principle able to lower
the value of the sound horizon at the decoupling time, rs,
and the amplitude of the first peak of the DTT

l ’s. The CMB

data fix with high precision the angle θ� ¼ rs=D
ðcÞ
A ðzdecÞ,

with DðcÞ
A ðzdecÞ being the comoving angular diameter

distance to the CMB last scattering surface. This means
that in order to keep this ratio constant, H0 will tend to
grow for increasing values of the coupling strength, so that

DðcÞ
A ðzdecÞ decreases and compensates in this way the

lowering of rs, while keeping the height of the first peak
compatible with data. This positive correlation between H0

and β can be appreciated in the leftmost contour plot of
Fig. 3. The latter shows 1σ and 2σ posterior probabilities
for a selection of cosmological parameters. As discussed,
we confirm from the first plot a mild degeneracy between
H0 and β. The strength of the fifth force does not seem to be
very degenerate with σ8, nor with the potential parameter α.
The impact of adding background data on top of P18 can

be grasped by looking at the one-dimensional posterior
distributions of Fig. 3 (in blue), and also at the numbers
of the second column of Table I. Using the P18þ BSC
combined dataset, we find that β and α are now ∼2.5σ and
∼3.1σ away from 0, respectively. The values of H0 and σ8,
are, however, compatible at 1σ with the ones obtained
using only the P18 dataset. They are also fully compatible
with those obtained with the ΛCDM under the same
dataset, which read H0 ¼ ð68.29� 0.37Þ km=s=Mpc,
σ8 ¼ 0.812þ0.006

−0.008 . The peaks in β and α may indicate a
mild preference of low-redshift data, when combined
with the CMB, for a non-null interaction in the dark sector
and a running quintessence potential. As noted already in
Ref. [27], we remark that this preference does not seem to
correspond to a large improvement in the minimum value
of χ2 with respect to the ΛCDM: under the P18þ BSC

dataset, χ2min;CDE − χ2min;Λ is negative, but very close to 0,
which means that the CDE model is only able to improve
the description of the data in a very marginal way.
The addition of the RSD data to the P18þ BSC

combined dataset does not much change the result: there
is a very small shift in the peak of the one-dimensional
posterior distribution for α to larger values and in the one
for β to lower ones (see the yellow curves in Fig. 3). These
two facts reduce a little bit the value of σ8. The aforesaid
peaks are now ∼5σ and ∼2σ away from 0, respectively,
with a reduction of χ2min with respect to the ΛCDM of 1.56
units (cf. Table I, fourth column), i.e., pointing to a very
small preference for CDE. The value of H0 is almost
unchanged.
If we include also the CMB lensing information—i.e., if

we consider the P18lensþ BSCþ RSD combined dataset
—posterior probabilities squeeze, as expected, towards the
ΛCDM values. This can be seen in Fig. 4, and also in the
fifth column of Table I. Given the caveats explained in
Sec. IVA 1, we find it important to highlight the specific
impact of CMB lensing data with respect to the P18þ
BSCþ RSD dataset.
In order to further evaluate the level at which the

degeneracy observed in the (H0,β) plane can alleviate
the tension in the Hubble parameter between Planck and
fSH0ES;H0LICOWg data, we perform a Monte Carlo
analysis combining those data within the CDE model:
results are shown in the third column in Table I and
correspond to red contours in Fig. 3. In this case, the best fit
corresponds to a value of β ¼ 0.0294þ0.0120

−0.0076 , i.e., at 3σ from
zero coupling, a value of α ¼ 1.32� 0.18, with α > 0 at
∼7σ C.L., and H0 ¼ ð69.43þ0.72

−0.53Þ km=s=Mpc. The raise
of H0 is possible thanks to the increase of β, which in
turn needs also larger values of α. The tension with the
SH0ESþ H0LICOW measurement [Eq. (9)] is slightly
reduced from 4.8σ (when only P18 is used to constrain the
model, cf. the first column of Table I) to 3.5σ (when the
SH0ESþ H0LICOW data are also considered). This shifts
the H0 value 1.9σ higher than the best fit using the P18
dataset alone, within CDE. Combining also with back-
ground data, such as BSC, can partially break degeneracies
and leads to α ¼ 0.73þ0.11

−0.27 , with α > 0 at 3.8σ and
H0 ¼ ð68.79þ0.35

−0.40Þ km=s=Mpc at 4.3σ from the SH0ESþ
H0LICOW value [Eq. (9)], reducing the chance of CDE to
alleviate the tension, as shown in the penultimate column of
the table. Finally, the impact of adding CMB lensing is
shown in the last column, where now β ¼ 0.0197þ0.0094

−0.0084
and α ¼ 0.33þ0.19

−0.23 , with β > 0 and α > 0 at 2.2σ and 1.6σ,
respectively—i.e., shifting back towards ΛCDM. In this
caseH0 ¼ ð68.99� 0.51Þ km=s=Mpc, 3.9σ away from the
SH0ESþ H0LICOW value [Eq. (9)], and even more had
we also included BSC.
Finally, we can further quantify the relative ability of the

CDE model to describe the various datasets with respect to
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the ΛCDM cosmology using the Bayes ratio, in alternative
to the more approximate χ2 estimate we mentioned so far.
Given a dataset D, the probability of a certain model Mi to
be the best one among a given set of models fMg reads

PðMijDÞ ¼ PðMiÞEðDjMiÞ
PðDÞ ; ð10Þ

where PðMiÞ is the prior probability of the model Mi and
PðDÞ the probability of having the dataset D. Obviously,
the normalization condition

P
j∈fMg PðMjÞ ¼ 1 must be

fulfilled. The quantity EðDjMiÞ is the so-called marginal
likelihood or evidence. If the model Mi has n parameters
pMi
1 ; pMi

2 ;…; pMi
n , the evidence takes the following form:

EðDjMiÞ ¼
Z

LðDjp⃗Mi ;MiÞπðp⃗MiÞdnpMi ; ð11Þ

with LðDjp⃗Mi ;MiÞ being the likelihood and πðp⃗MiÞ the
prior of the parameters entering the model Mi. The
evidence is larger for those models that have more over-
lapping volume between the likelihood and the prior
distributions, but it penalizes the use of additional param-
eters having a non-null impact on the likelihood. Hence, the
evidence constitutes a good way of quantifying the per-
formance of the model by implementing in practice the
Occam razor principle. If we compare the CDE and ΛCDM
models by assuming equal prior probability for both of
them—i.e., PðCDEÞ ¼ PðΛCDMÞ—then we find that the
ratio of their associated probabilities is directly given by the
ratio of their corresponding evidences, i.e.,

PðCDEjDÞ
PðΛCDMjDÞ ¼

EðDjCDEÞ
EðDjΛCDMÞ≡ BCDE;Λ: ð12Þ

This is known as the Bayes ratio and is the quantity we are
interested in. For more details, we refer the reader to
Refs. [17,114,115]. Notice that the computation of Eq. (12)
is not an easy task in general, since we usually work with
models with a high number of (mostly nuisance) param-
eters, so the integrals under consideration become quite
involved. We have computed the evidence numerically
using the Markov chains obtained from the Monte Carlo
analyses and with the aid of the numerical code MCEvidence

[68], which is publicly available (cf. Sec. III). We report the
values obtained for the natural logarithm of the Bayes ratio
[Eq. (12)] in the last row of Table I. For all the datasets
under study, we find values of lnðBCDE;ΛÞ < −5, which
point to a preference of the ΛCDM over the CDE model
according to Jeffreys’s scale [17,114,115]. Although the
CDE model we are studying here is able to reduce slightly
the value of χ2min with respect to the ΛCDM, it has two
additional parameters, namely α and β. Moreover, the
initial value of the scalar field, ϕini, is also left free in

the Monte Carlo analysis; cf. Appendix A for details.13 It
turns out that the decrease in χ2min is insufficient to
compensate the penalization introduced by the use of these
extra parameters. If instead of using the evidences (11) and
the Bayes ratio (12) to perform the model comparison we
make use of, e.g., the Akaike [116], Bayesian [117] or
Deviance [118] information criteria, we reach similar
conclusions.14 We want to note, though, that all these
information criteria are approximations of the exact
Bayesian approach. Although they allow us to skip the
demanding computation of the evidence in Eq. (11), they
are only reliable when the posterior distribution is close to a
multivariate Gaussian (which is not the case under study),
and the Akaike and Bayesian criteria do not take into
account the impact of priors or the existing correlations
between the parameters.
Similar results and conclusions are reached using an

exponential potential for the scalar field, instead of Eq. (6).
They are presented and discussed in Appendix C.
Finally, our results are compatible with the ones in

Ref. [119]: the inclusion of background and CMB lensing
shifts constraints towards ΛCDM; the model is, however,
different, as ours starts from modifying the Lagrangian,
which is not available in Ref. [119]. Furthermore, the
source function is also different, and while the DE EOS
parameter w has to be fixed to a very specific value in
Ref. [119] in order to match stability conditions specific to
that scenario, in our case it varies—the extra parameters
lead then to a more negative Bayes ratio, preferringΛCDM,
more than claimed in Ref. [119].

VI. CONCLUSIONS

Cosmological observations help to test the dark sector,
and in particular interactions between dark matter particles,
mediated by a dark energy scalar field, as in CDE
cosmologies. Up to a conformal transformation, this is
another way of testing gravity at large scales. In this paper,
we carried out this task in one of the simplest and most
studied models—namely, a dark energy–dark matter con-
formal coupling with a Peebles-Ratra potential. CDE might
probe helpful to explain the well-known tension between

13In the computation of the evidence [Eq. (11)] for the
CDE model, we have employed the following flat priors for
the extra parameters: 0< β < 0.1, 0< α< 2, and 0< κϕini < 50.
Slightly broader or tighter priors can be considered, but
lnðBCDE;ΛÞ only changes logarithmically, so our conclusions
are not very sensitive to them.

14For instance, the Akaike criterion [116] is given by
AIC ¼ χ2min þ 2n, where n is the number of parameters in the
model (the degree of correlation between them is not taken into
account). Considering that CDE with PR potential has an
effective number of parameters between 2 and 3, we find 2.5 <
AICCDE − AICΛ < 6 for the scenarios explored in Table I, which
leads to a positive preference for ΛCDM, again using Jeffreys’s
scale [17,114,115].
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local and cosmological values of H0. Any detection of a
varying dark energy potential or interaction would clearly
constitute a major result, and it is therefore important to
monitor the constraints that newer data impose. This is
particularly true in view of earlier results that detected a
nonzero value of the coupling β [26,27].
We confirm the existence of a peak in the marginalized

posterior distribution for β and α, more or less evident
depending on the dataset combination. While for P18þ
SH0ESþ H0LICOW β > 0 at 3σ and α > 0 at nearly 7σ,
the inclusion of background data reduces the evidence to
β > 0 at 2.3σ and α > 0 at nearly 3.8σ. The inclusion of
CMB lensing shifts both values to be compatible with
ΛCDM within 2σ. We find it important to stress that
specifically CMB lensing prefers ΛCDM, and we recall in
Sec. IVA 1 the caveats that would deserve further inves-
tigation in order to make this result robust also for models
that depart from ΛCDM as much as CDE. In all cases, we
find that, overall, the peak does not correspond to a better
Bayes ratio, and ΛCDM remains the favored model when
employing Bayesian model comparison, given the extra
parameters introduced within the model. With regard toH0,
we find that under the P18+SH0ES+H0LICOW combined
dataset, the simple coupled model with constant coupling
investigated in this work leads to a value in 3.5σ tension
with Eq. (9), or in 4.3σ tension when including further
background data. The values of σ8 are also similar to those
found in the ΛCDM (i.e., σ8 ∼ 0.80–0.82), even when
RSD data are considered together with CMB and back-
ground data. In this case, we find β ¼ 0.010þ0.003

−0.009 and
β ¼ 0.015þ0.007

−0.008 , with and without CMB lensing, respec-
tively. For the values of the coupling strength preferred by
the data, we find the typical increase of the mass of the DM
particles to be mðϕiniÞ=mð0Þ − 1≲Oð1Þ%.
The question that naturally arises is then, which modi-

fication of CDE can help in alleviating the tensions? One
can immediately suppose that a varying β can go some way
toward this. Or, it could be that a model with both energy
and momentum couplings (see, e.g., Ref. [120]), which can
introduce a weaker gravity, helps with the tensions. These
issues will be investigated in future publications.
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APPENDIX A: AVOIDING THE SHOOTING

IDEA takes as input parameters the current energy
densities of the various species and applies a shooting
method (see, e.g., Ref. [121]) to find the initial energy
densities that lead to the present-day values specified in the
input. This is, of course, a very useful and convenient way

of implementing the model, since very often we are
interested in computing theoretical quantities by fixing
the current energy densities to concrete values, most of the
times very close to the best-fit ΛCDM ones. This trial and
error method is unavoidable if one wants to do so.
Nevertheless, this is not the most efficient way to proceed
at the level of the Monte Carlo analysis. The avoidance of
the shooting recursive process by directly using as input
parameters the initial conditions of the energy densities
instead of their current values allows us to save precious
computational time. In our implementation of the CDE
model in CLASS [63], we have skipped the shooting
method proceeding in this way. The current energy den-
sities and other quantities of interest, e.g., H0 or σ8, are
obtained as derived parameters after solving the complete
set of Einstein-Boltzmann equations up to a ¼ 1. We
also use as an input parameter in the Monte Carlo the
initial value of the scalar field, ϕini ¼ ϕðainiÞ > 0, with
aini ¼ 10−14. On the contrary, ϕ0

ini ¼ ϕ0ðainiÞ can be
expressed in terms of other input parameters. Let us show
how. By solving Eq. (3) in the radiation-dominated epoch
(RDE), we find

ϕ0ðτÞ ¼ 150β
ΩdmðainiÞ

κaini
ς

ffiffiffiffiffiffi
ω�
r

p
þ c0

τ2
; ðA1Þ

where c0 is a dimensionless integration constant, ς≡
1 km=s=Mpc ¼ 2.1332 × 10−44 GeV (in natural units),
and ω�

r ¼ ωγð1þ 0.2271NeffÞ is the reduced density
parameter of radiation during the RDE. We consider three
massive neutrinos with equal mass and

P
νmν ¼ 0.06 eV,

so Neff ¼ 3.046. The parameter ωγ is determined by the
temperature of the CMB photons at present, which we set to

the value reported in Ref. [122], Tð0Þ
γ ¼ 2.7255 K. Notice

that the ratio ΩdmðaÞ=a appearing in Eq. (A1) is kept
constant during the RDE. To understand this, let us
consider Eq. (4). It can be rewritten as

ρ0dm þ 3Hρdm

�
1 − β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
Ωϕ;kinðaÞ

r �
¼ 0; ðA2Þ

with Ωϕ;kin being the fraction of scalar field kinetic energy
in the Universe. During the RDE, Ωϕ;kin ∼ 0. In addition,
β ≪ 1, so we find that ρdm ∼ a−3, and hence, ΩdmðaÞ=
a ¼ const ¼ ΩdmðainiÞ=aini. The first term on the rhs of
Eq. (A1) is, therefore, constant. The solution (A1) does not
depend on the form of the scalar field potential, since the
impact of the latter is completely negligible during the
RDE, and consists of a constant term plus a fast-decaying
mode, which we will call ϕ0

cons and ϕ0
dec, respectively. In

order to fulfill the BBN constraint on the total energy
density at aBBN ∼ 10−9, one needs to demand ρϕðaBBNÞ ≲
0.1ρrðaBBNÞ [123]. This leads to the following condition:
jc0j < 1053. Now, using the value of c0 that saturates the
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upper bound, we can evaluate the ratio ϕ0
decðaÞ=ϕ0

consðaÞ at
any moment of the RDE [knowing that aðτÞ ¼ 100τς

ffiffiffiffiffiffi
ω�
r

p
].

In particular, we can compute it at a moment near the end of
the RDE, e.g., at ã ¼ 10−4, and see whether the decaying
mode can still play an important role at that time. If we do
so, we obtain ϕ0

decðãÞ=ϕ0
consðãÞ ≈ 10−5=β. The values of the

coupling strength explored in our Monte Carlo analyses are
in the range 10−3 ≲ β ≲ 10−1, so we find

10−4 ≲ ϕ0
decðãÞ

ϕ0
consðãÞ

≲ 10−2: ðA3Þ

This tells us that the decaying mode will play no role in our
analysis (even when c0 takes the largest value allowed by
the BBN condition), since the observables that we use to
constrain the CDE model in this work are insensitive to ϕ0
at even lower values of the scale factor, i.e., at a < ã. This
is very positive because, in practice, this allows us to set the
initial condition of ϕ0ðainiÞ ¼ ϕ0

consðainiÞ and reduce in this
way the number of parameters that are varied in each step of
the Monte Carlo. This also helps to improve the efficiency
of our code.

APPENDIX B: RESULTS FOR THE
NESTED MODELS

Here we present and discuss the fitting results for the two
nested models of the CDE scenario that are obtained by
turning off the interaction, and also by using a constant
potential while keeping active the interaction in the dark
sector. These two models are obtained from the general
CDE scenario described in Sec. II by setting β ¼ 0 and
α ¼ 0, respectively. The former corresponds to the PR
model [23,24]. In Table II, we show the constraints
obtained for these models in the light of the P18þ BSCþ
RSD dataset, and also compare their statistical performance
with the ΛCDM and the full CDE model. In practice, they
both have one additional parameter with respect to the
ΛCDM. The PR model has a very effective attractor

solution for ϕ and ϕ0 during the radiation-dominated epoch,
which can be used to fix the initial conditions of the scalar
field and its derivative, so only α enters as an additional
parameter (see, e.g., Ref. [60]). On the other hand, the CDE
model with flat potential only has β as extra parameter,
since the equations are invariant under translations of the
scalar field, and hence ϕini can be fixed to an arbitrary
value, e.g., 0. Moreover, ϕ0

ini can be set as explained in
Appendix A. Table II shows that in the context of the PR
model, it is possible to obtain much lower values of σ8,
loosening in this way the σ8 tension. H0, though, is below
the value obtained with theΛCDM and the other two nested
models. These results are fully aligned with those from
Ref. [62], but now we obtain lesser levels of evidence for
the PR model, basically due to the use of the CMB high
multipole polarization data, which were not employed in
that reference. The reduction in the value of χ2min with
respect to the ΛCDM is ∼2 units, but lnðBPR;ΛÞ < −3, so
there is still more evidence for the concordance model
when compared with the PR. One thing that we should
explain is why the value of χ2min obtained with the PRmodel
is lower than in the general CDE model. We would expect
this not to happen, since the latter is an extension of the
former, with two extra free parameters. The reason is the
following: In our Monte Carlo analysis for the CDE model
we cannot explore the region of parameter space with a
pure PR behavior. In order for this to happen, we should
produce values of β in our chains much lower than the ones
we actually produce (which are in all cases greater than
∼10−3 due to the flat prior on β > 0 and its typical
variance). These values of β always give rise to non-
completely negligible effects in the MDE, and hence there
is always a departure from the pure PR model. Thus, it is
not strange that we find points in the parameter space of the
PRmodel which lead to lower values of χ2 than those found
in our analysis of the CDE.
The values of the parameters obtained for the CDE

model with α ¼ 0 remain very close to the ΛCDM ones

TABLE II. Constraints for the ΛCDM, PR, CDE with flat potential and general CDE models obtained using the
P18þ BSCþ RSD dataset. See the comments in Appendix B.

Parameter ΛCDM Peebles-Ratra CDE with α ¼ 0 CDE

Ωð0Þ
dmh

2 0.1188� 0.0008 0.1180þ0.0010
−0.0009 0.1187þ0.0006

−0.0008 0.1187� 0.0008

Ωð0Þ
b h2 0.02252� 0.00012 0.02257� 0.00014 0.02253� 0.00011 0.02253þ0.00010

−0.00012
τ 0.0508þ0.0048

−0.0072 0.0532þ0.0063
−0.0079 0.0496� 0.0047 0.0501� 0.0052

H0 [km/s/Mpc] 68.50� 0.34 67.68þ0.61
−0.52 68.55þ0.38

−0.31 68.64þ0.30
−0.38

ns 0.9696� 0.0034 0.9719� 0.0038 0.9700þ0.0032
−0.0037 0.9701þ0.0029

−0.0033
σ8 0.8033� 0.0057 0.7880þ0.0110

−0.0097 0.8022� 0.0054 0.8048� 0.0052
α � � � 0.096þ0.038

−0.071 � � � 0.67þ0.11
−0.16

β � � � � � � 0.0040þ0.0012
−0.0032 0.0151þ0.0073

−0.0083
χ2min;i − χ2min;Λ � � � −1.74 −1.02 −1.56
lnBi;Λ � � � −1.67 −5.14 −8.33
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(cf. the third column of Table II). The model sticks to the
ΛCDM because in this case there is no varying potential
able to compensate the effects generated by the non-null
coupling, so β is forced to remain small. In terms of
Occam’s razor and the corresponding Bayes ratio, there is a
preference for the ΛCDM. The central value of β is almost
4 times smaller than in the general CDE model. Something
similar happens in the PR model for α, which is now ∼7
times smaller than in the general CDE scenario. Due to the
fact that α and β can compensate effects from each other, in
the general CDE model these two parameters can be quite
larger, as it is seen in the last column of Table II.

APPENDIX C: CONSTRAINTS ON CDE WITH
EXPONENTIAL POTENTIAL

In this brief appendix, we complement the results
provided in the main body of the paper, which have been
obtained using the power-law potential [Eq. (6)]. In
Table III, we provide constraints on CDE with the expo-
nential potential

VðϕÞ ¼ V0e−λκϕ: ðC1Þ

The constant λ > 0 controls its steepness. As mentioned in
Sec. II, the quintessence potential only rules the scalar field
dynamics in the late-time Universe, after the ϕMDE epoch,
when the effects coming from the interaction in the dark
sector are already subdominant. Therefore, we should not
expect a change in the form of the potential to affect
severely the constraints on the coupling strength β, and this
is actually what we find. By comparing the results provided

in Tables I and III obtained under the same datasets, we
notice that both the central values and the uncertainties for
β are almost identical. They are also similar to the values
reported in Table II of Ref. [33], which were obtained using
the CMB likelihoods from Planck 2015, older SNIa, BAO,
and CCH data, and also older distance ladder priors on the
Hubble parameter. Our constraints are a little bit tighter
due to the updated (richer) datasets employed here. Also,
the values of λ are quite similar. We note, though, that the
central values of H0 are mildly (∼1σ) lower than those
obtained with the Peebles-Ratra potential. The values of
ln BCDE;Λ are higher (lower in absolute value), since in this
model the goodness of fit is kept at the same level as in the
CDE model with PR potential, and ϕini plays no role and
can be fixed, reducing thereby the complexity of the model.
But they are still below −5. The results obtained with
Eq. (C1) are hence fully consistent with those derived
with Eq. (6).
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[11] J. Solà Peracaula, J. Phys. Conf. Ser. 453, 012015 (2013).

[12] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559
(2003).

[13] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[14] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D.

Scolnic, Astrophys. J. 876, 85 (2019).
[15] E. Macaulay, I. K. Wehus, and H. K. Eriksen, Phys. Rev.

Lett. 111, 161301 (2013).
[16] H. Hildebrandt et al., Astron. Astrophys. 633, A69

(2020).
[17] L. Amendola and S. Tsujikawa, Dark Energy: Theory and

Observations (Cambridge University Press, Cambridge,
England, 2015).

[18] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep.
568, 1 (2015).

[19] C. Wetterich, Astron. Astrophys. 301, 321 (1995).
[20] L. Amendola, Phys. Rev. D 62, 043511 (2000).
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[88] M. Moresco, R. Jiménez, L. Verde, L. Pozzetti, A. Cimatti,
and A. Citro, Astrophys. J. 868, 84 (2018).
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