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Detailed spectroscopy of the neutron-unbound nucleus 28F has been performed for the first time
following proton/neutron removal from 29Ne/29F beams at energies around 230 MeV/nucleon. The

invariant-mass spectra were reconstructed for both the 27F(∗) + n and 26F(∗) + 2n coincidences and
revealed a series of well-defined resonances. A near-threshold state was observed in both reactions
and is identified as the 28F ground state, with Sn(

28F) = −199(6) keV, while analysis of the 2n decay
channel allowed a considerably improved Sn(

27F) = 1620(60) keV to be deduced. Comparison with
shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments
to be proposed for some of the lower-lying levels of 28F. Importantly, in the case of the ground state,
the reconstructed 27F+n momentum distribution following neutron removal from 29F indicates that
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it arises mainly from the 1p3/2 neutron intruder configuration. This demonstrates that the island of

inversion around N = 20 includes 28F, and most probably 29F, and suggests that 28O is not doubly
magic.

PACS numbers:

Introduction.— The study of nuclei located at the neu-
tron dripline, beyond which they are no longer bound
with respect to neutron emission, has become possible
due to significant technological developments in high-
intensity neutron-rich beams and high-efficiency detec-
tion arrays [1]. Despite these advances, the neutron
dripline is only accessible experimentally for light nuclei
(Z . 10) [2], and even in this region it remains a theoret-
ical challenge to predict it [3]. Models incorporating the
effect of three-nucleon forces [4–6] have led to a better
reproduction of the dripline. However, the effect of the
continuum, which can drastically change the shell struc-
ture [7, 8], is not taken into account except for lighter
nuclei [9]. The comparison between the isotopic chains
of carbon, nitrogen and oxygen on the one hand, and
of fluorine on the other, is particularly interesting: the
dripline is located at N = 16 for the former, while the
fluorine chain extends to N = 22 (31F [2]). The reason
for this, however, is not fully understood.

In the fluorine chain, the odd neutron-number 28,30F
isotopes are unbound, as they lack the extra binding en-
ergy provided by pairing. Christian et al. [10] found that
28F is unbound by 220(50) keV, and based on the agree-
ment with the predictions of USDA/USDB shell-model
calculations 28F was placed outside the “Island of Inver-
sion” (IoI) [11]. This means that the ground state of
28F could be described by a particle-hole configuration
(π0d5/2 × ν0d−1

3/2) with respect to an unbound core of
28O, forming a multiplet of Jπ = 1+– 4+ states as in 26F
[12, 13]. On the other hand, the relatively low energies of
the first excited states in 27,29F suggest the presence of
intruder neutron pf -shell contributions [14]. If 28F con-
tains such contributions, negative-parity states, like the
Jπ = 1−– 4− multiplet resulting from the π0d5/2⊗ν1p3/2
coupling, should appear at low energy.

The location of the dripline in fluorine at N = 22 sug-
gests a profound change in shell structure around doubly-
magic 24O [15–17]. A direct experimental signature of
these structural changes can be found in the evolution of
the energies of the 3/2+, 7/2− and 3/2− states, arising
from the neutron 0d3/2, 0f7/2 and 1p3/2 orbits, in the
N = 17 isotones from Z = 14 to 10 (Fig. 3 of [18]). In
31
14Si, the spacing between the ground 3/2+ and the 7/2−

states, which is linked to the size of the N = 20 gap, is
3.2 MeV, and the 3/2− state lies 0.5 MeV above the 7/2−.
In 27

10Ne, the 3/2+–7/2− gap is reduced to 2 MeV, and the
3/2− level moves below the 7/2− state, at only 0.8 MeV
above the 3/2+ g.s. [19–21]. In 29Ne, the 3/2− intruder
state becomes the ground state [22]. This migration of
levels has been suggested to be due to the hierarchy of

the p-n forces present above 24O [18], and in particular
to the central and tensor components [23–25].

This Letter reports on the first detailed spectroscopic
study of 28F, which has been carried out using proton and
neutron removal from high-energy 29Ne and 29F beams,
respectively. In the former reaction, the 29Ne neutron
configuration will remain unchanged and negative-parity
states are expected to be populated at low energy in 28F
through the removal of a 0d5/2 proton. Neutron removal,
however, can lead to both positive- and negative-parity
levels in 28F depending on the degree to which intruder
(2p2h and beyond) configurations are present in 29F. This
study was possible owing to the high luminosity provided
by a thick liquid H2 target and the relatively intense sec-
ondary beams, coupled with state-of-the-art arrays for
the detection of the high-energy neutrons and charged
fragments and of the de-excitation γ-rays. The results
indicate that 28F, and most probably 29F, lie within the
IoI, and also suggest that 28O is not doubly magic.

Experimental setup.— The experiment was performed
at the Radioactive Isotope Beam Factory (RIBF) of
the RIKEN Nishina Center. Secondary beams of 29Ne
(∼ 8.1 kHz, 228 MeV/nucleon) and 29F (∼ 90 Hz,
235 MeV/nucleon) were produced by fragmentation of
a 345 MeV/nucleon 48Ca beam (∼ 500 pnA) on a 15mm-
thick Be target, and prepared using the BigRIPS frag-
ment separator [26, 27]. Secondary beam particles were
identified via their energy loss and time of flight as mea-
sured using thin plastic scintillators, and tracked on to
the object point of the SAMURAI spectrometer [28] us-
ing two sets of multi-wire drift chambers, where the
MINOS target [29] was located. The latter consisted of
a 15cm-thick liquid-hydrogen cell surrounded by a time-
projection chamber, that allowed the reconstruction of
the reaction vertex with a precision of 3 mm (sigma) in
the beam direction using the intersection between the tra-
jectory of the incoming beam and the measured track(s)
of the outgoing proton(s) for the (p, pn) and (p, 2p) reac-
tions. The DALI2 NaI array [30] surrounded the target
for the detection of the in-flight de-excitation of frag-
ments (with an efficiency of εγ ∼ 15% at 1 MeV).

The beam-velocity reaction products were detected in
the forward direction using the SAMURAI setup, includ-
ing the NEBULA [31] and NeuLAND demonstrator [32]
neutron arrays, placed respectively some 14 and 11 m
downstream of the target. The SAMURAI superconduct-
ing dipole magnet [33], with a central field of 2.9 T and a
vacuum chamber equipped with thin exit windows [34],
provided for the momentum analysis of the charged frag-
ments. Their trajectories and magnetic rigidity were de-
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FIG. 1: Left: relative-energy spectra of the 27F+n system populated from the reactions (a) 29Ne(−1p) and (b) 29F(−1n).
Right: same for the 26F+2n system populated from (e) 29Ne(−1p) and (f) 29F(−1n). The fit in red corresponds to a sum of
resonances (blue, with the resonance energy in keV) plus a non-resonant distribution (dashed black). Center: same as left,
obtained in coincidence with the 915 keV excited state of 27F (after background subtraction) populated from (c) 29Ne(−1p)
and (d) 29F(−1n). The energy axis E on the top right is given with respect to Sn(28F), and orange dots mark resonances in
coincidence with the corresponding fragment γ-rays (see Fig. 2).

termined using drift chambers at the entrance and exit of
the magnet [28]. This information, combined with the en-
ergy loss and time of flight measured using a 24-element
plastic scintillator hodoscope, provided the identification
of the projectile-like fragments. The neutron momenta
were derived from the time of flight, with respect to a
thin plastic start detector positioned just upstream of
the target, and the hit position as measured using the
NEBULA and NeuLAND arrays [35], with efficiencies of
εn ∼ 50% and εnn ∼ 10% for decay energies of 0–3 MeV.

Energy spectra.— The relative energy (Erel) of the un-
bound 28F system was reconstructed from the momenta
of the 26,27F fragments and neutron(s) [35]. The 27F+n
spectra for both reactions are shown on the left of Fig. 1.
The resolution is considerably improved compared to pre-
vious studies of neutron-unbound systems [10, 36], owing
to the high-granularity NeuLAND array as well as the
MINOS target. The resolution of Erel(

27F+n) varied as
fwhm ∼ 0.18E 0.63

rel MeV. In order to deduce the charac-
ter of resonances in 28F, the spectra were described using
single-level R-matrix line-shapes [37], which were used as
the input for a complete simulation of the setup (includ-
ing the beam characteristics, the reaction, and the detec-
tor resolutions and acceptances), combined with a non-
resonant component obtained from event-mixing [38, 39]
and from the simulation of independent fragments and
neutrons, respectively for the two- and three-body spec-
tra. The results of the fit are listed on the figure and
summarized in Ref. [40].

The energy spectra of Fig. 1(a,b), from the 29Ne(−1p)

and 29F(−1n) reactions, exhibit a lowest-lying resonance
with a width of Γ = 180(40) keV at respectively 204(16)
and 198(6) keV above threshold, without any coincident
γ-ray. The weighted mean, 199(6) keV, provides there-
fore a determination of the g.s. energy of 28F (−Sn). This
is compatible with the less precise value of 220(50) keV
from Ref. [10] using the 29Ne(−1p) reaction. As shown
in Fig. 1(a), we observe a second peak in the (−1p)
channel at 363(17) keV, which is in coincidence with the
915(12) keV transition (inset of Fig. 1c) from the decay
of the excited state of 27F [14]. As such, the resonance
lies at the sum energy of 1278(21) keV above threshold.
As this value matches the energy of the fourth peak at
1280(30) keV, we propose that the 1280 keV state, popu-
lated in 29Ne(−1p), decays both to the ground and first-
excited states of 27F, with corresponding branching ratios
of 60% and 40%. The 2810 keV resonance is also observed
in coincidence with the 915 keV γ-ray. It is thus placed at
an energy of 3725 keV (Fig. 2). Three other resonances
identified in Fig. 1(a) at 940, 1840 and 3660 keV are also
placed in Fig. 2.

The spectrum of Fig. 1(b), obtained from 29F(−1n),
displays three clear resonances, including the g.s. (see
above). The resonance at 996(13) keV does not fully
match the 940(20) keV observed in the (−1p) reaction.
We thus propose that they correspond to two differ-
ent states, as shown in Fig. 2. Given the uncertain-
ties, the 1880(80) and 1840(30) keV resonances observed
in both reactions can correspond to the same state.
If we require a coincidence with the 915 keV γ-ray of
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27F, one can see in Fig. 1(d) the two resonances at
406(28) and 3180(260) keV plus an additional structure
at 1200(80) keV, corresponding therefore respectively to
levels at 1321, 4095 and 2115 keV (Fig. 2). Note that the
406(28) keV resonance overlaps with that at 363(17) keV,
which was proposed to decay in competition with the
1280(30) keV transition in the (−1p) channel with simi-
lar intensities. However, as the fit of the (−1n) data does
not allow the placement of a 1280(30) keV resonance with
the required intensity, we propose that the 363(17) and
406(28) keV transitions come from the decay of different
states located respectively at 1280 and 1321 keV. Finally
a resonance is placed at 3980 keV.

Resonances in 28F decaying by 2n emission have been
identified after applying cross-talk rejection conditions to
the 26F+2n events [41]. As can be seen in Fig. 1(e,f), the
lowest-lying peak produced in both the (−1p) and (−1n)
reactions has compatible energies of respectively Erel =
245(32) and 227(88) keV. The states observed in the 2n
decay correspond to excitation energies of Erel+Sn(

27F),
when referenced to the 28F g.s., or to an excitation energy
of Erel + S2n(

28F). According to AME2016 [42], the un-
certainty on Sn(

27F) = 1270(410) keV is large, which also
influences the present determination of S2n(

28F), making
the placement of the resonances very uncertain.

However, we first note that the two low-energy res-
onances are, as for the 1840 and 1880 keV resonances
in the 27F+n decay, produced in both reactions. Sec-
ond, they have compatible intrinsic widths [40], indepen-
dent of the decay mode. Third, the ratios between the
245 and 1840 keV resonances in (−1p), and the 227 and
1880 keV resonances in (−1n), are the same (∼ 10%).
This suggests that they all originate from a single state
at ∼ 1860 keV, that decays both by 1n and 2n emis-
sion. Excellent agreement between the 1n and 2n decay
spectra is obtained using Sn(

27F) = 1620(60) keV and
S2n(

28F) = 1420(60) keV, the latter being deduced from
the present determination of Sn(

28F). A summary of all
the levels identified is reported in Fig. 2.

Momentum distributions.— In the (−1n) reaction, the
reconstructed momentum distribution of the 27F+n sys-
tem allows the orbital angular momentum of the removed
neutron to be deduced [44]. The transverse-momentum
distribution corresponding to the feeding of the 28F g.s. is
fitted in Fig. 3(a) with eikonal-model calculations [45, 46]
using a combination of ℓ = 1, 3 components. This choice
of negative-parity ℓ values is guided by the fact that the
g.s. is also produced in the 29Ne(−1p) reaction, which, as
discussed earlier, is expected to lead to negative-parity
states at low Erel. The fit, which gives a spectroscopic
factor of C2S = 0.40(6), is dominated by the ℓ = 1 com-
ponent (79%), meaning that the g.s. of 28F is mainly
composed of an intruder p-wave component.

The momentum distribution of the resonance at
406 keV, Fig. 3(b), is obtained after gating on the 915 keV
γ-ray transition. It is well reproduced by a pure ℓ = 2
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FIG. 2: Energies of the resonances observed in 28F in the 1n
(black) and 2n (blue) decay channels compared to shell-model
calculations (the g.s. energies are normalized to experiment).
The resonances observed in the 2n channel are placed in the
level scheme according to Sn(

27F) = 1.620(60) MeV (see text).
The grey and blue bands represent the uncertainty in the
resonance energies. Levels with an orange dot decay to excited
states of 27F (1n decay) or 26F (2n decay).

component, meaning that the parity of the 1321 keV state
is positive, with C2S = 0.012(4). In order to account for
its highly favored 1n decay through the (1/2+) excited
state of 27F, rather than to the (5/2+) g.s. despite the
higher energy available, we propose that it has Jπ = 1+.
Indeed, this would result in an ℓ = 0 neutron decay to the
excited state, as opposed to an ℓ = 2 decay to the ground
state. Other (higher) spin values would not account for
such a unique behavior. For the resonance at 996 keV,
the momentum distribution, Fig. 3(c), is very well repro-
duced by an admixture of ℓ = 2 (72%) and ℓ = 0 (28%),
making it another candidate for a positive-parity state,
with C2S = 0.30(4).

As for the (−1p) reaction, the four most populated
states, with energies 204, 940, 1280 and 1840 keV, all
display momentum distributions compatible with ℓ = 2
proton removal from the d5/2 orbital, with C2S of re-
spectively 0.20(3), 0.46(7), 0.50(8) and 0.22(4), summing
up to about 1.4, as compared to the maximal expected
occupancy of 2 for the d5/2 orbital in 29Ne.

Shell-model calculations.— These have been performed
using the sdpf-u-mix interaction [54] in order to predict
the energy, Jπ (Fig. 2, right) and C2S values of negative-
and positive-parity states in 28F. In order to assess the
sensitivity to the level scheme, the sdpf-mu interaction
[55] has also been used. The sdpf-u-mix interaction has
been refined in order to reproduce the observed 3/2−

and 7/2− level crossing and location of the pf intruder
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FIG. 3: Experimental transverse-momentum distributions of
the 27F+n system following the 29F(−1n) reaction compared
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mixture of ℓ = 0, 2 (respectively purple, green lines) for the
state at Erel = 996 keV. In (a,c) the red line is the total fit.

orbitals in 27Ne, 29Mg and 31Si, and the dripline at 31F.
Both calculations predict about 15 negative- and

positive-parity states below 2 MeV, demonstrating that
the normal and intruder configurations in 28F are very
close in energy. The first 10 states have relatively pure
configurations (60–80%) mostly originating from the pro-
ton 0d5/2 and neutron 0d3/2 and 1p3/2 orbits, with the
exception of the 5− and 6− levels that arise from a
neutron in the 0f7/2 orbit. The π0d5/2 ⊗ ν1p3/2 and
π0d5/2 ⊗ ν0d3/2 couplings lead to a multiplet of J = 1–4
states with negative and positive parity, respectively.

The calculations predict that four negative-parity
states Jπ = (4, 2, 1, 3)− are mainly populated in the
(−1p) reaction with dominant ℓ = 1 components and
C2S values of 0.75, 0.44, 0.35 and 0.19, in rather good
agreement with experiment. We thus think we have pop-
ulated this multiplet of states. Among them, a Jπ = 4−

g.s. is predicted by both calculations, with Γ of about
180 keV, in agreement with experiment. Using similar
arguments, the 940 keV state is proposed to be Jπ = 2−.
The 1− level is predicted to decay both to the ground
(5/2+) and first-excited (1/2+) states of 27F with ℓ = 1,
and could correspond to the state identified at 1280 keV.
As it has the highest energy in both calculations, the
1840-keV resonance is tentatively assigned as Jπ = 3−.

In the (−1n) reaction, the 4− g.s. is calculated to be the
most populated among other negative-parity states with
C2S = 0.36, coming mostly (90%) from an ℓ = 1 removal,
to be compared with C2S = 0.40(6), with 79% of ℓ = 1
fraction. As for the positive-parity states, produced only
in the (−1n) reaction, both the sdpf-u-mix interaction
predicts the lowest state as Jπ = 3+ with C2S = 0.54, in
reasonable agreement with the 996 keV state with C2S =
0.30(4). The 1+ state is predicted to decay principally
to the first excited state of 27F with ℓ = 0, making the
1321 keV state a good Jπ = 1+ candidate. The calculated
C2S value of the 1+ state, 0.31, is however much larger
than experiment.

The first positive-parity states are predicted too low in
energy, which could be explained by effects of the con-
tinuum (not taken into account explicitly in the present
calculations) that change the effective two-body matrix
elements [13, 56] and induce lingering of the ℓ = 1 states
compared to ℓ = 2 [8]. Another feature that could be re-
lated to the effects of the continuum, discussed in Ref. [7]
as an apparent reduction of pairing, is the damping of
the |Sn(N) − Sn(N + 1)| amplitude when approaching
the dripline. While these amplitudes are correctly repro-
duced in lighter (N 6 16) fluorine isotopes by the present
calculations, our experimental Sn(

27F) − Sn(
28F) value

of 1.82(6) MeV is significantly smaller than the predicted
2.8 MeV.

Conclusions.— In summary, detailed spectroscopy of
28F has been undertaken using nucleon removal from sec-
ondary beams of 29F and 29Ne, with statistics orders
of magnitude higher than the previous study and un-
precedented energy resolution. This was made possible
through the unique combination of a thick liquid tar-
get and state-of-the-art arrays for the detection of high-
energy neutrons and charged fragments, as well as de-
excitation γ-rays. They proved essential to cope with
the high density of states in 28F and allowed the identi-
fication of the 1n and 2n decay modes, including tran-
sitions to bound excited states of 26,27F. In addition to
making comparisons with shell-model calculations, the
28F transverse-momentum distributions following neu-
tron removal, combined with eikonal-model calculations,
allowed the ℓ configuration of the removed neutron to be
deduced.

The 28F g.s. resonance was unambiguously identified,
with Sn(

28F) = −199(6) keV. It has a negative parity
with an ℓ = 1 content of about 80%, which places 28F
inside the IoI. Based on the comparison to shell-model
calculations of the decay patterns, resonance widths and
C2S values, we propose that the multiplet of Jπ = (1–
4)− states originating from the π0d5/2 ⊗ ν1p3/2 configu-
ration has been identified. The first positive-parity reso-
nance (3+) is proposed at 996 keV, about 560 keV higher
than shell-model predictions. A candidate for a Jπ = 1+

resonance is proposed at 1321 keV. As opposed to 26F,
that has well-identified positive-parity states from p-n
configurations above a doubly-magic 24O core, 28F dis-
plays mixed negative- and positive-parity states, with the
negative-parity states being more bound. These features
strongly suggest that N = 20 magicity is not restored
at 28O. Moreover, the single-neutron removal, including
the strong ℓ = 1 feeding of the negative-parity 28F g.s.,
supports the suggestion, based on mass measurements,
that 29F also lies within the IoI [57].

Finally, we propose a very precise value of Sn(
27F) =

1620(60) keV, as compared to the tabulated value
of 1270(410) keV, which combined with Sn(

28F) =
−199(6) keV leads to a reduced oscillation in the Sn val-
ues of about 35% at the dripline, as compared to shell-
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model calculations. This damping in the oscillations has
also been recently observed in the boron isotopic chain
[39], suggesting that a reduced pairing force may be a
generic feature of dripline nuclei.
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