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Tabletop tests of quantum gravity (QG) have long been thought to be practically impossible. How-
ever, remarkably, because of rapid progress in quantum information science (QIS), such tests may soon
be achievable. Here we uncover an exciting new theoretical link between QG and QIS that also leads
to a radical new way of testing QG with QIS experiments. Specifically, we find that only a quantum,
not classical, theory of gravity can create non-Gaussianity, a QIS resource that is necessary for universal
quantum computation, in the quantum field state of matter. This allows tests based on QIS in which non-
Gaussianity in matter is used as a signature of QG. In comparison with previous studies testing QG with
QIS where entanglement is used to witness QG when all other quantum interactions are excluded, our
non-Gaussianity witness cannot be created by direct classical gravity interactions, facilitating tests that are
not constrained by the existence of such processes. Our new signature of QG also enables tests that are
based on just a single quantum system rather than a multipartite quantum system, simplifying previously
considered experimental setups. We describe a tabletop test of QG that uses our non-Gaussianity signa-
ture and that is based on just a single quantum system, a Bose-Einstein condensate, in a single location.
In contrast to proposals based on optomechanical setups, Bose-Einstein condensates have already been
manipulated into massive nonclassical states, aiding the prospect of testing QG soon.

DOI: 10.1103/PRXQuantum.2.010325

I. INTRODUCTION

Shortly after Einstein formulated general relativity
(GR), he wondered how quantum theory (QT) would mod-
ify it [1]. Yet, more than 100 years later, there is still no
consensus on how these two fundamental theories should
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be unified [2–6]. The conventional approach is to apply
the principles of QT to gravity [7], resulting in a quan-
tum gravity (QG) theory, such as string theory [8–11] or
loop QG [12–14]. However, since it is not as straightfor-
ward to apply QT to gravity as compared with the other
fundamental forces [15,16], an alternative class of unify-
ing theories has been developed, classical gravity (CG)
theories, such as semiclassical gravity [15,17–19], where
matter is quantized but gravity remains fundamentally
classical [16].

The hope has been that theoretical study alone would
allow us to discover how GR and QT are unified in
nature. However, the fact that there are several proposals
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illustrates that this is unlikely to happen and that exper-
imental intervention is required [16]. Until recently, the
common view was that there is little hope of laboratory
tests of QG since we need to probe GR near a small length
scale, the Planck length, where QT effects of spacetime
become relevant [20], but for which we would likely need
to build a Milky Way–sized particle accelerator [20,21].
However, there is another important scale, the Planck mass
scale, where gravitational effects of massive quantum sys-
tems become relevant, allowing us, in particular, to distin-
guish QG from CG [22]. This mass scale should be within
reach soon in laboratory settings due to the rapidly devel-
oping field of quantum information science (QIS) [23,24].
This has led to several proposals being developed recently
for tests of QG using techniques of QIS [23,25–33]. Of
these, a particularly promising experimental proposal is the
Bose-Marletto-Vedral (BMV) experiment [27–30], where,
under the condition that all other quantum interactions can
be excluded, the creation of entanglement between two
microspheres, each in a superposition of two locations, is
used as a witness of QG. Because of the strength of this
effect, and the hope of mesoscopic superposition states
in optomechanical systems [34,35], it is thought that this
QIS-inspired experimental test of QG could be possible
soon [27–30].

An issue with an entanglement-based test of QG, how-
ever, is that classical, as well as quantum, theories of
gravity can create entanglement. For example, modes of
a quantum field can become entangled by a classically
expanding universe [36–43]. This has resulted in ques-
tions concerning the reliability of using entanglement as
a witness of QG [44–47]. In particular, in the BMV pro-
posal, entanglement as a witness of QG is based on the
assumption that CG acts as a local operations and com-
munication channel (LOCC) [27,28] or, more generally, as
a local classical-information mediator [29,30,47], which
can never create entanglement. However, it is in theory
possible that CG could cause two spatially separated quan-
tum matter systems to directly couple with one another,
invalidating the LOCC and classical-information media-
tor arguments and leading to entanglement generation in
experiments [27–30]. For instance, such direct CG inter-
actions could be due to nonlocal effects associated with
CG [27–30], or quasilocal CG effects, such as tunneling
between two quantum matter systems, which we consider
in Sec. IV B.

Here we take a radically different approach to testing
QG with QIS. Rather than concentrating on how QG can
act as a quantum-information mediator in comparison with
a classical communication channel [27,28] or a classical-
information mediator [29,30], we consider how just the
simple process of adding a “hat” to classical gravita-
tional degrees of freedom (i.e., turning them into quantum
operators) results in a theory that, in contrast to its classical
counterpart, can create non-Gaussianity in the quantum
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FIG. 1. (a) Basic Feynman diagram for matter interacting with
QG where matter emits a graviton, which is associated with
ĥμν . For simplicity, we represent matter by a real scalar field
such that â† and â are the creation and annihilation operators
of matter. The interaction is then associated with three quan-
tum operators and, therefore, can induce non-Gaussianity. (b)
We can illustrate the analogous interaction between matter and
classical gravity with a similar diagram except that now the
gravitational leg represents a classical gravitational wave hμν
rather than a graviton. Since this CG interaction is associated
with just two quantum operators â† and â, it cannot, in contrast
to the QG interaction, induce non-Gaussianity. Although these
diagrams represent weak-field, perturbative gravitational interac-
tions, the fact that CG cannot create non-Gaussianity also applies
to the strong-field, nonperturbative regime of gravity, as shown
in Sec. II.

field of matter. Non-Gaussianity is a key resource in
continuous-variable QIS (CVQIS), where quantum infor-
mation is encoded in degrees of freedom with a continuous
spectrum. For example, it is necessary in order to perform
universal quantum computation [48,49], and the reason
that, in the exclusion of all other quantum interactions,
only a quantum rather than a classical theory of gravity can
create non-Gaussianity in the quantum field state of mat-
ter is for the same reason that non-Guassianity is required
for universal quantum computation: non-Gaussianity is
created by processes that are nonquadratic in quantum
operators [50–53], and only QG, compared with CG, can
contain such processes. Although our argument applies to
both the weak-field regime and the strong-field regime of
gravity, it is perhaps most intuitively understood from a
perturbative weak-field perspective. In this case, the sim-
plest interaction between matter and gravity in QG is
where matter creates a graviton. As illustrated in Fig. 1,
the corresponding Feynman diagram contains three quan-
tum operators and, therefore, induces non-Gaussianity. On
the other hand, in CG, we would remove the “hat” of
the gravitational degrees of freedom, leaving a quadratic
Hamiltonian, which preserves Gaussianity [54].

In comparison to entanglement, since our
non-Gaussianity indicator is not based on LOCC or
classical-information mediator arguments, this indicator of
QG is not reliant on the nonexistence of direct CG inter-
actions, which we illustrate in Sec. IV B. Therefore, as
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long as we are working in an experimental situation where
nongravitational quantum interactions can be ignored (just
as in tests based on entanglement [27–30]) and where
matter can be well represented by a quantum field, non-
Gaussianity can be used as a signature of QG in experi-
mental tests without the need for the additional assumption
of there being no direct CG interactions [27–30]. A further
advantage of a non-Gaussianity signature is that a single
system can be non-Gaussian, allowing tests of QG that are
based on just a single system rather than a multipartite
system. We illustrate this with a tabletop test of QG that
uses a single Bose-Einstein condensate (BEC) in a single
location.

In addition to being just a single quantum system with-
out any spatial superposition, our experimental proposal
also uses a type of quantum technology (BECs) for which
certain massive quantum states have already been created
[55–59]. This is in contrast to proposals based on optome-
chanical setups, where massive nonclassical states have yet
to be generated. BECs also offer a contrasting method to
distinguish the QG signal from electromagnetic noise. As
with previous proposals, such as the BMV proposal, it is
vital that we can attribute the sought QG effect from the
analogous effect that is generated through electromagnetic
interactions. For the BMV proposal this effect is entan-
glement, which electromagnetic as well as gravitational
interactions will naturally generate, whereas in the test pro-
posed here this is non-Gaussianity, which electromagnetic
interactions would also naturally generate since they are
fundamentally quantum interactions.

To isolate the gravitational non-Gaussian signal from an
electromagnetic one, we use the fact that only the elec-
tromagnetic interaction can be screened and, in particular,
that BECs generically have Feshbach resonances. Electro-
magnetism can be screened since it has both positive and
negative charges, whereas gravity is universal, coupling
to all forms of energy in the same way. In BECs, this is
immediately apparent since the atoms have zero overall
electromagnetic charge, resulting in them naturally inter-
acting only through van der Waals interactions and, in
most cases, magnetic dipole-dipole interactions (MDDIs)
at very low temperatures. This allows the use of an extraor-
dinary property of BEC and cold atom experiments to
distinguish the electromagnetic and gravitational effects.
This property is the presence of optical and magnetic Fes-
hbach resonances, which are used in BEC experiments
to control the strength of the electromagnetic interactions
between the atoms by the application of an external mag-
netic or optical field. This has become a vital tool of BEC
experiments that has facilitated numerous explorations of
fundamental physics [60,61].

By applying a magnetic or optical field to the BEC, we
can in principle set the overall strength of the electromag-
netic interactions to zero without affecting the strength of
the gravitational interactions [60,61]. Then a non-Gaussian

signal can be attributed to only gravitational interactions.
This method contrasts with that used in optomechani-
cal proposals, where the distance between micro-objects
is increased to a level where gravitational interactions
are greater than the electromagnetic van der Waals inter-
actions. In that case, both the electromagnetic interac-
tions and the gravitational interactions are suppressed
by increasing the distance, whereas applying an external
magnetic or optical field to a BEC affects only the former.

II. NON-GAUSSIANITY AS A SIGNATURE OF
QUANTUM GRAVITY

Consider a free, real scalar quantum field. The Hamilto-
nian of this system can be written as a collection of quan-
tum simple harmonic oscillators: Ĥ = ∑

k �ωk[â†
k âk +

1/2], where â†
k and âk are creation and annihilation opera-

tors of mode k, ωk is the angular frequency, and we assume
a discrete mode spectrum for simplicity [62]. For each
oscillator we can associate positionlike and momentum-
like operators, x̂k := âk + â†

k and p̂k := i(â†
k − â), known

as quadrature operators, which are observables, with a
continuous eigenspectrum: x̂k|x〉k = xk|x〉k and p̂k|p〉k =
pk|p〉k. The quadrature eigenvalues, xk and pk, can be
used as continuous variables to describe the entire quan-
tum field system, and we can view this as a continuous
phase space on which we encode our quantum information
[54]. This approach to encoding quantum information can
also be straightforwardly extended to general bosonic and
fermionic quantum fields [63–66].

Rather than describing this system using a density
operator ρ̂, an equivalent representation is provided by
the Wigner function [67]. This is a quasi-probability-
distribution defined over phase space, analogous to prob-
ability distributions used in classical statistical mechanics.
For example, for a single mode, the Wigner function can
be obtained through [68]

Wρ̂ (x, p) = 1
2π

∫

dy e−iyp〈x + y|ρ̂|x − y〉. (1)

Wρ̂ (x, p) is a quasi-probability-distribution since, although
it takes on real values and is normalized to unity, it can
also take on negative values. The states for which the
Wigner function takes on negative values, therefore, have
no classical counterpart, and are considered to be highly
nonclassical states [69].

The only states that have negative Wigner functions are
non-Gaussian states, such as Fock states or Schrödinger
cat states [70]. Gaussian states, on the other hand, such as
coherent states, squeezed states, and thermal states, have
only positive Wigner functions [54,71]. Here a Gaussian
state of a quantum field is defined as one for which its
Wigner function is a Gaussian distribution [54]. Such a
state is fully characterized by the first and second moments
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of the quadrature operators or, equivalently, by the one-
point and two-point correlation functions of the quantum
field [50,52,54].

The classification of Gaussian and non-Gaussian states
is very important in CVQIS. For example, universal quan-
tum computation with pure states is possible only with
non-Gaussian states or operations [48,49], while Gaussian
states and operations can be efficiently simulated on a clas-
sical computer [72–75]. Furthermore, non-Gaussian states
or operations are required for violation of Bell inequal-
ities [76–83]. These and additional examples, such as
implementing entanglement distillation [75], have led to
non-Gaussianity being classified as a CVQIS resource for
which measures and witnesses have been derived [84–93],
just as for entanglement.

Given the significance of Gaussian and non-Gaussian
states in CVQIS, it is important to distinguish the type
of Hamiltonians that can create such states: a Hamiltonian
that is at most quadratic in quadratures, or equivalently in
annihilation and creation operators, can only ever map a
Gaussian state to another Gaussian state [65,94–98]. That
is, the Hamiltonian must be of the form

Ĥ =
∑

k

λk(t)x̂k +
∑

k,l

x̂T
k μkl(t)x̂l, (2)

where x̂T
k := (x̂k, p̂k), and λk(t) and μkl(t) are 2 × 1 and

2 × 2 real-valued matrices of arbitrary functions of time.
Although we assume a discrete, finite mode spectrum here
for simplicity, the extension to infinite and continuous
modes is straightforward [50–53].

The Hamiltonian (2) preserves Gaussianity since it
is associated with a general Bogoliubov transformation,
which is a linear transformation of the quadratures (and,
therefore, phase space) that preserves their commutation
relations [54]. Any other Hamiltonian (i.e., one that is not
linear or quadratic in quantum operators) will in general
create non-Gaussianity [48,49,54].

A free quantum field has a Hamiltonian that is of the
form of Eq. (2) since it contains only the kinetic and mass
terms, and so is necessarily quadratic in the field. For
example, the free Hamiltonian for a real scalar quantum
field φ̂ is [62]

Ĥ = 1
2

∫

d3r
[
(∂tφ̂)

2 + (∇φ̂)2 + m2φ̂2
]

, (3)

where m is the mass of the field. Expanding the field
in annihilation and creation operators φ̂ = ∑

k[uk(t)âk +
v(t)â†

k] results in a Hamiltonian of the form of Eq. (2) [62].
Now consider interacting this quantum field with a clas-

sical entity G, which could depend on space and time.
If we take the classical interaction to not induce quan-
tum self-interactions of φ̂, then G and φ̂ can interact only
through Hamiltonian terms that are linear or quadratic in

φ̂ [99]. For example, the classical interaction could occur
through a Hamiltonian term such as (∇φ̂)2f [G], where f
is a real functional of G. Then expanding φ̂ in annihilation
and creation operators, we would still find a Hamiltonian
that is of the form of Eq. (2), with G just absorbed into the
time-dependent coupling constants. That is, the Hamilto-
nian of the classical interaction preserves Gaussianity, and
this would apply to a classical interaction with any type of
quantum field, not just a real scalar field φ̂.

In contrast, if we quantize G such that we interact φ̂ (or
any other type of quantum field) with a quantum entity,
then it is possible for the resulting Hamiltonian to be of
higher order than quadratic in quantum operators, and thus
induce non-Gaussianity. Therefore, any sign of the creation
of non-Gaussianity in the state of a quantum field would be
evidence of a quantum interaction.

Because of the universal coupling of gravity, we can
apply this argument to determine whether gravity obeys a
quantum or classical theory. In this case, if we are working
in a situation where all other quantum interactions can be
ignored, the matter Hamiltonian contains only the kinetic
and mass terms of the matter quantum field, to which
gravity couples. If there were terms that were neither lin-
ear nor quadratic in the quantum matter field, and which
thus induce quantum self-interactions of matter, then these
would have to be associated with a nongravitational force
since these terms must also be present in flat space. There-
fore, as we are assuming a situation where all interactions
other than gravity can be ignored, these terms are not
present.

For example, if, for simplicity, we used a real scalar field
φ̂ to describe matter and ignored a possible quadratic Ricci
scalar coupling term [100], then the Hamiltonian of CG
would be given by Eq. (3) but with

√
g multiplying each

term, where g is the determinant of the spatial metric tensor
[14,101–103]. This Hamiltonian would preserve Gaussian-
ity. In contrast, in QG there must be an operator associated
with the gravitational field, which would result in Gaus-
sianity no longer being preserved. For instance, in loop
QG, g would be quantized in this example [14,101–103],
and in linearized QG, we would perturb the gravitational
metric around a classical spacetime background metric and
quantize only the perturbation [104–107]. Similarly, in the
nonrelativistic Newtonian limit, only the temporal com-
ponent of the perturbed metric would be used, which is
quantized and associated with the Newtonian gravitational
potential � [108].

In summary, creation of non-Gaussianity would provide
evidence for a quantum theory of gravity. Since all known
fundamental interactions with matter, such as electromag-
netism, have interaction Hamiltonians with terms that are
quadratic in matter fields [62,102], non-Gaussianity could
also be used to evidence that these are indeed quantum
interactions [109].
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(c)

W
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FIG. 2. Illustration of the proposal for a tabletop test of QG.
(a) A single spherical BEC of 109 atoms and radius R = 200 μm
is left to self-interact gravitationally for around t = 2 s. If QG
acts, non-Gaussianity is induced in its quantum state, whereas
if CG acts, Gaussianity is preserved. Each atom is equally delo-
calized across the extent of the BEC but, since the BEC is in a
spherical harmonic trap, the density of the BEC is greatest at its
center and drops off to zero asymptomatically, as illustrated. The
BEC is initially in a Gaussian state, and its Wigner function W
is displayed in (b). Here, for simplicity, a coherent state |α〉 is
assumed, but this can also be squeezed to increase the signal-
to-noise ratio, as discussed in the main text. If QG acts, and the
interaction time were long enough, then gravity could even force
the coherent state to a Yurke-Stoler cat state (|α〉 + i| − α〉)/√2.
The Wigner function for such a non-Gaussian state is illustrated
in (c). If, however, CG acts, then the state will remain Gaussian.
In the nonrelativistic CG limit, the state will remain a coherent
state, whereas relativistic CG effects would, in principle, squeeze
the state but keep it Gaussian. In practice, the interaction time
would not be long enough for such a dramatic effect as a coher-
ent state changing to a Yurke-Stoler state, and instead smaller
deviations from a Gaussian distribution are sought (see the main
text). α = 2 is used in the plots, whereas in practice the BEC will
have an amplitude of around |α| = 104.5, the square root of the
number of atoms.

III. TESTING QUANTUM GRAVITY WITH A
SINGLE QUANTUM SYSTEM

We now consider a tabletop test of QG that uses our non-
Gaussianity witness (Fig. 2). This experiment is based on
a single BEC that is in a single location, and is an exper-
iment to which an entanglement witness of QG could not
be applied.

A. Non-Gaussianity as a signature of quantum gravity
in a Bose-Einstein condensate

A Bose gas can be described by a nonrelativistic scalar
quantum field 
̂(r), which creates an atom at position r
[61]. Assuming that we are working at low enough tem-
peratures such that the ground state is macroscopically
occupied, we ignore the thermal component of the gas and
take 
̂(r) ≈ ψ(r)â, where ψ(r) is the wave function of
a condensed atom and â is the annihilation operator for
the condensate [61]. The identical atoms are then all in the
same state, have the same wave function, and are equally
delocalized across the BEC.

These atoms will interact gravitationally with each
other, and since this is a nonrelativistic system, it is appro-
priate to take the nonrelativistic (Newtonian) limit of grav-
ity, which all gravitational theories must contain. The fully
classical interaction Hamiltonian for Newtonian gravity is

Hint = 1
2

∫

d3rρ(r)�(r), (4)

where�(r) is the classical Newtonian potential and ρ(r) is
the classical mass density. If gravity obeys quantum theory,
then we must quantize both ρ(r) and �(r), whereas if we
have CG, then we quantize only the former. Since ρ̂(r) =
m
̂†(r)
̂†(r) for a BEC, this results in the respective QG
and CG interaction Hamiltonians

ĤQG = 1
2

m
∫

d3r : 
̂†(r)
̂(r)�̂(r) :, (5)

ĤCG = m
∫

d3r
̂†(r)
̂(r)�[Ψ ](t, r), (6)

where :: refers to normal ordering, m is the mass of the
atoms, and we have made explicit that the classical poten-
tial � can be a functional of the quantum state Ψ of the
BEC, for which we have dropped a factor of 1/2 [110].
Solving the quantized version of Poisson’s equation, we
have

�̂(r) = −Gm
∫

d3r′ 
̂
†(r′)
̂(r′)
|r − r′| , (7)

where G is the gravitational constant. In contrast, depend-
ing on the CG theory chosen, � is a certain quantum aver-
age of this expression (e.g., in the CG Schrödinger-Newton
theory, which is the Newtonian limit of the semiclassical
CG theory, � = 〈�̂〉 [111–114]).

If we use 
̂(r) = ψ(r)â, the above interaction Hamilto-
nians for the BEC reduce to

ĤQG = 1
2
λQGâ†â†ââ, (8)

ĤCG = λCG[Ψ ]â†â, (9)
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where [115,116]

λQG := −Gm2
∫

d3rd3r′ |ψ(r′)|2|ψ(r)|2
∣
∣r − r′∣∣ , (10)

λCG[Ψ ](t) := Gm
∫

d3r|ψ(r)|2�[Ψ ](t, r). (11)

The QG interaction Hamiltonian (8) can also be derived
as the nonrelativistic limit of linearized QG where we
consider the four-point Feynman diagram with a single vir-
tual graviton propagator, and then effectively integrate out
gravitational degrees of freedom [108,117–121]. All QG
theories must contain the above quantum Newtonian limit
of gravity and so Eq. (8) is the Hamiltonian for general QG
self-interactions of a BEC. Likewise, all CG theories must
contain the above classical Newtonian limit of gravity for
CG self-interactions of a BEC, and so Eqs. (8) and (9) are
not dependent on a specific model of CG or QG. Simi-
lar Hamiltonians have been derived using cold atoms in
a double-well potential [122], and the QG Hamiltonian
(8) is analogous to the Kerr interaction, which induces
non-Gaussianity in quantum optics [123].

From the Hamiltonians (8) and (9), we can see that as
long as all other quantum interactions can be ignored (see
Sec. III C), only the QG Hamiltonian (8) can induce non-
Gaussianity in the quantum state of the BEC field, with
the CG Hamiltonian (9) preserving Gaussianity since it
is quadratic in quantum operators. Therefore, any sign of
non-Gaussianity being created in the BEC would be evi-
dence of QG. In contrast, entanglement cannot be used
as a witness here since this is just a single-mode system
[124,125].

B. Measurement scheme

As shown above, measuring creation of non-Gaussianity
in the BEC would provide evidence of QG. To detect
non-Gaussianity, we consider measurements of high-order
cumulants [90]. For a Gaussian distribution, all cumulants
higher than second order vanish and, therefore, a nonzero
value of such cumulants is a signature of non-Gaussianity.
Here we concentrate on the fourth-order cumulant κ4, since
κ3 is also zero for a symmetric non-Gaussian distribu-
tion. Defining a generalized quadrature as q̂(ϕ) = âe−iϕ +
â†eiϕ , we have

κ4 := 〈q̂4〉 − 4〈q̂〉〈q̂3〉 − 3〈q̂2〉2 + 12〈q̂2〉〈q̂〉2 − 6〈q̂〉4.
(12)

In an experiment, only a finite sample can be used to
estimate κ4 and we desire unbiased estimators, which are
the k statistics: 〈kn〉 = κn [126]. The noise in the estima-
tion of κ4 is then the standard deviation of k4 [127], such
that the signal-to-noise ratio (SNR) for the measurement is

given by

|κ4|/
√

var k4, (13)

where for a large number of independent measurements
M, var k4 ∝ 1/M.

To make the SNR as large as possible, we use quan-
tum metrology, where highly quantum states can improve
the estimation of parameters that are not associated with
observables [128]. This is also effectively used in the BMV
proposal, where the initial quantum states are N00N-like
states (|N0〉 + |0N 〉)/√2 [122,129–131]. However, rather
than using a N00N state, here we consider a squeezed state,
which is a Gaussian state that often provides similar per-
formance in quantum metrology to N00N states but which
is usually far less demanding to create [132]. Assuming
that QG acts [i.e., that the gravitational interaction has
the Hamiltonian of QG, Eq. (8)] and taking the limit that
χ := |λQG|/� is small and that the number of atoms N of
the BEC is large, we find that the SNR can be of order
χ tN 2

√M, where t is the interaction time [133]. Assum-
ing a weakly interacting BEC of mass M in a spherical
harmonic trap with frequency ω0, the BEC wave function
is [61]

ψ(r) = 1
π3/4R3/2 e−r2/2R2

, (14)

where R := √
�/mω0 is the effective radius of the spherical

BEC and r := |r|. With use of Eq. (10), this results in [134]

χ tN 2 ≡
√

2
π

GM 2t
�R

, (15)

which is t/� times the gravitational self-energy of the BEC.
With the replacement of R with d, and ignoring the numer-
ical factor, this expression is the same as the relative phase
generated in the BMV proposal between the two micro-
spheres that are separated by the smallest possible distance
d that, when all other distances are ignored, leads to an
entangled state [27–30]. It is demonstrated in the BMV
proposal that a value on the order of 1 for this phase is
achieved when d = 200 μm, t ≈ 2 s, and M = 10−14 kg
[27]. However, since the SNR here scales with

√M, we
can lower the total mass required by increasing the num-
ber of measurements. For example, to achieve a SNR of 5
for a 133Cs BEC, we could use R ≈ 200 μm, t ≈ 2 s, and
M = 10−15 kg with around 40 000 measurements. Such a
mass corresponds to around 4 × 109 atoms, which is only
a little larger than what has been achieved so far: in 1998
a 1H BEC was created with more than 109 atoms [135],
and in 2006 a 23Na BEC had more than 108 atoms [136].
However, the number of atoms required can be reduced by
further increasing M.
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An experimental implementation of this scheme would
be to use a spin-1 BEC where the mF = ±1 states are pre-
pared in large coherent states and then a magnetic field is
used to drive spin-mixing collisions to generate a quadra-
ture squeezed state in the mF = 0 condensate. In a spin-1
BEC, the interaction Hamiltonian is [137–139]

Ĥ = �κ

[

â2
0â†

+â†
− +

(
â†

0

)2
â+â−

]

+ �κ

(

â†
0â0 − 1

2

)(
â†

+â++â†
−â−

)

+ �q
(

â†
+â++â†

−â−
)

, (16)

where â0 is the annihilation operator of the mF = 0 mode
and â± are the annihilation operators of the mF = ±1
modes. If q is dynamically tuned with a magnetic field,
the quadratic Zeeman shift (third term) cancels collisional
shifts due to s-wave scattering of the three modes (second
term) [139,140]. Then, if we further take the mF = ±1
modes to be in large coherent states (N± 	 1) so that
â± ≈ √

N±, Eq. (16) acts as effectively

Ĥ = �Nκ
[

â2
0 +

(
â†

0

)2
]

, (17)

where N := √
N+N−, which results in a single-mode

quadrature squeezed state for the mF = 0 mode [141].
Spin-squeezing experiments have already been performed
in cold atoms and BECs [59], where normally it is the
mF = 0 mode that is taken to be the large coherent mode
and then a two-mode squeezed state is created for the
mF = ±1 modes.

After the system has evolved for a time t, the non-
Gaussianity of the BEC field would then be measured. To
achieve this, a homodyne or heterodyne scheme could be
used [142–145], where moments up to fourth order are
sought in the intensity difference, providing a direct map
for obtaining κ4. Observing a nonzero value for κ3, which
requires only the third-order moment in homodyne detec-
tion, would be sufficient for detecting non-Gaussianity, and
the third-order correlation function of atoms due to elec-
tromagnetic self-interactions has already been measured in
experiments [146]. However, κ3 is predicted to be zero if
the initial state of the BEC is a squeezed vacuum state,
in which case κ4 needs to be analyzed. For κ4, the tech-
niques used in Ref. [146] could be extended to measure the
fourth-order correlations to obtain κ4 through homodyne
detection [123]. This would require single-atom counting
in a quantum gas with high efficiency on small length
scales, and recent advances have opened up very promis-
ing approaches to single-atom counting (see Appendix B 2
for more details). Rather than performing a homodyne
or heterodyne measurement, another option would be to

determine the Wigner function of the BEC, either using full
state tomography with projective measurements (see, e.g.,
Refs. [142,147–150] for such measurements on cold atoms
and BECs) or through “direct” measurement with weak
measurements of the position quadrature and projective
measurements of the momentum quadrature [151–154]
(this has so far been achieved with photons [151,155–158]
but could be extended to atoms [151]).

C. Distinguishing quantum gravity from the
electromagnetic interaction

So far we have discussed how the desired input state can
be generated and how non-Gaussianity could be measured.
Additionally, it is imperative that we ensure that all noise
can be distinguished from the signal. An advantage in
considering a non-Gaussian signal is that we can immedi-
ately ignore all processes generating Gaussian noise since
these will not affect the non-Gaussian measurement. The
largest contributing non-Gaussian noise would be expected
to come from the electromagnetic interactions between the
atoms of the BEC. A BEC is very dilute and the atoms are
neutral overall, but there are still, in general, weak elec-
tromagnetic interactions between the atoms due to van der
Waals interactions and MDDIs. At the low temperatures
at which BECs operate, the Hamiltonian for a BEC with
electromagnetic interactions is [159–163]

Ĥ =
∫

d3r
( − �2

2m

̂†(r)∇2
̂(r)+ VT(r)
̂†(r)
̂(r)

+ 1
2

∫

d3r′
{

̂†(r)
̂†(r′)
̂(r)
̂(r′)

[
gsδ

(3)(r − r′)

+ gd
1 − 3 cos2 ϑ

|r − r′|3
]})

, (18)

where the first term is the kinetic part, VT(r) = mω2
0r2/2

is the spherical trapping potential, gs := 4π�2as/m is
the s-wave scattering coupling constant, gd := μ0μ

2/4π
parametrizes the strength of the MDDIs, and ϑ is the polar
angle of r − r′, with as the s-wave scattering length, μ the
magnetic moment of the atom, and μ0 the permeability of
free space. With use of 
̂(r) = ψ(r)â and Eq. (14), the
above Hamiltonian reduces to

Ĥ = �ωâ†â + 1
2
λsâ†â†ââ, (19)

where

�ω := �ω0 + 3
4

mω2
0R2, (20)

λs := g

2
√

2π3/2R3
≡

√
2
π

as�
2

mR3 . (21)

The MDDIs have canceled out due to the spherical symme-
try of the BEC, leaving behind only the s-wave interactions
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[160,162]. This interaction term has the same form as the
quantum gravitational interaction (8), and so we need to be
able to distinguish between the electromagnetic and gravi-
tational interactions in order to attribute non-Gaussianity
to only gravitational interactions. One way to achieve
this is to use magnetic or optical Feshbach resonances,
which are extraordinary processes particular to cold atom
and BEC experiments. Here an external magnetic or opti-
cal field is used to resonantly couple a molecular bound
state to a colliding atom pair, enabling the strength of the
electromagnetic interactions to be controlled [60,61].

Usually Feshbach resonances are used to increase the
electromagnetic interaction strength between atoms in
BECs. However, they also allow the electromagnetic inter-
action to be, in principle, switched off, (i.e., λs = 0) with-
out affecting the strength of the gravitational interaction.
This is achieved by applying a magnetic field of strength B
to the BEC, which results in the s-wave scattering length
becoming a function of B [60,61]:

as(B) = aBG
s

(
1 − �

B − B0

)
, (22)

where aBG
s is the background scattering length, B0 denotes

the resonance position, and � is the resonance width.
The s-wave interactions can then be turned off by setting
B = B0 +� [164]. For 133Cs, this would be achieved when
B = 17 G [165,166], leaving behind only the QG interac-
tions (8), which are unaffected by the applied magnetic
field. With the electromagnetic interactions in the BEC
turned off, non-Gaussianity can, in principle, be attributed
solely to QG interactions in the BEC [167].

IV. DISCUSSION

A. Role of Planck mass in the proposed experiment

We have argued that, as long as we are working in a
situation where all other nongravitational quantum inter-
actions can be excluded, the production or change in
non-Gaussianity in the state of the quantum field of matter
would be sufficient evidence of QG, and we have demon-
strated how this could be used in a test that is based on just
a single-well BEC. The size of the effect in the BEC exper-
iment appears to be similar to that observed in the BMV
proposal; see Eq. (15) and Refs. [27–30]. This illustrates
how the experiment is related to the Planck mass since,
using Eq. (15), we can write the SNR for one measurement
in this case as [22,168]

M
MP

δτ

tP
, (23)

where MP is the Planck mass, tP is the Planck time, and
δτ := √

2/πGMt/Rc2. This expression can also be derived
by dividing the BEC into two halves, considering the grav-
itational interaction of one with the other and the time

dilation δτ induced in GR in the center of each half. If we
fix this SNR of one measurement, then Eq. (23) illustrates
that as M gets closer to MP, it seems that we can probe
more minute gravitational field intensities and thus further
access its possible quantum properties.

B. Direct classical gravity interactions can create
entanglement between two quantum field systems but

not non-Gaussianity

A classical interaction can create entanglement if this
involves the respective quantum systems directly inter-
acting with each other [27–30]. For example, consider
two BECs that are in the two spatial arms of a double-
well potential. In the two-mode approximation, we can
write the full quantum field of the atoms as 
̂(r) =
ψL(r)âL + ψR(r)âR, where âL and âR destroy an atom in
the left well and an atom in the right well, respectively,
and ψL and ψR are the corresponding mode wave func-
tions [61,169]. In the case of CG, and taking the Newto-
nian approximation for simplicity, there will, in principle,
be terms of the form λLRâ†

LâR + h.c. in the Hamilto-
nian, where λLR := m

∫
d3rψ∗

L (r)ψR(r)�[Ψ ](r, t). These
are beam-splitting terms such that if λLR is nonzero due to,
for example, the mode wave functions overlapping, and
either BEC is in a nonclassical state, then the terms will
induce entanglement between the BECs. There is an elec-
tromagnetic analogue of this effect where a double-well
trapping potential, which is approximated to be classical,
causes or contributes to entanglement between the two
wells. This entangling process is often referred to as “quan-
tum tunneling” in cold atom experiments [61]. However,
since the entangling-inducing terms are quadratic, they
will not induce non-Gaussianity, illustrating that although
a direct classical interaction with matter can create entan-
glement, it cannot create non-Gaussianity in the quantum
field of matter.

Note that here we are working with “mode” entangle-
ment (i.e., entanglement between modes of a quantum
field). If instead we attempted to use a first-quantization
picture and describe the full system using a many-body
wave function, then it is possible to argue that the ini-
tial state of the full system is already entangled and that
Newtonian CG is not creating entanglement in this picture
[56–58]. This is because there is so-called particle entan-
glement before and after the effective CG beam splitter
[132,170]. For example, the initial state could be |α〉L|ξ〉R,
with |α〉 a coherent state and |ξ〉 a squeezed state, which, in
a quasi first-quantization picture, is particle entangled but
not mode entangled [132]. This occurs because in the first-
quantization picture a beam splitter does not couple the
left and right wells. However, in the relativistic CG limit
we would also have, in principle, two-mode squeezing
operations such as âLâR + â†

Lâ†
R, which can result in a two-

mode squeezed state, which is particle entangled [132].
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Therefore, in full generality and in either picture, CG
can, in principle, create entanglement. In contrast, in the
first-quantization picture, it is possible for Newtonian CG
to create non-Gaussian “particle” Wigner functions. For
example, the many-body wave function of our single-well
BEC experiment could start off Gaussian but become non-
Gaussian under CG (see Appendix A 2 a for more details).
However, in the more fundamental second-quantization
picture, the state of matter (i.e., the state of the quantum
field of matter) always remains Gaussian under CG, as
shown in Sec. II.

C. Nonquantum interactions and continuous-time
measurements

Above we defined a classical interaction as an interac-
tion with an entity G that takes on real and well-defined
values, such as the gravitational field of GR. We now
consider whether non-Gaussianity can also be used to
distinguish other, more general, nonquantum interactions
from their quantized counterparts. First we consider that G
takes on complex values. This allows the possibility that,
most generally, the interaction can give rise to a Hamilto-
nian of the form of Eq. (2) but where now the coupling
constants λk and μk are complex valued. Although this,
in general, leads to a non-Hermitian Hamiltonian, a mat-
ter state with a Gaussian Wigner function will continue
to have a Wigner function of Gaussian form [171–173],
and so non-Gaussianity can also distinguish this interaction
from a quantum interaction [174].

Another possibility is that G could be a nonquantum
but stochastic quantity. For example, a relativistic theory
of gravity coupled to matter has been proposed where
the nonquantum gravitational field is stochastic [175]. It
is found that gravity and matter interact through a Gaus-
sian completely positive channel, and so non-Gaussianity
should also rule out this nonquantum theory of gravity
[176]. More generally, interacting a stochastic entity G
with a quantum field will still result in a Gaussian state of
the quantum field remaining Gaussian if we now broaden
our definition of a Gaussian state to include states that are
a statistical mixture of pure states with Gaussian Wigner
functions (the so-called Gaussian convex hull [92,177]).
This is because a Gaussian state evolves to a state in the
Gaussian convex hull if there is a combination of Gaussian
operations and statistical randomization (i.e. stochasticity)
[93], see Appendix F for more details.

The preservation of this broader definition of Gaus-
sianity also applies if the entity G is both stochastic and
complex valued. However, in this case the norm will
not, in general, be preserved, and so we have a mixture
of unnormalized states with Wigner functions of Gaus-
sian form [171–173]. To ensure that the theory is norm
preserving, the physical state vector can be redefined as

|Ψ 〉/‖Ψ 〉|, which then allows for a convex mixture of prop-
erly normalized Gaussian states. However, this, in general,
results in a theory that is nonlinear in the density matrix,
leading to superluminal signaling [179]. Such an issue is
also found in objective-collapse theories, and to rectify it,
a new higher-order process is applied to the evolution of
the quantum system [180,181], which would here be asso-
ciated with a quantum (self) interaction of matter (i.e., a
new force): see Appendix F for more details, and in partic-
ular, Appendix F 2. For example, if we represented matter
by a real scalar field φ̂, the Hamiltonian of this new pro-
cess would involve terms that are quartic in φ̂. This new
quantum process can, in general, induce non-Gaussianity.
However, in the conventional case that the noise term of
the objective-collapse theory has a Gaussian profile and
is anti-Hermitian (equivalent here to only the imaginary
component of G being stochastic), Gaussianity in the mat-
ter field is still preserved. This is also analogous to a
continuous-time measurement being performed on matter
by the stochastic entity G, which could be a stochastic
gravitational field, and the new quantum self-interaction
[182–185].

D. Alternative theories of gravity

Einstein’s GR can be formulated as an action theory
with the action principle being used to derive the field
equations. The action S of GR can be decomposed into the
Einstein-Hilbert action SEH, which contains only gravita-
tional degrees of freedom, and the matter action SM , which
tells us how matter and gravity interact:

S = SEH + SM , (24)

where

SEH = c4

16πG

∫

d4x
√

gR, (25)

with R the Ricci scalar, and for a real scalar matter field φ,

SM = 1
2

∫ √
g
[
gμν∂μφ∂νφ − (m2 + εR)φ2

]
, (26)

with ε a numerical factor. The matter actions for spin-1/2
and spin-1 fields are provided in Appendix A.

The argument that we have presented for non-
Gaussianity being an indicator of QG uses only the matter
action SM and says nothing of the purely gravitational
action SEH. It relies on the fact that SM must be, in
the absence of all nongravitational quantum interactions,
quadratic in the matter fields such that a classical the-
ory of gravity will preserve Gaussianity. If SM had terms
that coupled gravitational degrees of freedom with nonlin-
ear or nonquadratic functions of the matter fields, then in
flat spacetime such terms would still exist and this would
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result in a new nongravitational interaction, which we have
excluded.

Many theories of gravity have been suggested as alter-
natives to Einstein’s GR [186]. These tend to consider
alternative forms for the gravitational action SEH. For
example, in f (R) theories of gravity [187], the R in SEH is
replaced with some function of the Ricci scalar f (R). With
use of the argument above, as long as we can exclude all
other relevant quantum interactions, non-Gaussianity can
still be used as evidence of a quantum version rather than
a classical version of these alternative theories of gravity.

E. Non-Gaussianity in cosmology

Non-Gaussianity is often considered in the context of
cosmology. Here studies predominately concentrate on
how the temperature fluctuations of the cosmic microwave
background (CMB) could follow a non-Gaussian distri-
bution. So far measurements are consistent with a Gaus-
sian distribution, but with the ever-increasing precision of
CMB measurements, it is possible that non-Gaussianity
could be detected soon, providing important insights into
structure formation in our universe.

Perhaps the most important mechanisms responsible
for generating a non-Gaussian distribution of temperature
fluctuations are inflationary mechanisms, which involve
processes that occur at the surface of last scattering or
before. These are often referred to as “primary effects”
or “primordial effects,” and can be further subcategorized
into quantum mechanical effects at or before horizon exit
and classical nonlinear effects after horizon exit (see, e.g.,
Ref. [188]). The most primitive physical mechanism for
inflation assumes a single scalar field, the inflaton, that
couples to gravity and acquires a nonzero vacuum expec-
tation value, leading to exponential expansion of space.
The Hamiltonian for this model is similar to the one we
used to illustrate that non-Gaussianity in the quantum state
of matter can be used as evidence of QG [see Eqs. (3)
and (A5)]. An important difference, however, is that the
inflaton, unlike normal matter (Standard Model leptons
and quarks), has a nonquadratic potential V(φ̂) and thus
self-interacts.

If the vacuum state is initially assumed, then at second
order in quantum fluctuations of the inflaton and grav-
itational fields, a squeezed Gaussian state of curvature
perturbations is created, which is the leading-order effect
and can explain the Gaussian nature of the CMB that has
been observed so far (see, e.g., Refs. [188,189]). At the
next order, non-Gaussian effects occur due to the coupling
between QG and the inflaton as well as self-interactions
of the inflaton [190]. The former effect is analogous to
the interaction we have considered between QG and mat-
ter that generates non-Gaussianity in the quantum state
of matter. The latter effect means that, in principle, it
would be possible for purely classical gravitational effects

to enhance non-Gaussianity in this inflaton model since
gravity will couple to the non-Gaussian-generating self-
interaction of the inflaton. This further illustrates that only
if we are able to work in a situation where all other
quantum mechanical interactions can be ignored can we
use non-Gaussianity as evidence of a quantum theory
of gravity. In this case, we are not ignoring the quan-
tum self-interaction of the inflaton. Furthermore, unless
a proper measure of non-Gaussianity is used, then even
if we can ignore the inflaton self-interactions, CG effects
can give the appearance of enhancing any already present
non-Gaussianity in the inflaton. This is because the Hamil-
tonian (3) can lead to an increase or a decrease in higher-
order cumulants, such as κ4, if the scalar field is already
in a non-Gaussian state. However, when a proper measure
of non-Gaussianity is used, such as the SNR defined in
Eq. (13) or that based on quantum relative entropy [86],
these measures do not change, and so non-Gaussianity is
not really increasing or deceasing.

As mentioned above, non-Gaussianity in quantum cur-
vature perturbations can also occur after horizon exit. In
this case, a nonlinear classical evolution can result in
a nonlinear relationship between the quantum curvature
perturbations and the inflaton field, which results in non-
Gaussian statistics for the curvature perturbations even if
the inflaton is in a Gaussian state (see, e.g., Ref. [188]).
Here the non-Gaussianity is in the quantum curvature per-
turbations not in the inflaton field, which, if we ignore its
self-interactions, is analogous to the matter field φ we use
in Sec. II to illustrate our argument that CG cannot create
non-Gaussianity in the quantum field state of matter.

The reason that non-Gaussianity in the quantum state of
curvature perturbations is related to non-Gaussianity in the
temperature fluctuations of the CMB is due to the Sachs-
Wolfe effect [191]. This is a classically treated effect where
the curvature fluctuations result in redshifts of the radia-
tion such that there is a direct map between correlation
functions of the curvature perturbations and correlation
functions of temperature fluctuations in the CMB. Any
non-Gaussianity in the CMB due to a single-field model
of inflation is expected to be very small and outside the
realms of near-future observations of the CMB. Instead,
more complex models are needed for observable levels of
non-Gaussianity, such as multifield inflation [192]. Detec-
tion of non-Gaussianity would, therefore, potentially pro-
vide crucial knowledge of the mechanisms responsible for
structure formation.

However, there are many other mechanisms responsi-
ble for creating a non-Gaussian distribution of temperature
fluctuations in the CMB besides the inflationary ones.
These include so-called secondary effects, which involve
processes that occur between the last scattering surface
and the observer (see, e.g., Refs. [193,194]). Secondary
effects can be broadly divided into scattering of the CMB
radiation with hot gas and classical effects mediated by
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gravity subsequent to the last scattering surface, such as the
time-integrated Sachs-Wolfe effect [191] and gravitational
lensing. Other effects that can be responsible for non-
Gaussian temperature fluctuations include nonlinear effects
at recombination (see, e.g., Refs. [193,194]). Although
detection of these nonprimordial effects would provide
important information for distinguishing structure forma-
tion scenarios, they are often regarded as noise associated
with the primary inflationary effects.

It is thought that measurements of the CMB could pro-
vide evidence for a quantum theory of gravity. For exam-
ple, QG predicts that there will be tensor modes due to
quantum fluctuations of the gravitational field during infla-
tion. Dimensional arguments involving Planck’s constant
can then potentiality be used for evidence of QG if such
modes are observed [195]. Other possibilities have also
been suggested, such as using measurements of the scalar
modes of the temperature fluctuations to try to access quan-
tum measures of the primordial curvature perturbations,
such as violation of Bell inequalities [196] or quantum dis-
cord [197]. The issue here, however, is that we have access
only to the field modes, not their momentum conjugate,
which is part of the “decaying mode,” and we can mea-
sure only one instance of the CMB at a time. There then
does not seem to be enough information to rule out classi-
cal curvature perturbations [196–198], and instead rather
convoluted inflationary models need to be assumed for
evidence of QG [198].

If we were to brute forcefully apply our non-Gaussianity
argument for evidence of QG to cosmology, then this
would require measuring the quantum state of the CMB
radiation and somehow being able to distinguish gravi-
tational interactions with the CMB from nongravitational
ones, such as secondary effects due to scattering with elec-
trons. In this case, assuming that the initial quantum state
of the CMB is Gaussian, any sign of non-Gaussianity in
its quantum state due to gravitational interactions would
be evidence of a quantum theory of gravity. Unfortunately,
measuring the temperature fluctuations of the CMB radi-
ation does not, in general, provide information on the
quantum state of the radiation. For example, if we were
to consider an ideal gas of radiation in a container in
a static curved spacetime, then at thermal equilibrium
the radiation has Bose-Einstein statistics [199,200] and
the quantum state of the radiation is a Gaussian thermal
state (see, e.g., Ref. [54]). However, because of the form
of the spacetime metric and the Ehrenfest-Tolman effect
[201,202], the radiation can have temperature fluctuations
in space that obey a non-Gaussian distribution. There-
fore, non-Gaussian fluctuations of the temperature of the
CMB do not necessarily mean that the quantum state of
the CMB itself is non-Gaussian. Any fundamentally clas-
sical gravitational effects that generate non-Gaussianity in
the temperature fluctuations of the CMB will not change
the non-Gaussianity in the quantum state of the radiation.

This applies in the perturbative regime as well as the
nonperturbative regime of the gravity since our argument
is just based on the fact that the CG Hamiltonian is
quadratic in the quantized matter fields, which is the case
in both the perturbative regime and the nonperturbative
regime of gravity (this also means that the CG Hamilto-
nian can be solved in the absence of standard quantum
perturbation theory—see Appendix E). Instead, quantum
gravitational mechanisms would need to be considered,
such as a quantum version of the Sachs-Wolfe effect, for
changing the non-Gaussianity of the quantum state of the
CMB radiation due to gravity.

Measurements of temperature fluctuations of the CMB
are thought to provide information on the quantum state
of the primordial gravitational field through the classical
Sachs-Wolfe effect. In contrast, if we were able to mea-
sure the non-Gaussianity of the quantum state of the CMB
radiation and robustly claim that this is due to gravita-
tional interactions, then this would provide evidence of
QG through an indirect means of analyzing the quantum
state of radiation, with no knowledge of the state of the
primordial gravitational field being required.

F. Applicability

We have argued that, when representing matter with a
quantum field, non-Gaussianity in its quantum state can be
used as an indirect signature of a quantum rather than a
classical theory of gravity. In certain theories of QG, such
as loop QG, group field theory [203,204], and asymptoti-
cally safe QG [205,206], matter is fundamentally described
by quantum fields. However, in other QG theories, such as
string theory, this representation of matter is a limiting low-
energy description of that used in the fundamental theory,
and the low-energy description is referred to as “effec-
tive field theory” [207,208]. In this case, if we wanted
to use a notion of non-Gaussianity that is applicable to
the representation used in the full theory, our concept
of non-Gaussianity in matter would have to be updated,
or it may only be applicable to the low-energy effective
field theory description. Our argument stems from the fact
that the Hamiltonian or action of gravity in the quantum
field regime of matter has matter-gravity terms that are
quadratic only in the quantum matter operators. There is a
connection here with string theory (see the Polyakov action
in curved space [8]), suggesting that our notion of non-
Gaussianity in matter could also be generalized to strings.
However, in foreseeable tabletop tests of QG, it is very
unlikely that anything beyond the (potentially effective)
quantum field theory description QG will be probed.

V. SUMMARY

We have shown that if we want to create non-
Gaussianity in the quantum field state of matter with purely
gravitational interactions, then this would not be possible
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with a classical theory of gravity but can be achieved with
a quantum theory of gravity. On the theoretical side, this
opens up a connection between QG and QIS. Perhaps the
most important property of this connection is that, in con-
trast to other quantum information resources such as entan-
glement, although QG can create non-Gaussianity, CG can
never create non-Gaussianity in the quantum field of mat-
ter (as long as, as with entanglement, all other quantum
interactions can be ignored). For example, while a classi-
cally expanding spacetime metric can create entanglement
in the quantum field of matter [36–43], it cannot create
non-Gaussianity. This also suggests that whereas entan-
glement is not invariant to changes in classical reference
frames [209], non-Gaussianity and nonclassicality are.

Non-Gaussianity is a very important resource in QIS.
For instance, it is necessary for universal quantum com-
putation [48,49]. However, it is not sufficient for universal
speedup over classical computation. For this, we need neg-
ative Wigner function states, and in the case of mixed
states, it is possible for a non-Gaussian state to have a
positive Wigner function. Given that it is negative Wigner
function states that are generically associated with non-
classicality, it is interesting from a fundamental point
of view that it appears to be non-Gaussianity that is a
universal indicator of QG rather than negative Wigner
function states. Perhaps non-Gaussianity in matter, espe-
cially its broader definition of states outside the Gaussian
convex hull, is connected with a more fundamental prop-
erty of quantum gravitational degrees of freedom, such as
non-commutating variables or quantum contextuality.

Approaching QG from a quantum information per-
spective has attracted much theoretical interest recently,
especially in regard to uncovering the role that quantum
correlations, such as entanglement, may play in the funda-
mentals of QG. Conventionally, QG has been considered in
the context of discrete-variable quantum information, such
as qubits, whereas here we have concentrated on describ-
ing QG using continuous-variable quantum information,
and resources particular to CVQIS. Just as CVQIS has
been extremely effective in connecting quantum informa-
tion and quantum field theory, we find that it is also very
powerful in connecting quantum information and QG. Our
findings, however, could also potentially be extendable to
describing QG with discrete-variable quantum information
since the Wigner function can also be defined for discrete
systems [210–213].

As well as providing a theoretical link between QG and
QIS, we have shown how non-Gaussianity can be used to
implement new types of experimental tests of QG. In par-
ticular, non-Gaussianity allows tests based on just a single
quantum system rather than a multipartite quantum sys-
tem, and it also provides a particularly reliable signature
of QG since it cannot be created by indirect or direct CG
interactions (as long as all other interactions can be
ignored). This is in contrast to previous tests based on

entanglement where a multipartite quantum system is nec-
essary and where entanglement is an indicator of QG only
in certain contexts, allowing, in principle, for certain loop-
holes in which CG could be creating the expected QG
signal, such as nonlocal effects or direct CG interactions
that occur due to overlapping mode wave functions (see
Sec. IV B).

We have proposed a tabletop test of QG that uses our
non-Gaussianity witness and current technology. This pro-
posal uses a 4 × 109 atom BEC in just a single-well
potential, with 109-atom BECs having already been cre-
ated in single wells [135]. The most promising proposal so
far for a tabletop test of QG is considered to be the BMV
proposal, which, in contrast to our quantum gas experi-
ment, uses an optomechanical setup and entanglement as
a witness of QG. In our proposal and the BMV proposal,
the QG signal scales quadratically with the mass of the
system and linearly with the interaction time. The signal
in both proposals is greatest when the initial state is a
highly nonclassical state: here we use a squeezed state,
whereas the BMV effectively uses a N00N state, which
is considered to be the most challenging quantum state to
create. So far, neither N00N states nor squeezed states in
the quantum regime have been created in nanoparticle or
microparticle experiments, whereas squeezed states in the
quantum regime have been created in BECs [59], further
facilitating the implementation of our proposal. However,
macroscopic quantum squeezed states have yet to be gen-
erated. We have investigated how these could be achieved
in the near term, but, just as with other proposed table-
top tests of QG that use QIS [23,26–31,33], creating such
macroscopic states is an experimental challenge in real-
izing the experiment. Another option would be to use a
classical coherent initial state but increase the mass of the
system and the number of repetitions of the experiment by
1 or 2 orders of magnitude, which will be considered in
future work.

As with other recently proposed QIS tabletop tests of
QG [23,25–33], we need to ensure that the electromag-
netic interactions can be suppressed or distinguished from
the gravitational interactions. In the BMV proposal, for
example, this means increasing the separation between the
microspheres, which also lowers the gravitational signal,
as well as ensuring that there is no excess charge on either
microsphere. An advantage in using quantum gases is
that the electromagnetic interactions are manipulable using
external magnetic or optical fields [61], which allows the
noise from electromagnetic interactions to be suppressed
without affecting the strength of the gravitational interac-
tions. We have considered a 133Cs BEC since this has the
broadest and strongest Feshbach resonance, allowing, in
principle, sufficiently low levels of electromagnetic noise
in the experiment.

BECs and cold atoms have been found to be very effec-
tive in tests of classical gravity, and experiments using
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these are now becoming the state of the art for many types
of classical gravity measurements [214]. Their effective-
ness can be attributed to the extraordinary degree of control
that BECs and cold atoms provide in exploring the funda-
mental behavior of quantum matter in various settings. In
particular, Feshbach resonances enable control of the elec-
tromagnetic interactions between atoms, providing a key
tool that has led to several scientific breakthroughs [60,61].
Given their great success in classical gravity measurements
and the degree of control offered by these systems, it is per-
haps not surprising that we find that BECs could also be
very useful for measuring quantum gravitational effects.
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APPENDIX A: NON-GAUSSIANITY IN QUANTUM
GRAVITY

The way in which matter and gravity interact in GR is
described by the matter action S, which can be derived
from the specific Lagrangian density L(x) for the matter
field:

S =
∫

d4xL(x). (A1)

For example, if all other interactions (which automatically
include any self-interactions) are ignored, then in the met-
ric or tetrad formulations of GR, the respective Lagrangian
densities for a real scalar φ, spin-1/2 ψ , and spin-1 field Aμ
are [39,102]

Lφ = 1
2
√

g[gμν∂μφ∂νφ − (m2 + εR)φ2]

≡ 1
2

e[ηαβeμα∂μφeνβ∂νφ − (m2 + εR)φ2], (A2)

Lψ = √
g

{
1
2

i[ψγμ∇μψ − (∇μψ)γ μψ] − mψψ
}

,

(A3)

LA = −1
4
√

ggμνgνσFμρFνσ , (A4)

where eμα (x) are tetrads, the “matrix square root” of the
metric tensor: gμν(x) =: eμα (x)e

ν
β(x)η

αβ , with μ labeling
the general spacetime coordinate, α the local Lorentz
spacetime, and ηαβ the Lorentz metric. Furthermore,
Fμν := ∂νAμ − ∂μAν is the electromagnetic tensor, Aμ is
the electromagnetic four potential, R is the Ricci scalar,
∇μ is the covariant derivative, γ μ := eμαγ

α are the curved
space counterparts of the (Dirac) γ matrices, which satisfy
{γ μ, γ ν} = 2gμν , ε is a numerical factor that we set to zero
for the rest of this appendix for simplicity, and the metric
signature chosen is (−, +, +, +). For a complex rather than
a real scalar field, we replace terms with two copies of φ
by one copy of φ∗ and φ; for example, ∂μφ∂νφ becomes
∂μφ

∗∂νφ.
We can also write corresponding Hamiltonian (con-

straint) densities for the above Lagrangian densities [14,
101,102]:

Hφ = 1
2

(
π2

√
g

+ √
ggab∂aφ∂bφ + √

gm2φ2
)

, (A5)

Hψ = 1
2
√

g
Ea

j

[

iζ τ jDaξ + Da(ζ τ
j ξ)+ 1

2
iKj

aσξ + c.c.
]

,

(A6)

HA = 1
2
√

g
gab

(EaEb + BaBb) . (A7)

Here spacetime has been split into spatial slices and a
time axis M = R × σ . Taking nμ to be the normal vec-
tor field of the time slices σ , we can write the tetrad
as eμα = eμα − nμnα , with ηαβnαnβ = −1 an internal unit
timelike vector (which we may choose to be nα = −δα,0),
so that eμα is a triad, where eμα = (0, eμi ) and we further
define Ea

i = | det ea
i |ea

i with i, a = 1, 2, 3. The momentum
conjugate to the densitized triad Ea

i is the chiral spin
connection Ai

a := �i
a + Ki

a, where �i
a = �ajkε

jki and Ki
a =

Kabe
bi, with �ajk the spin connection and Kab the extrin-

sic curvature. In Eqs. (A5)–(A7), g is then the determinant
of the induced spatial metric gab = ea

i e
b
j δ

ij on the spatial
slices, π := √

gnμ∂μφ is the momentum conjugate to φ,
Ea := √

ggabnμFμb is the electric field, Ba := εabcFbc is
the magnetic field, τi are the generators of the Lie algebra
su(2) with the convention [τi, τj ] = εijkτk; ξ = √

gψ , with
ψ a Grassman-valued fermion field, ζ is the momentum
conjugate to ξ , and Daξ := (∂a + τj Aj

a)ξ . For simplicity,
we also assume that the scalar and fermionic fields are
singlets under any internal group symmetry.
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Since we have ignored all other interactions, the above
Lagrangian and Hamiltonian densities are all necessar-
ily quadratic in matter fields as they then consist of only
kinetic and mass terms. This quadratic scaling of course
applies to any spin field not just those considered above
[215–223]. Therefore, if we quantize the matter fields but
leave the gravitational degrees of freedom classical, we
have a theory that preserves Gaussianity. However, if grav-
ity obeys a quantum theory, then there must be some
quantum operator associated with it, and, therefore, we
must have a theory that has interactions involving three
or more quantum operators and that thus induces non-
Gaussianity. In the next two subsections we also illustrate
this argument in the weak-field and nonrelativistic limits
of gravity.

1. Weak-field limit

In the weak-field limit of gravity, we write gμν = ημν +
hμν , where hμν is a perturbation around a spacetime back-
ground with metric ημν . In this case, the GR matter-gravity
interaction Hamiltonian is [224]

Hint = −1
2

∫

d3rTμνhμν , (A8)

where

�hμν = 16πG
c4

(1
2
ημνη

σρTσρ − Tμν
)

, (A9)

with � the d’Alembert operator and Tμν the stress-energy
tensor for matter. The stress-energy tensor for a field of
arbitrary spin in curved spacetime can be obtained by
variation of the action with respect to the metric [39]:

Tμν(x) = 2
√−g(x)

δS
δgμν(x)

≡ eαμ(x)
e(x)

δS
δeμα (x)

. (A10)

For example, when all other interactions are ignored, for
a real scalar, spin-1/2, and spin-1 field, the curved space
stress-energy tensors are (before taking a weak-field limit)
[39]:

Tφμν = (1 − 2ε)∂μφ∂νφ +
(

2ε − 1
2

)
gμνgρσ ∂ρφ∂σφ − 2ε(∇μ∂νφ)φ + 1

2
εgμνφ�φ

− ε
[
Rμν − 1

2
Rgμν

(
1 − 3ε

)]
φ2 + 1

2
(1 − 3ε)m2gμνφ2, (A11)

Tψμν = 1
2

i[ψγ(μ∇ν)ψ − [∇(μψ]γν)ψ], (A12)

TA
μν = 1

4
gμνFρσFρσ − FρμFρν , (A13)

where we have ignored any gauge fixing or ghost terms
in TA

μν [39]. Since we have ignored all other interactions,
all stress-energy tensors are necessarily just quadratic in
matter fields.

In a QG theory we add a hat to both Tμν and hμν . This
then results in an interaction Hamiltonian that is cubic in
field operators. For example, for a complex scalar field we
have terms of the form φ̂†φ̂ĥμν , where we have suppressed
any derivatives. On the other hand, for a CG theory, the
interaction Hamiltonian contains terms only quadratic in
quantum field operators. For example, in the semiclassi-
cal theory of gravity [15,17], with complex scalar matter
fields, we have terms of the form φ̂†φ̂hμν , where hμν is
given by the expectation value of the right-hand side of
Eq. (A9). Therefore, this weak-field limit of CG cannot
produce or change non-Gaussianity in the state of matter,
whereas QG can, as expected from the general discussion
of GR and QG in the previous section.

2. Newtonian limit

We now consider a Newtonian theory of gravity with
matter quantized. This can be obtained by starting from
Newton’s theory and quantizing matter or from taking
the nonrelativistic limit of the above weak-field theories.
For the latter, we consider a closed system and only the
components T00 and h00. This results in Poisson’s equation:

∇2�(r) = 4πGρ(r) (A14)

=⇒ �(r) = −G
∫

d3r′ ρ(r
′)

|r − r′| , (A15)

and the Newtonian interaction Hamiltonian

Hint = 1
2

∫

d3rρ(r)�(r), (A16)
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where� := −c2h00/2 is the Newtonian potential and ρ :=
T00/c2 is the matter density. Irrespective of the spin of
the field, ρ again contains two copies of the matter field
(e.g., for a single nonrelativistic scalar matter field 
, ρ =
m
∗
). The interaction Hamiltonians for quantum and
classical Newtonian gravity (with quantized scalar matter
fields) are then

Ĥ int
QG = 1

2
m

∫

d3r : 
̂†(r)
̂(r)�̂(r) :

= −1
2

Gm2
∫

d3r′d3r

̂†(r′)
̂†(r)
̂(r′)
̂(r)

|r − r′| ,

(A17)

Ĥ int
CG = m

∫

d3r
̂†(r)
̂(r)�[Ψ ](t, r), (A18)

where :: refers to normal ordering, and we have made
explicit that � may depend on the quantum state of
matter Ψ in a CG theory, which can result in single-
particle gravitational self-interaction, for which we have
dropped a factor of 1/2. For example, for the Schrödinger-
Newton equations (the nonrelativistic limit of semiclassi-
cal gravity), � is given by the expectation value of the
right-hand side of the quantized version of Eq. (A15).
Expanding the nonrelativistic field in annihilation opera-
tors, 
̂(r) = ∑

k ψk(r)âk, we again find CG is quadratic
only in quantum operators and so cannot change the degree
of quantum non-Gaussianity in the state of matter, whereas
QG can.

a. First quantization

The interaction Hamiltonian of classical Newtonian
gravity is given by Eq. (4). The Hamiltonian of QG and CG
in the Newtonian limit can then be derived by quantizing

the matter density ρ(r) and, in the QG case, the gravi-
tational potential �(r). In the previous section we took
matter to obey a nonrelativistic quantum field 
̂, such that
ρ̂ = m
̂†
̂, assuming a single type of matter. Since 
̂ is
linear in annihilation operators, and so also in quadratures,
the interaction Hamiltonian for CG is at most quadratic,
such that an initial Gaussian state of the matter field will
always remain Gaussian. However, in the case that we
always have a definite particle number, which can be possi-
ble only in the Newtonian approximation of the respective
theories not in the fully relativistic theories, we could also
view QG and CG in a first-quantized form [225]. In this
case, assuming a single type of particle, we may quantize
ρ(r) through

ρ̂(r) = m
N∑

i=1

δ(3)(r − r̂i), (A19)

where N is the total number of particles in the matter sys-
tem. The respective QG and CG Hamiltonians would then
be [226]

Ĥ int
QG = 1

2
m

N∑

i=1

�̂(r̂i), (A20)

Ĥ int
CG = m

N∑

i=1

�[Ψ ](r̂i). (A21)

Since �(r) does not need to be a quadratic function of r,
it is possible here for CG to create non-Gaussianity in the
first-quantization picture. For example, in the Shrödinger-
Newton equations, where �(r) = 〈�̂(r)〉 with �̂(r) obey-
ing Poisson’s equation (A14), the many-body wave func-
tion of N massive particles would evolve as [227]

i�∂tψN (t; r1, . . . , rN ) =
[
− �2

2m

N∑

i=1

∇2
i + V(r1, . . . , rN )− Gm2

N∑

i,j =1

∫

d3r′
1 · · · d3r′

N
|ψN (t; r′

1, . . . , r′
N )|2

|ri − r′
j |

]
ψN (t; r1, . . . , rN ),

(A22)

where V is a trapping potential. Although a Gaussian
approximation is expected to be very good for tabletop
experiments [144,228], the evolution of ψN (and hence
its corresponding Wigner function) can, in principle, be
non-Gaussian. Therefore, in the BEC experiment proposed
in the main text, although the state of the BEC in the
second-quantization picture must stay Gaussian under CG,

its many-body wave function need not. Interestingly, just
as particles tend to get automatically “entangled” in the
first-quantization picture when we have identical particles,
the particle system also tends to become automatically
non-Gaussian. That is, if we have two identical particles at
positions r1 and r2 and two different states a and b, then
the many-body wave function is ψN = [φa(r1)φb(r2)±
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φa(r2)φb(r1)]/
√

2, depending on whether the particles are
bosons or fermions. The system looks entangled just
because of the exchange symmetry of the identical parti-
cles (it is so-called particle entangled). Similarly, even if
each single-particle wave function φa and φb is Gaussian,
ψN will, in general, be non-Gaussian due to the exchange
symmetry (and the corresponding Wigner function will
be non-Gaussian also [229]). However, there has been
much discussion on whether this “particle” entanglement
is really physical [230–235].

3. Quantum and classical gravity in a single BEC

Using the Newtonian limit of gravity, the QG and CG
interaction Hamiltonians for a BEC are given by Eqs. (5)
and (6), with 
̂(r) representing the field of the BEC. Tak-
ing the limit of zero temperature as in the main text and
ignoring any explicit time dependence of the density of
the trapped BEC due to gravity, we can set 
̂(r) = ψ(r)â,
where ψ(r) is the condensate wave function and â is its
annihilation operator. This then results in Eqs. (8) and (9)
used in the main text for the interaction Hamiltonians of
QG and CG in a single BEC.

APPENDIX B: EXPERIMENTAL DETAILS OF THE
BOSE-EINSTEIN CONDENSATE TEST

1. Creating the nonclassical initial states

In Sec. III, we describe how to create an initial single-
mode squeezed state of a BEC using a spin-1 BEC and
then look for non-Gaussianity. Another option would be to
create a single-mode cat state and look for changes in non-
Gaussianity. Here we describe how such a state could be
created. If we approximate the quantum field of a Bose gas
by 
̂ = ψ(r)â, where ψ is the condensate wave function
and â is the annihilation operator for the condensate, the
Hamiltonian for the electromagnetic interactions between
the atoms is

Ĥ = �κ â†â†ââ, (B1)

where κ := λs/(2�) and λs is defined in Eq. (21). This
Hamiltonian is the Kerr interaction of quantum optics,
which has been considered in BECs (see, e.g., Refs. [144,
145]). It is known that this Hamiltonian can, in principle,
create a Yurke-Stoler state |ψ〉 = (|α〉 + i| − α〉)/√2 from
an initial coherent state |α〉 [123]. The evolution of such a
state under QG in a BEC is considered in Appendix C.

2. Measuring non-Gaussianity

As described in Sec. III, measuring quadrature non-
Gaussianity with homodyne or heterodyne detection
requires single-atom detection in a quantum gas with high

efficiency on small length scales. Recent advances have
opened up three promising approaches to this:

(a) After the interaction time t, the atomic evolution
can be frozen by quickly ramping up a far-detuned opti-
cal lattice that confines atoms with a spatial resolution of
the lattice wavelength, after which fluorescence-imaging
light emitted by the atoms on exposure to near-resonant
light fields can be detected to achieve single-atom, high-
spatial-resolution imaging. Single-atom-resolved imaging
of a quantum gas in a two-dimensional optical lattice with
submicrometer lattice spacing was first demonstrated in
Refs. [236–238].

(b) A related optical fluorescence technique follows a
similar working principle measuring the transit of single
atoms through a light sheet that is located below the atomic
sample. While the atoms are falling through the light sheet,
a CCD camera records the fluorescence traces. This has
been used to measure Hanbury Brown and Twiss corre-
lations across the Bose-Einstein condensation threshold
[239].

(c) Alternatively, a high-finesse cavity can be used
where the transit of single atoms through the cavity will
cause detectable shifts in the cavity resonance. While this
technique does not allow the detection of individual atoms,
the photons emerging from the cavity can be used to probe
the system, revealing atom number fluctuations in real time
[240,241]. Such techniques have been used to demonstrate
many-body entanglement [150,242].

APPENDIX C: FOURTH-ORDER CUMULANT
FOR A SINGLE-MODE BOSONIC SYSTEM

The fourth-order cumulant k4 is given by Eq. (12) for the
generalized quadrature q̂ = âe−iϕ + â†eiϕ . This requires
the determination of various expectation values of com-
binations of â and â†:

〈q̂4〉 = 1
4
(3 + 〈â4〉 e−4iϕ + 4 〈â†â3〉 e−2iϕ + 6〈â2〉e−2iϕ

+ 12 〈â†â〉 + 6 〈â†2â2〉 + h.c.). (C1)

The QG Hamiltonian for a single-mode BEC with electro-
magnetic interatomic interactions ignored is given by (8)

ĤQG = �ωâ†â + 1
2
λQGâ†â†ââ, (C2)

where we have also included the free Hamiltonian
term �ωâ†â, which derives from the kinetic and (time-
independent) trapping potential terms of the BEC Hamilto-
nian; see Eq. (19). Working in the Heisenberg picture, we
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find the evolution of â is

dâ(t)
dt

= − i
�

[â, Ĥ ]

= −i(ω − χ N̂ )â(t), (C3)

where N̂ := â†â and χ := |λQG|/�. Since N̂ is a constant
of motion, this can be solved as

â(t) = e−iωteiχ N̂ tâ, (C4)

where â := â(t = 0). From now on we ignore the phase ω
of the free evolution since this can be absorbed into the
angle ϕ of the quadrature q̂(ϕ) = âe−iϕ + â†eiϕ . Then ân

evolves as

ân(t) = ei(n/2)(n−1)χ teinχ N̂ tân, (C5)

and therefore

â†mân(t) = ei 1
2 (n−m)(m+n−1)χ tâ†mei(n−m)χ N̂ tân, (C6)

or equivalently

â†mân(t) = ei 1
2 (n−m)(m−n+1)χ tei(n−m)χ N̂ tâ†mân. (C7)

We can now assume 4χNt � 1, with N := 〈N̂ 〉, and
expand the exponentials in Eq. (C1), that is, take

einχ N̂ t = 1 + inχ N̂ t + 1
2!

n2χ2N̂ 2t2 + · · · , (C8)

to calculate the expectation value of ân, etc. In this case,
if we take an initial squeezed coherent state |ξ ,α〉 (which
is a general pure Gaussian state), κ4 initially vanishes and
remains zero if CG acts [see Eq. (9)], whereas under QG
[see Eqs. (8) and (C2)], κ4 evolves as

κ4(t) = −3χ t sin ν sinh2(2r)η1(r, ν)+ 3
8
χ2t2

{
sinh2(2r)η2(r, ν)+ 2|α|2

[
2 sinh2(2r)η3(r, ν)+ 2 sinh(2r)η4(r, ν)

+ 8 sinh 4r cos 2ν cosψ − 5 sinh 6r sin 2ν sinψ
]}

+ · · · , (C9)

where

ξ := reiϑ , (C10)

ν := 2ϕ − ϑ , (C11)

η1(r, ν) := sinh 2r − cos ν cosh 2r, (C12)

η2(r, ν) := 6 sinh2 2r + 8 cos ν sinh 2r(5 cosh 2r − 2)− cos 2ν(23 cosh 4r − 16 cosh 2r + 9), (C13)

η3(r, ν) := 2 sinh 4r[cosψ(8 cos 2ν − 3)+ 5 cos ν] + 3 cosψ cos ν − cos 2ν, (C14)

η4(r, ν) := sinh 6r(3 − 8 cos 2ν − 5 cos ν cosψ)− sin ν sinψ(cos ν − 10 sinh 4r). (C15)

In the limit of a coherent state and N 	 1, we obtain the same scaling found in Ref. [91] at χ4 with ϕ = π/2, whereas
in the opposite limit of full squeezing, κ4 tends to 24χ tN 3 when ν = π/2, illustrating that the small value of χ can
be compensated for by a large number of atoms.

If, on the other hand, we had chosen an initial Yurke-Stoler state, |ψ〉 := (|α〉 + i |−α〉)/√2, then κ4 at time t is

κ4(t) = −8|α|4(cos4 ϕ + 3 sin4 ϕe−8|α|2)− 16χ t|α|6 sin 2ϕ
{

cos2 ϕ − e−4|α|2[3 + sin2 ϕ(2 − 3e−4|α|2)]
}

+ · · · .

In the limit N 	 1, the first-order term scales as 6
√

3χ tN 3 at ϕ = π/6, similarly to when the initial state is |ξ〉 as
above.
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1. Nonperturbative approach

We now pursue a nonperturbative approach to how
κ4 evolves with time. For the Yurke-Stoler state |ψ〉 :=
(|α〉 + i |−α〉)/√2, we can use

〈α| einχ N̂ t |α〉 ≡ 〈α| : e[cos(nχ t)+i sin(nχ t)−1]N̂ : |α〉
= e[cos(nχ t)+i sin(nχ t)−1]|α|2 (C16)

and Eqs. (C5) and (C6). For a squeezed coherent state
|ξ ,α〉, with ξ := reiϑ , we can use Eqs. (C5) and (C7) with

〈α, ξ | einχ N̂ t |ξ ,α〉 ≡ 1√
z

e
1
2 inχ tG0 〈0| Ĝ+Ĝ2+Ĝ3Ĝ2−Ĝ− |0〉 ,

(C17)

where

G0 := exp(β|α|2 − 1
2
�+α∗2 − 1

2
�−α2), (C18)

Ĝ+ := exp[(βα −�+α∗)â], (C19)

Ĝ− := exp[(βα∗ −�−α)â†], (C20)

Ĝ2+ := exp(−1
2
�+α∗2â†2), (C21)

Ĝ2− := exp(−1
2
�−α2â2), (C22)

Ĝ3 :=: expβâ†â :, (C23)

β := (1 − z)/z, (C24)

�+ := i sinh 2r sin(nχ t)eiϑ/z, (C25)

�+ := i sinh 2r sin(nχ t)e−iϑ/z, (C26)

z := cos nχ t − i cosh 2r sin nχ t. (C27)

Here we have used the identities exp[θ(A + B)] ≡
exp θB exp[(eθ − 1)A] ≡ exp[(1 − e−θ )A] exp θB when
[A, B] = A, as well as [243]

exp
(
γ+K̂++γ−K̂− + γ3K̂3

)

= exp
(
�+K̂+

)
exp

[
(ln�3) K̂3

]
exp

(
�−K̂−

)
, (C28)

with

�3 =
(

coshβ − γ3

2β
sinhβ

)−2

, (C29)

�± = 2γ± sinhβ
2β coshβ − γ3 sinhβ

, (C30)

β2 = 1
4
γ 2

3 − γ+γ−, (C31)

and [K̂3, K̂±] = ±K̂± and [K̂+, K̂−] = −2K̂3. For exam-
ple, with use of Eq. (C17), 〈ξ | â4(t) |ξ〉 under ĤQG can be
shown to be

〈ξ | â4(t) |ξ〉 = 3e−4iχ t+2iϑ sinh2 2r
22(cos 4χ t − i cosh 2r sin 4χ t)5/2

, (C32)

where we can use
√

z ≡ √|z|(z + |z|)/|z + |z‖ to remove
the square root of the complex number.

2. Including the reverse process

Above we consider the evolution of κ4 under the QG
Hamiltonian ĤQG and assuming that the BEC is prepared
in either a squeezed coherent state or a Yurke-Stoler state.
In the main text, we also consider a measurement proto-
col where we first prepare the BEC state that is required,
let the BEC evolve under QG, and then measure κ4 after
we have applied the reverse process to that we used to cre-
ate the initial BEC state. In the Heisenberg picture, â then
undergoes the following evolutions:

(a) â → â′ = Û†

 âÛ
 at t = 0.

(b) â → â′′(t) = eiχ N̂ tâ′ for 0 < t < τ .
(c) â → â′′′(τ ) = Û†

−
 â2(τ )Û−
 at t = τ .

Hare Û
 refers to the unitary that creates the initial state
and Û−
 is the reverse process. For example, if a squeezed
vacuum state is prepared, then Û
 = exp[r(eiϑ â†2 −
e−iϑ â2)/2] and Û−
 = exp[−r(eiϑ â†2 − e−iϑ â2)/2]. In
this case, in the limit that χ � 1, κ4 at the end of the
process is given by

κ4(τ ) = 3
2
χτ sin 2ν sinh(2r)2 + · · · , (C33)

with ν given by Eq. (C11). In the limit of large N , this
scales as χτN 2 in contrast to the N 3 scaling for the process
considered previously; see Eq. (C9). However, the SNR
scaling is the same.

APPENDIX D: ESTIMATION OF THE
FOURTH-ORDER CUMULANT

SIGNAL-TO-NOISE RATIO

The SNR for measuring the fourth-order cumulant κ4 is
given by

SNR = |κ4|√
var k4

, (D1)
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where k4 is the fourth k statistic. The variance of k4 is given
by [126]

var k4 = κ8

M + 16κ2κ6

M − 1
+ 48κ3κ5

M − 1
+ 34κ2

4

M − 1

+ 72Mκ2
2κ4

(M − 1)(M − 2)
+ 144Mκ2κ

2
3

(M − 1)(M − 2)

+ 24M(M + 1)κ4
2

(M − 1)(M − 2)(M − 3)
,

where M is the number of independent estimations. In the
limit M 	 1, var k4 becomes

var k4 ≈ 1
M

(
κ8 + 16κ2κ6 + 48κ3κ5 + 34κ2

4 + 72κ2
2κ4

+ 144κ2κ
2
3 + 24κ4

2

)
.

The nth-order cumulant κn can be found using

κn = μn −
n−1∑

m=1

(
n − 1
m − 1

)

μn−mκm, (D2)

where μn := 〈q̂n〉 is the nth moment.
Using results from Appendix C, in the limit that χ � 1,

the SNR for the estimation of κ4 for a squeezed vacuum
state |ξ〉 is given by

√
6Mtχ sinh2 2r

| sin ν(sinh 2r − cos ν cosh 2r)|
(cosh 2r − cos ν sinh 2r)2

+ · · · . (D3)

This is maximized at the angles

ϕ = 1
2

(
ϑ ± 1

2
cos−1 y

)
, (D4)

where

y := sinh2 2r(sinh2 2r − 2)± 2
√

2 sinh 4r
(sinh2 2r + 2)2

, (D5)

which results in the above SNR being approximately
4.9χ tN 2

√M for N 	 1. When χN 2t is not small, this
SNR approximation is not so accurate, and instead the
results of the previous section can be used to find a nonper-
turbative solution for the SNR. For example, for the BMV
proposal values d = 200 μm, t = 2 s, and M = 10−14 kg,
we find that the maximum SNR for a spherical 133Cs BEC
is approximately 0.3

√M (with the value of d being used
for the radius R). At these values, χN 2t = √

2/πφ ≈ 0.5,
where φ = 0.6 is the relative phase expected in the BMV
experiment when all distances between the microspheres

other than d, the smallest possible distance, are ignored.
Therefore, the SNR is still of order χ tN 2

√M in this case.
If instead the mass is lowered to M = 10−15 kg, then
we can use the approximation that the SNR is given by
4.9χ tN 2

√M.
For the protocol where we reverse the squeezing opera-

tion before the measurement, the SNR is given by

√
3
2
χτ | sin 2ν| sinh2 2r + · · · (D6)

in the limit that χ � 1.

APPENDIX E: EVOLUTION UNDER CLASSICAL
GRAVITY

Here we consider how a single BEC evolves under CG
compared with QG. We start with the general Newtonian
expressions (5) and (6). Working in the Schrödinger pic-
ture, we find for QG the evolution of our state vector |
〉
is given by

i�
d |Ψ (t)〉

dt
= Ĥ BEC

QG |Ψ (t)〉 , (E1)

where

Ĥ BEC
QG :=

∫

d3r
[

− �2

2m

̂†(r)∇2
̂(r)+ V(r)
̂†(r)
̂(r)

+ 1
2

m : 
̂†(r)
̂(r)�̂(r) :
]

=
∫

d3r
[

− �2

2m

̂†(r)∇2
̂(r)+ V(r)
̂†(r)
̂(r)

− 1
2

Gm2
∫

d3r′ 
̂
†(r)
̂†(r′)
̂(r)
̂(r′)

|r − r′|
]
, (E2)

with V(r) the trapping potential. In contrast, for CG, we
have

i�
d |Ψ (t)〉

dt
= Ĥ BEC

CG [Ψ ](t) |Ψ (t)〉 , (E3)

where

Ĥ BEC
CG [Ψ ](t)

:=
∫

d3r
[

− �2

2m

̂†(r)∇2
̂(r)+ V(r)
̂†(r)
̂(r)

+ m
̂†(r)
̂(r)�[Ψ (t)](r)
]
. (E4)
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In the Schrödinger-Newton example of CG, we have

Ĥ BEC
CG [Ψ ](t)

=
∫

d3r
[

− �2

2m

̂†(r)∇2
̂(r)+ V(r)
̂†(r)
̂(r)

− Gm2
∫

d3r′ 
̂
†(r)
̂(r) 〈Ψ (t)| 
̂†(r′)
̂(r′) |Ψ (t)〉

|r − r′|
]
.

(E5)

The evolution of |Ψ 〉 in CG is, in general, “nonlinear” in
that |Ψ 〉 is needed to determine �. This is often referred
to as a wave function “self-interaction” since in the first-
quantization picture, the wave function of a single particle
will now interact with itself, something that can never
occur in a quantum theory of gravity, where Eq. (E1) is
said to be “linear.”

If we ignore any explicit time dependence, the evolution
of |Ψ 〉 in QG can, in principle, be solved as

|Ψ (t)〉 = e−iĤBEC
QG t/� |Ψ (0)〉 . (E6)

In contrast, it may not be possible to find an analytic solu-
tion in CG due to the potential nonlinearities. However, the
evolution will still take the form

|Ψ (t)〉 = T̂
{

e−(i/�) ∫ t
0 dτ ĤBEC

CG [Ψ ](τ )
}

|Ψ (0)〉 , (E7)

where T̂ is the time-ordering operator. Despite the poten-
tial nonlinearity, since Ĥ BEC

CG is quadratic in matter field
operators, it is still a Gaussian process. For example, con-
sider the single-mode BEC experiment introduced in the
main text where we assume 
̂(r) = ψ(r)â. Ignoring the
trapping potential and free dynamics, we have

|Ψ (t)〉 = T̂
{

e−(i/�) ∫ t
0 dτλCG[
](t)â†â

}
|Ψ (0)〉 , (E8)

with

λCG[Ψ ](t) = m
∫

d3r|ψ(r)|2�[Ψ ](t, r). (E9)

Equation (E8) can be written as [94]

|Ψ (t)〉 = e−(i/�)�CG[
](t)â†â |Ψ (0)〉 , (E10)

where

�CG[Ψ ](t) :=
∫ t

0
dτλCG[Ψ ](τ ). (E11)

The evolution of |Ψ 〉 in this case is then, in general, a non-
linear Gaussian process. However, it need not always be

nonlinear. For instance, in the Schrödinger-Newton case
we have

λCG[Ψ ](t) = −Gm2 〈Ψ (t)| N̂ |Ψ (t)〉

×
∫

d3rd3r′ |ψ(r′)|2|ψ(r)|2
∣
∣r − r′∣∣ , (E12)

where N̂ := â†â. Since N̂ is a constant of motion (it
commutes with Ĥ BEC

CG ), we have

λCG = −Gm2N
∫

d3rd3r′ |ψ(r′)|2|ψ(r)|2
∣
∣r − r′∣∣ , (E13)

where N := 〈N̂ 〉. Therefore, |Ψ (t)〉 evolves as

|Ψ (t)〉 = e−(i/�)γCGâ†ât |Ψ (0)〉 , (E14)

where

γCG :=
∫

d3r
[

− �2

2m
ψ∗(r)∇2ψ(r)+ V(r)|ψ(r)|2

]

− λCG,

(E15)

such that |Ψ (t)〉 evolves under a Gaussian phase-shift
channel. For example, if the BEC were initially in a coher-
ent state |α〉, it would stay in a coherent state but with just
a time-dependent phase:

|Ψ (t)〉 = |αe−iγCGt/�〉 , (E16)

with N = |α|2.

APPENDIX F: STOCHASTIC AND COMPLEX
INTERACTIONS

Here we consider matter interacting with a complex,
stochastic nonquantum field (non-operator-valued distri-
bution) and why this interaction cannot, in the absence
of all other interactions, turn a Gaussian state into a non-
Gaussian state, where the latter is defined as any state that
does not belong to the Gaussian convex hull [177].

In the main text, we consider interacting matter with a
classical entity G (a quantity that takes on real and well-
defined values) and how this can be distinguished from the
quantum version of the interaction. If we take, for simplic-
ity, matter to be described by a real scalar quantum field
φ̂, then as long as we do not allow the classical interac-
tion to induce quantum self-interactions of matter, G and φ̂
can interact only through Hamiltonian terms that are linear
or quadratic in φ̂. That is, the Hamiltonian density of the
interaction must be of the form

Ĥ = s[φ̂]f [G] + t[φ̂]h[G], (F1)

where s and t are, respectively, linear and quadratic real
functionals of φ̂, and f and h are general real functionals of
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G. It is shown in the main text that a Hamiltonian density
of the form of Eq. (F1) preserves the Gaussianity of the
matter field, and we can use this fact to distinguish it from
a quantum interaction.

We now, in contrast to the main text, allow G, or f and
h, to be complex valued. Expanding φ̂ in creation and anni-
hilation operators, φ̂ = ∑

k[uk(t)âk + νk(t)â
†
k], we find the

corresponding Hamiltonian will be of the form of Eq. (2)
except that now λk(t), μkl(t) ∈ C, so the Hamiltonian is, in
general, non-Hermitian. Despite this, the quadratic nature
of the non-Hermitian Hamiltonian means that it still pre-
serves the Gaussian form of the Wigner function for an
initial Gaussian state [171–174]. For example, consider
the Hamiltonian Ĥ = λâ†â, where λ := λR − iλI . Under
this Hamiltonian, an initial coherent state |α〉 will evolve
to exp{−|α|2[1 − exp(−2λI t)]/2}|α exp(−iλt)〉, which is
just an unnormalized, damped coherent state with a time-
dependent phase (note that we have taken � = 1 here and
do so throughout the rest of this appendix). In general,
a non-Hermitian Hamiltonian will lead to an unnormal-
ized state. To rectify this, the physical state vector can
be defined as |ψN 〉 := |ψ〉/‖ψ〉|. For the above exam-
ple, this would mean that an initial coherent state evolves
to a damped coherent state with a time-dependent phase:
|α′(t) exp(−λI t)〉, where α′(t) := α exp(−iλRt).

We now take G to be a stochastic field, which we denote
as G̃, and keep f and h complex valued. The interaction
Hamiltonian density (F1) can then be written as

Ĥ[G̃] = s[φ̂]f [G̃] + t[φ̂]h[G̃]. (F2)

In the interaction picture, an out state |ψout[G̃]〉 of the quan-
tum field φ̂ is now given by a stochastic S matrix Ŝ[G̃]
acting on the in state |ψin〉 [182]. That is,

|ψout[G̃]〉 = Ŝ[G̃]|ψin〉, (F3)

where

Ŝ[G̃] := Te−i
∫

d4x(Ĥ0+Ĥ[G̃]), (F4)

with T the time-ordering operator, x a four coordinate, and
Ĥ0 the free (nonstochastic) Hamiltonian density.

Since the Hamiltonian may not be Hermitian, the out
state may not be normalized, but we can define a normal-
ized out state as

|ψN
out[G̃]〉 := N−1/2|ψout[G̃]〉, (F5)

where

N := 〈ψout[G̃]|ψout[G̃]〉. (F6)

The density matrix corresponding to a particular out state
|ψout[G̃]〉 can be defined as usual,

ρ̂out[G̃] := |ψout[G̃]〉〈ψout[G̃]|, (F7)

or as the normalized version,

ρ̂Nout[G̃] := N−1ρ̂out[G̃]. (F8)

From Eq. (F3), the density matrix ρ̂out[G̃] := |ψout[G̃]〉
〈ψout[G̃]| can be found through

ρ̂out[G̃] = Ŝ[G̃]ρ̂inŜ†[G̃], (F9)

where ρ̂in := |ψin〉〈ψin|. The above density matrix cor-
responds to a particular stochastic out state |ψout[G̃]〉.
However, the quantity that provides the correct expecta-
tion values of operators [〈Â〉 = Tr(ρ̂outÂ)] is the average
density matrix (averaged over G̃) ρ̂out [244,245]. That is,
ρ̂out is given by [182]

ρ̂out :=
∫

DG̃ P[G̃] (ρ̂out[G̃]) (F10)

=
∫

DG̃ P[G̃] (Ŝ[G̃] ρ̂in Ŝ†[G̃])

:=
∫

DG̃ P[G̃] (ŜS[G̃] ρ̂in)

:= Ŝavρ̂in,

where P[G̃] is the probability distribution functional of
G̃, ŜS[G̃] is the scattering superoperator, and ρ̂in now,
in general, corresponds to a general initial mixed state
[179,246].

If we take ρ̂in to be a pure Gaussian state, then since
each Ŝ[G̃] is associated with a Gaussian transformation
[i.e., Eq. (F1)], Eq. (F10) is just the stochastic quantum
field theory generalization of a state, ρ̂CH , in the Gaussian
convex hull of quantum optics [177]:

ρ̂CH =
∫

dg P(g) ρ̂G(g), (F11)

where g is a set of complex numbers, P(g) is a proba-
bility distribution, and ρ̂G(g) = |ψG(g)〉〈ψG(g)| is a pure
Gaussian density matrix. Defining a Gaussian state as a
pure state with a Gaussian Wigner function or a mixture
of pure states with Gaussian Wigner functions represents
a broader definition of a Gaussian state compared with the
more conventional definition of any state with a Gaussian
Wigner function that is used in the main text [92,177]. A
non-Gaussian state (also sometimes referred to as a “quan-
tum” non-Gaussian state to distinguish it from the more
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conventional definition of a non-Gaussian state [92]) can
then be defined as any state that lives outside the convex
hull of Gaussian states [247].

As shown and discussed in the main text, to rule out
a classical interaction (defined as an interaction with a
nonquantum field that takes on real and well-defined val-
ues, such as the classical electromagnetic or gravitational
fields) any detection of a non-Gaussian state as it is con-
ventionally defined (any state with a non-Gaussian Wigner
function) is sufficient as long as all other interactions
can be ignored. As shown above, this also applies when
the field takes on complex values. However, to rule out
a stochastic interaction (defined as an interaction with a
nonquantum field that is fundamentally stochastic, some-
times referred to as a “postquantum” interaction), we must
appeal to the detection of a non-Gaussian state (or “quan-
tum” non-Gaussian state) in its broader definition as any
state that sits outside the Gaussian convex hull [248]. This
is to be expected since a Gaussian state evolves to a state
in the Gaussian convex hull if there is a combination of
Gaussian operations and statistical randomization [93].

1. Example: A stochastic and complex generalization
of the Newtonian gravitational interaction

We now consider a specific example of a stochastic and
complex interaction that, when we take the nonrelativistic
limit, could be considered as a stochastic and complex gen-
eralization of the Newtonian gravitational interaction. The
relativistic version of this interaction has the Hamiltonian
density

Ĥ = Â h̃[G̃], (F12)

where Â := φ̂†φ̂ is a mass-density-like operator for a
complex relativistic scalar field φ̂ and h̃[G̃] is defined as

h̃[G̃(x)] :=
∫

d4x′�(x, x′)G̃(x′), (F13)

with �(x, x′) := �R(x, x′)− i�I (x, x′), �R(x, x′) a real
kernel, �I (x, x′) a positive definite kernel, and G̃(x) a
real stochastic field. The stochastic (Gaussian) scattering
matrix Ŝ[G̃] is then (ignoring Ĥ0 for simplicity)

Ŝ[G̃] = Te−i
∫

d4xd4x′�R(x,x′)φ̂†(x′)φ̂(x′)G̃(x′)

× e− ∫
d4xd4x′�I (x,x′)φ̂†(x′)φ̂(x′)G̃(x′), (F14)

such that the (Gaussian) stochastic scattering superopera-
tor is

ŜS[G̃] = T̂ exp
[

−i
∫

d4xd4x′�R(x, x′)Â�(x′)G̃(x′)

−
∫

d4xd4x′�I (x, x′)Â (x′)G̃(x′)
]

, (F15)

where T̂ is the time-ordering superoperator, Â� = Â+ −
Â−, and Â = Â+ + Â−, with Â+ representing Â acting
on ρ̂in from the left and Â− representing Â acting on ρ̂in
from the right. Taking, for convenience, the probability
distribution functional to be Gaussian,

P[G̃] = (det�)1/2e− ∫
d4xd4x′�(x,x′)G̃(x)G̃(x′), (F16)

with �(x, x′) a positive-definite symmetric kernel, we can
perform Gaussian functional integration (F10) over G̃ to
obtain ρ̂out = Ŝavρ̂in, with

Ŝav = T̂e
∫

d4xd4x′[−βRR(x,x′)Â�(x)Â�(x′)+iβIR(x,x′)Â�(x)Â (x′)+iβIR(x,x′)Â (x)Â�(x′)+βII (x,x′)Â (x)Â (x′)], (F17)

where

βRR(x, x′) := 1
4

∫

d4x′′d4x′′′�R(x, x′′)�−1(x′′, x′′′)�R(x′, x′′′), (F18)

βIR(x, x′) := 1
4

∫

d4x′′d4x′′′�R(x, x′′)�−1(x′′, x′′′)�I (x′, x′′′), (F19)

βII (x, x′) := 1
4

∫

d4x′′d4x′′′�I (x, x′′)�−1(x′′, x′′′)�I (x′, x′′′). (F20)

We now take a Markovian approximation and define �R, �I , and � as [182]

�R,I (x, x′) = λR,I (x0, r, r′)δ(x0 − x′
0), (F21)

�(x, x′) = γ (x0, r, r′)δ(x0 − x′
0). (F22)
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The superoperator Ŝav can then be written as

Ŝav = T̂ exp
[∫ ∞

−∞
dtL̂(t)

]

, (F23)

where L̂(t) is the linear evolution superoperator and T̂
is the time-ordering superoperator [182]. The averaged

density matrix ρ̂ at time t can now be obtained through

ρ̂(t) = T̂ exp
[∫ t

0
dτ L̂(τ )

]

ρ̂(0). (F24)

The superoperator L̂ acts on ρ̂ as

L̂ρ̂ =
∫

drdr′
(

2ibIR(t, r, r′)[Â(t, r)Â(t, r′), ρ̂] − bRR(t, r, r′)[Â(t, r), [Â(t, r′), ρ̂]] + bII (t, r, r′){Â(t, r), {Â(t, r′), ρ̂}}
)

,

(F25)

where

bRR(t, r, r′) := 1
4

∫

dr′′r′′′λR(t, r, r′′)γ−1(t, r′′, r′′′)λR(t, r′, r′′′), (F26)

bIR(t, r, r′) := 1
4

∫

dr′′r′′′λI (t, r, r′′)γ−1(t, r′′, r′′′)λR(t, r′, r′′′), (F27)

bII (t, r, r′) := 1
4

∫

dr′′r′′′λI (t, r, r′′)γ−1(t, r′′, r′′′)λI (t, r′, r′′′), (F28)

and we have used [Â2, ρ̂] ≡ {Â, [Â, ρ̂]} ≡ [Â, {Â, ρ̂}]. Therefore, ρ̂(t) obeys the following master equation:

dρ̂(t)
dt

=
∫

drdr′
(

2ibIR(t, r, r′)[Â(t, r)Â(t, r′), ρ̂] − bRR(t, r, r′)[Â(t, r), [Â(t, r′), ρ̂]] + bII (t, r, r′){Â(t, r), {Â(t, r′), ρ̂}}
)

.

(F29)

Finally, we take the nonrelativistic limit and replace φ̂ with
the nonrelativistic scalar field 
̂. The Hamiltonian density
can then be thought of as in the form of that for a stochastic
and complex generalization of the Newtonian gravitational

interaction, with h[G̃] a stochastic and complex generaliza-
tion of the Newtonian potential and matter represented by

̂. Assuming that βRR, βIR, and βRR are time-independent,
we end up with

dρ̂(t)
dt

=
∫

drdr′
(

2ibIR(r, r′)[
̂†(r)
̂(r)
̂†(r′)
̂(r′), ρ̂(t)] − bRR(r, r′)[
̂†(r)
̂(r), [
̂†(r′)
̂(r′), ρ̂(t)]]

+ bII (r, r′){
̂†(r)
̂(r), {
̂†(r′)
̂(r′), ρ̂(t)}}
)

, (F30)

where we have ignored the time dependence of 
̂ for sim-
plicity. The first term is of the same form as that which
would be induced by the Newtonian limit of QG (see
Appendix FA 2). However, despite Newtonian QG induc-
ing non-Gaussianity (and negative Wigner functions), the
other two terms conspire with the first to reduce the full
process to a channel that keeps a Gaussian state in the
(unnormalized) Gaussian convex hull. That is, despite the
appearance of the first term, this master equation cannot

turn a Gaussian state into a non-Gaussian state (defined as
a state that lives outside the Gaussian convex hull). This is
clear from our starting point (F10) for the averaged density
matrix ρ̂.

We can, however, write the solution of Eq. (F30) as a
state in the standard quantum optics definition of the Gaus-
sian convex hull by, for example, dropping the temporal
and spatial dependence of G̃, γ , λR, and λI : the above
master equation can then be written as
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dρ̂(t)
dt

= −iκIR[(â†â)2, ρ̂(t)] − κRR[â†â, [â†â, ρ̂(t)]]

+ κII {â†â, {â†â, ρ̂(t)}}, (F31)

where we have also taken the single-mode approximation

̂(r) = ψ(r)â found in the main text and defined κRR :=
1
4κ

2λ2
R, κIR := 1

2κ
2λIλR, κII := 1

4κ
2λ2

I ; κ := ∫
dr|ψ(r)|2,

and γ = δ(3)(r − r′) for convenience. Using Eq. (F10),we
can write the solution to Eq. (F31) as

ρ̂(t)=
∫

dgP(g, t)e−iκλRâ†âgt−κλI â†âgtρ̂(0)eiκλRâ†âgt−κλI â†âgt,

(F32)

with

P(g, t) :=
√

t
π

e−g2t, (F33)

where g ∈ R is a dummy variable used in place of G̃. If
ρ̂(0) in Eq. (F32) is a pure Gaussian state, the density
matrix ρ̂(t) of Eq. (F32), which solves Eq. (F31), is then
part of the (in general, non-normalized) Gaussian convex
hull (F11).

2. Preserving the norm: relationship to objective
collapse theories and continuous-time measurements

The master equations (F29) and (F30) [and so also
Eq. (F31)] do not preserve the norm of the state. As
detailed above, to preserve the norm, each stochastic den-
sity matrix can be redefined through Eq. (F8) and we can
then take these as the physical stochastic density matrices.
However, this results in a nonlinear evolution of the new
averaged density matrix ρ̂, which can lead to superlumi-
nal signaling [179,182]. This issue can also be found in
objective-collapse theories where matter is coupled to a
stochastic field through an anti-Hermitian term involving
a particular matter operator Â [180,181]. In these models
a term of the form Â2 is included in the evolution of the
stochastic state vector to eliminate the problematic nonlin-
ear terms in the evolution of the averaged density matrix
[180–182,249–253]. Such higher-order terms can also be
used to eliminate the non-norm-preserving terms in the
evolution of the non-normalized density matrix [182]. For
example, to our Hamiltonian density (F12), we can add a
term of the form Â2:

Ĥ[G̃(x)] :=
∫

d4x′�(x, x′)G̃(x′)Â(x)

− 2i
∫

d4x′βII (x, x′)Â(x′)Â(x), (F34)

with Â(x) := φ̂†(x)φ̂(x) and βII defined in Eq. (F20). If we
take the Markovian limit and assume a Gaussian profile for

G̃ as above, the new term turns the non-norm-preserving
term in Eq. (F29) into a norm-preserving term:

dρ̂(t)
dt

=
∫

drdr′
{

2ibIR[Â(t, r)Â(t, r′), ρ̂(t)]

− (bRR + bII )[Â(t, r), [Â(t, r′), ρ̂(t)]]
}

. (F35)

Since Â := φ̂†φ̂, the new term in Eq. (F34) is an (anti-
Hermitian) quantum self-interaction of matter. That is, we
have effectively introduced a new force. This new quantum
force will, in general, induce non-Gaussianity. However,
if we take �R = 0 in Eq. (F34) so that the stochas-
tic interaction is anti-Hermitian (as is usually the case
in objective-collapse theories), then the master equation
simplifies to

dρ̂(t)
dt

= −
∫

drdr′bII (t, r, r′)[Â(t, r), [Â(t, r′), ρ̂(t)]],

(F36)

which is a master equation that preserves the Gaussian
convex hull since such a master equation is also derived
when we take �I = 0 in the original theory without the
new quantum self-interaction force [see Eq. (F29) with
bIR = bII = 0]. When we take the nonrelativistic limit
φ̂ → 
̂, Eq. (F36) is of the form of the master equation
found in objective-collapse theories such as those of con-
tinuous spontaneous localization (CSL) and Diósi and
Penrose [251,252,254]. It is also the master equation of
continuous-time measurements in the basis Â, such that
we can essentially consider the stochastic field G̃ and new
quantum self-interaction force βII Â2 working together to
perform continuous measurements of matter (that preserve
the Gaussian convex hull).

If, however, both �R and �I are nonzero (see, e.g.,
Refs. [180,182] for similar models), then, in general,
the non-Gaussian character of the new quantum self-
interaction force βII Â2 is preserved, and we have a channel
that can induce non-Gaussianity. Even so, in the asymp-
totic limit, the state will become a state of the Gaussian
convex hull rather than a non-Gaussian state.

When both �R and �I are nonzero (and we also have
the new quantum self-interaction force βII Â2), the theory
is closely related to a continuous-time measurement being
performed by the two interactions as above but now with
a feedback mechanism [182]. Weak measurements with
local feedback operations can also induce entanglement in
the case of joint measurements [255,256].
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