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Abstract Simulation of transport of electrons through matter is used in many applications.
Some of them need models that are both efficient in terms of computing time and accurate
over a wide range of electron energy. For certain applications such as radiochemistry and
radiotherapy enhanced by metallic nanoparticles, it is desirable to consider relatively low-
energy electrons. We have implemented a physical model for electron transport down to low
energy in solid metallic media that meets both of the aforementioned requirements. The main
goal of this paper is to present the theoretical framework of our Monte Carlo simulation, its
application to gold metal and an extensive comparison with available data for gold foils
irradiated by electron beams, for projectile energies ranging from a few eV to 90 keV. In
particular, we calculated secondary electron emission to assess the accuracy of our code at
energies below 50 eV. A close agreement with experiment is obtained for a large range of
energy, even though the backward emission yields of low-energy electron are systematically
underestimated. Nevertheless, the quality and numerical efficiency of the simulation are
encouraging for nanoscale applications such as nanodosimetry or radiochemistry in presence
of gold nanoparticles.

1 Introduction

Monte Carlo (MC) simulations are used in many research fields, such as high-energy physics,
astrophysics, solid state physics, medical physics and nuclear physics. The main advantage of
this approach is that it allows solving a rather complex radiation transport problem. There is a
wide choice of Monte Carlo toolkits available [1,11,12,60], and most of them are applicable
in a very broad energy range, from keV to MeV or even TeV particle energies. However, the
codes for low-energy electron transport are scarce. In this context, the LQD code [27] is a
Monte Carlo simulation code, which performs an event-by-event tracking of electrons and
ions. It was originally developed in the context of radiochemistry to estimate the production
of radicals by the interaction of swift heavy ions with liquid water [26]. It was later modified
to consider various heterogeneous domains, which has led to the emergence of a new branch
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of LQD, named MDM (MeDiuM). This new version of the code was used to study the
radiolysis of water confined in porous silica [46], or recently to calculate W -values, which is
the mean energy required to generate an ion pair, a quantity widely used in medical physics
[64].

In the past decade, there has been a growing interest in the study of dose enhancement
by nanoparticles in radiotherapy. The Geant4-DNA code [9] was used to investigate the
micro/nanodosimetry around gold nanoparticles [41,42,44]. Most of the ‘standard’ MC sim-
ulations for similar applications (Geant4 [1], Penelope [60], MCNP [12] and Partrac [25]) are
based on atomic models, which can be inaccurate for electron energies below 1 keV in gold
and other metals. These models do not account for any solid state effects, such as collective
excitations of valence electrons, which may play an important role in the process of energy
loss for low-energy electrons, especially in the case of nanoscale objects. Recently, a collec-
tive excitation model was proposed for Geant4-DNA [55,56], and it was shown that different
physical models produced significantly different dose profiles around gold nanoparticles
embedded in water [56]. Thus, an adequate description of transport of these slow electrons
in metallic nanoparticles is essential to reproduce an accurate dose deposition around the
nanoparticle.

The description of low-energy electron transport is definitely a formidable challenge,
which should in principle be addressed by quantum many-body concepts and methods. While
desirable, such an approach is computationally out of reach, and we must derive some ad hoc
procedures to simulate low-energy electron emission. Following numerous authors in this
field, we shall adopt here a trajectory model that may be regarded as a rough approximation,
but which should be sufficient to reproduce the major trends of electron emission in the whole
energy range. Our goal is to obtain a simulation that is a compromise between accuracy and
computational efficiency. To address these issues, we have extended the MDM code for the
description of electron transport inside metallic media and benchmarked this simulation with
experimental data obtained for gold material.

The aim of this article is to present the simulation framework, describing the different
types of interactions of electrons with metallic media that differ from previous work [55].
Additionally, the results of electron transport simulation in gold are presented in the energy
range from a few eV up to 90 keV. We investigated in particular secondary electron emission,
to assess the reliability of the results at energies below 50 eV, which has not been done yet in
this context [55]. This gives some insights into the accuracy for nanodosimetry calculations,
which is one of the aimed applications of this MC simulation. Section 2 describes the energy
conventions adopted here for metallic media. Section 3 summarizes the electron–metal inter-
action processes implemented in the code and explains how MDM combines a ‘solid state’
model with an ‘atomic’ model for electron collisions with metallic target. Sections 4 to 8
give the results of the benchmark using data available in the literature. Section 9 summarizes
our conclusions.

2 Energy and potential conventions

As the MDM code simulates the travel of a charged particle through different types of media,
it is essential to define an energy reference to provide a coherent kinetic energy tracking of
the particle when it changes medium. At glancing angles, when a particle is moving from one
medium to another, it must have enough energy to overcome the potential energy difference
between both media. Regarding excited electrons, they experience a potential which we
decomposed in a mesoscopic part and a microscopic one [10]. We describe the transport of
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an electron as its motion in the mesoscopic potential V0 combined with collisions induced
by a microscopic potential. V0 represents the mean electrostatic potential experienced by
an excited electron in a given medium. Therefore, its total energy is equal to the sum of its
kinetic energy and the mesoscopic potential energy,

U = 1

2
m

→
v

2 +eV0, (1)

with e being the unit electric charge,
→
v its velocity and m its mass. It should be noted that,

in a general case, effective electron masses may differ in different media, but in the current
study we take it equal to the free electron mass, m = me. The shape of the band of final
states for the ejected electrons is taken as parabolic, setting its origin at V0. This mesoscopic
potential is defined as a convolution of the electrostatic potential, with a shape defined at
a mesoscopic scale. This latter is expected large, compared to the scale of the microscopic
potential fluctuations, but smaller than the dimension of the macroscopic object. Here, it is
assumed to be uniform in a given medium, and the value is chosen so that the vacuum potential
is zero. Practically, this corresponds to a standard definition for most of the particle transport
codes. When an electron moves from one medium to another medium or to vacuum through
the surface barrier, the total energy of the particle should be conserved. Consequently, as
soon as the mesoscopic potential changes, the momentum of the particle changes as well.

The representation of the electronic state depends on the binding energy. For the inner
shells, an atomic-like description is used but a dispersion in the binding energy is added,
when necessary, to account for solid state effects. For the innermost shells, this effect is small
and may be safely neglected. For the outer shells, the band structure is simply modelled
by a uniform density of states between an upper and lower energy. However, a DOS fitted
by a linear combination of Gaussians may be used as well. Possible temperature effects are
disregarded.

The definitions of energy levels for metals are depicted in Fig. 1. For gold, uFermi is set at
− 0.169 a.u. [4]. Since the average mesoscopic potential is not known for gold, V0 was simply
estimated here from the Fermi energy in the Sommerfeld model, EFermi, for an electron gas
density assuming one single electron per gold atom. We obtain thus V0 = uFermi − EFermi =
− 0.369 a.u. Note that this value does not coincide with the actual bottom of the conduction
band. This seeming inconsistency is simply due to the fact that the parameter V0 is meaningful
only for diffusing electrons, above the Fermi level.

Such a definition enables a coherent tracking of electrons when changing medium, by
considering the potential energy change. As illustrated in Fig. 2, when an electron of kinetic
energy Ekin,1 is moving from a medium 1 to a medium 2, it experiences the potential barrier
given by V0,1→2 = V0,2 − V0,1. Let us consider the fraction of the kinetic energy cor-

responding to the normal component of the momentum vector
→
p 1, Ekin,1,⊥ = p2

1,⊥/2m,

where p2
1,⊥ = (

→
p 1 · →

n )2,
→
n the normal vector to the surface. When it is lower than the

surface potential barrier V0,1→2, the electron is reflected without any energy loss, and the
normal momentum projection only changes sign, p2,⊥ = −p1,⊥. Otherwise, the electron is
transmitted and crosses the surface barrier. Its new kinetic energy and the normal momentum

projection are given by Ekin,2 = Ekin,1 − V0,1→2 and p2,⊥ =
√

p2
1,⊥ − 2mV0,1→2, respec-

tively. In practice, these definitions, (i.e. mesoscopic potential and potential barrier), are
similar to the internal potential and surface barrier defined in various other MC simulations,
applied in particular to scanning electron microscopes [37,62].
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Fig. 1 Schematic energy
diagram for metal. vvacuum = 0
is the vacuum reference potential.
uFermi is the Fermi energy,
defined as the highest occupied
electronic level in the ground
state. In our convention, it
corresponds to the work function
taken with opposite sign. ui is the
energy of the bound level i .
Ii = uFermi − ui is the energy
necessary to promote the electron
from level i to the Fermi level,
and Bi = uvacuum − ui is the
energy necessary to promote it to
vacuum

ui
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3 Electron–gold interactions

This section gives an overview of our models for elastic scattering (Sect. 3.1), inelastic
scattering (Sect. 3.2) and vacancy decay (i.e. Auger cascade, Sect. 3.3). In the next sections,
all formulas are given in the system of atomic units, h̄ = |e| = me = 1, except when
otherwise stated.

3.1 Elastic scattering

In MDM, the elastic scattering is described with two models, depending on the momentum
transfer. When the momentum transfer is relatively high (more than a few tenths of a.u.), we
assume that the elastic scattering results from an interaction of the electron with a single atom,
described by a microscopic potential. It is predominant for an energy larger than a few eV. On
the contrary, when the momentum transfer is low, i.e. comparable to the momenta of the lattice
oscillation modes, the momentum transfer is better described by a phonon excitation model.
For electrons with very low energies, phonon absorption competes with phonon emission
during the electron thermalization. Note that in this benchmarking, the electron–phonon
interaction does not significantly affect the electron emission from gold, as the work function
is about 5 eV [4]. However, it plays a role in slowing down electrons inside the metal and
may be important in a situation where the external medium is not vacuum but another metal
or insulator. To provide the adequate transition from one model to the other, a momentum
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Fig. 2 Electron crossing the surface from one medium to another:
→
p1 is the momentum of the electron arriving

at the surface, V0,1 and V0,2 are the mesoscopic potentials in media 1 and 2, respectively. In the upper part of
the figure, two cases are depicted: reflection on top and transmission on bottom

transfer cut-off qcut is introduced in the code. If the transferred momentum q > qcut, the
‘atomic’ elastic scattering model is used. On the contrary, if q ≤ qcut, the electron-phonon
description is chosen. To be consistent with this choice, the elastic scattering cross section
is set to zero for low momentum transfer in the ‘atomic’ description. We do not take into
account any structure factor for the scattering of electrons. This might play a role for low-
energy electron penetration into the target. However, the significance of this effect is difficult
to assess.

3.1.1 High momentum transfer: electron scattering on an isolated atom

Although the elastic scattering of high-energy electrons does not lead to generation of sec-
ondary electrons, this process has a significant effect on the projected mean range for these
electrons. Our atomic model of elastic scattering is based on the differential cross sections
(DCS) and the total cross sections (TCS), calculated by the ELSEPA [57] code. The elastic
scattering cross sections are obtained using the partial-wave quantum-mechanical approach
in static-field approximation. The effective electron–atom interaction is described by means
of an optical model potential, consisting of several components. For our simulations, we have
accounted for the electrostatic, exchange, correlation–polarization and absorption potentials,
while the long-range polarization potential was neglected. For the electrostatic potential, the
point nucleus nuclear charge distribution model was used with a numerical Dirac–Fock (DF)
electron distribution. Some solid state effects are accounted for by using a muffin tin option
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with a gold atom radius of 2.72 a.u. (i.e., 0.144 nm). We tentatively extended the calculation
down to very low energies (< 50 eV), though its accuracy is difficult to assess. To get an
idea of the sensitivity of the cross section to the muffin tin radius RMT, we also calculated it
by changing the muffin tin radius value by 10 % (Sect. 4).

3.1.2 Low momentum transfer: electron–phonon interaction

In our simulations, we restrict ourselves to acoustic phonons in gold medium. The inverse
mean free path (IMFP) calculation of phonon emission and absorption follows the work by
Del Fatti et al. [18]. The IMFP for phonon emission is given in Eq. 2,

λ−1
em = τ−1

em

v
, (2)

where v is the velocity of incoming electron, and τ−1
em , the probability of phonon emission

per unit of time, is given by Eq. 3:

τ−1
em = τ−1

0

∫ qmax

qmin

q3

vω
(nph + 1)dq, (3)

where qmin = 0 and qmax = MIN(2v, qcut) with qcut = 0.583 a.u., ω is the energy loss and
q the transferred momentum. ω and q are linked together by the dispersion relation ω = csq,
where cs = 9.25 × 10−04 a.u. is the sound velocity in gold [18]. The magnitude, τ−1

0 , is
given by

τ−1
0 = 3v2

acc

4π MAuna
, (4)

where vacc = 0.0785 a.u. is the acoustic deformation potential amplitude na is the number
of atoms per volume unit, and MAu is the atomic mass. Finally, the phonon population, nph,
introduced in Eq. 3, is given by,

nph = 1

eβω − 1
(5)

with β = 1/(kBT ), kB being the Boltzmann constant and T the temperature set at 300
Kelvin. Likewise, the phonon absorption cross section is given by Eq. 6:

λ−1
ab = τ−1

ab

v
, (6)

where τ−1
ab is given by Eq. 7:

τ−1
ab = τ−1

0

∫ qmax

qmin

q3

vω
nphdq. (7)

3.2 Inelastic scattering

To describe the excitation and secondary electron emission in solid metals, we distinguish
two types of electrons: the deeply bound electrons (core electrons) and the weakly bound
electrons (valence and conduction electrons). Excitation of deeply bound electrons from inner
atomic shells is assumed to be a monoelectronic process associated with a large momentum
transfer. For such momentum and energy transfer, the screening by the outer-shell electrons
is negligible, and the solid is well represented by a collection of non-interacting atoms. This
process may thus be described as an interaction of a projectile with an isolated atom. On the
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contrary, low momentum and energy transfer are associated with considerable redistribution
of the oscillator strength, and the excitation of weakly bound electrons has to be described as
a collective process. Such excitation modes are not localized in the vicinity of a single lattice
atom and may be characterized as plasmon excitations, whose properties may be described
using the dielectric formalism [19,53]. As a result, a combination of two distinct models is
used in MDM: an ‘atomic’ model for core electrons and a ‘solid state’ model for valence and
conduction electrons.

3.2.1 Core ionization: an ‘atomic’ model

The calculation of the total cross section (TCS) and the energy differential cross section (DCS)
for core ionization was done using the binary encounter Bethe (BEB) model developed by
Kim et al. [38]. It gathers two approaches: the binary encounter theory which accounts for
hard collisions and a simple version of the dipole model, which accounts for soft collisions.
The full description of the model is available elsewhere [27,38]. A relativistic extension of
the model is available in the work by Kim et al. [39], which will be implemented in MDM
in the future. The parameters that were used in our calculations for gold are presented in
“Appendix B”. In our model, the binding energy of an electron is defined as BKim = B + V0.
Therefore, considering the Pauli exclusion principle, the minimal energy to eject a bound
electron is uFermi − ui = −W + B, where W is the work function. This way, the electron
impact ionization cross sections depend on the choice of the mesoscopic potential V0. To
sample the ejection angle of an emitted electron and the diffusion angle of a primary electron
in the laboratory frame, the model proposed by Grosswendt et al. [29] is used. The full
description is available elsewhere [27].

3.2.2 Infinite medium: collective excitation in bulk

The interaction of a projectile with weakly bound electrons in the medium is described
following the work by Ritchie et al. [53]. The doubly differential inverse mean free path

(doubly DIMFP),
d2λ−1

b,∞
dωdq

, reads:

d2λ−1
b,∞

dωdq
= 1

π Ekin,1

1

q
�

{ −1

ε(q, ω)

}
. (8)

Here, ω is the projectile energy loss, q is the transferred momentum, Ekin,1 is the kinetic
energy of the projectile, ε(q, ω) is the dielectric function. The differential inverse mean free
path (DIMFP) is obtained by integrating Eq. (8) over the momentum transfer, q, using the
limits defined by the relation:

q± = v1 ±
√

v2
1 − 2ω, (9)

where v1 is the velocity of the electron of kinetic energy Ekin,1. The inelastic mean free path
λ is then obtained by integrating the DIMFP over ω from 0 to ωmax = Ekin,1 + eV0 −uFermi

(e is the unit electric charge). Note that eV0 ≤ 0. To calculate the total cross section we
need the dielectric function. A common approach is to represent it in the optical limit case,
ε(q = 0, ω), using a parametric expression. Following the method by Tougaard et al. [65]
and Ritchie et al. [53] , the optical energy loss function is expanded into a sum of several
terms of the Drude-type energy loss function. Then, for the general case q > 0, the dielectric
function is extended as it was proposed by Ashley et al. [5,6]. The detailed description of
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the method which we use to calculate the differential inverse mean free path (DIMFP) is
given in “Appendix A”. For gold, we used a set of 9 Lorentzian profiles [15] to reproduce
the data measured by Wehenkel et al. [66]. Each mode i has an associated amplitude Ai , a
bulk resonance energy ωb,i and a full-width at half-maximum γi . The numerical values of
the fitting parameters are given in Table 2 of “Appendix C”.

3.2.3 Finite medium: collective excitation at surface

The model described in the previous subsection is valid in the case of an infinite material.
When an interface is introduced, the discontinuity of the material induces a break in the
translation symmetry perpendicular to the surface plane. In principle, a dielectric function
that depends on the distance to the surface, the energy ω and the transverse momentum should
be defined. However, the introduction of such formalism in a Monte Carlo code would lead
to a severe increase of computing time. We therefore followed a more phenomenological
approach. As it was shown by Ritchie et al. [52], introducing a surface has the following
consequences.

– An attenuation of the probability to excite the medium at a given bulk excitation mode
of energy ωb in the vicinity of the surface. This phenomenon is called the Begrenzung
effect and is explained by the fact that the oscillator strength of the bulk excitation modes
decreases in the vicinity of the surface. In our model, this effect is taken into account by
decreasing the bulk cross section near the surface;

– A new type of excitation modes results in an additional energy loss at a frequency
ωs = ωb/

√
1 + εm , where εm is the dielectric constant of the surrounding medium

and ωb the corresponding bulk excitation energy.

Introducing the surface excitation modes may have an impact on the overall energy loss
and on emission of secondary electrons. As there is a significant shift towards lower energy
loss near the surface, the secondary electrons get less energy and their chance to escape the
medium becomes lower. On the contrary, the primary electron energy loss spectrum is shifted
towards smaller energies in the vicinity of the surface. The balance between these two effects
determines the amount of electrons emitted outwards the metallic medium. This effect may
have consequences in macroscopic solids, but it becomes even more important in small finite
structures, like nanoparticles, where the surface/volume ratio increases.

The dielectric function approach was successfully applied to different metals such as
aluminium or gold [19]. However, surface plasmons have only scarcely been implemented
in Monte Carlo simulations to simulate electron transport in gold [58]. As the cross section
depends on the position of the particle with respect to the surface, the general theory becomes
rather complicated to apply in a Monte Carlo simulation, as it becomes computationally
cumbersome [58]. In our work, a few simplifying hypothesis were made:

– the electron gold interaction is neglected when the electron is located outside the material;
– the probability of interacting with a surface mode at a given depth in the material follows

an exponential dependence with a characteristic depth zeff [47,54];
– each bulk mode is associated with its own surface mode, of resonance energy ωs = ωb√

1+εm

[49]. In the specific case where the external medium is vacuum, it reads ωs = ωb√
2

.

The corresponding cross sections for the surface modes were calculated using the dielectric
function as it is done for bulk modes, simply replacing ωb with ωs . To account for the
exponential increase in the probability for excitation of surface modes and its associated
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decrease in the interaction of an electron with bulk modes, the bulk and surface mean free
paths were defined as follows:

λ−1
b,i = λ−1

b,∞,i

(
1 − exp

( −z

zeff,i

))
, (10)

λ−1
s,i = λ−1

s,∞,i exp

( −z

zeff,i

)
. (11)

Here, z is the distance to the nearest surface and zeff,i is the characteristic depth of the
‘i’-th mode. As it was pointed out by Pauly et al. [47], there are various suggestions for
determination of zeff,i . Taking into account that the impact of zeff is not critical for the total
energy loss, we chose to set zeff as used in the work by Roupie et al. [54]:

zeff,i = v

ωs,i
, (12)

where ωs,i is the resonance energy of the surface mode i , v is the electron velocity. The
parametrization of λ−1

s,∞,i is deduced from the parametrization of λ−1
b,∞,i described in the

previous section, using the same parameters Ai , γi and by substitution ωb,i → ωb,i√
2

= ωs,i ,
as it is given in appendix C.

In our simulations, we have to define the distance to the closest surface, z. If one assumes
only a single planar surface in a macroscopic semi-infinite solid, the shortest distance to the
surface is easily determined. In case of a foil with its thickness of the order of magnitude of zeff,
both surfaces are taken into account. Typically, for 50 eV electrons, zeff,i may be maximum
of the order of 1 nm for the mode with the lowest resonance energy. The details of how to
use the position-dependent mean free path in MC simulations are provided in “Appendix D”.
The influence of surface modes on the cross section, yields and energy spectra is discussed
in Sect. 3.2.4.

3.2.4 Relaxation of collective excitation

Each collective excitation, associated with transfer of a momentum q and absorption of an
energy ω, is assumed to relax through the creation of one single electron–hole pair. The
probability to create such an electron–hole pair by promoting the electron from a bound

orbital i to a free state of momentum
→
v for a given momentum exchange

→
q and an energy

loss ω is proportional to square of transition matrix element:

∣∣∣ f
i,

→
v
(
→
q )

∣∣∣
2 =

∣∣∣∣〈i | ei
→
q ·→r

∣∣∣→v
〉∣∣∣∣

2

(13)

To proceed further, we assume an impulse approximation for a hydrogenic target model.

We thus assume that the continuum state is a plane wave of momentum
→
v and the bound

orbital i is a spherically symmetric s wave, which is given a hydrogenic functional form,

i.e. 〈→
r |i〉 = φi (

→
r ) = e−αi r . We define the effective charge αi = √−2ui , where ui is the

binding energy of an electron in the orbital i . In the impulse approximation, the form factor

f
i,

→
v
(
→
q ) reduces thus within an inessential constant factor to φ̂i (

→
p ), the Fourier transform

of the orbital φi (
→
r ) taken at

→
p=→

q − →
v . The hydrogenic approximation allows us to obtain

φ̂i (
→
p ) analytically.

We compute for each allowed level i the probability Pi to eject an electron with momentum
v in a direction defined by the angle θ between the momentum transferred to the electron
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→
q and the ejected electron momentum vector

→
v and by an azimuthal angle φ around the

direction of
→
q .

We have:

d3 Pi

v2dvd cos θdφ
∝

∣∣∣φ̂i (
→
p )

∣∣∣
2
δ(U − Ii − ω) (14)

where U = v2/2+ V0 is the kinetic energy of the ejected electron in the uniform potential
of the target V0 and Ii = ui − uFermi. The integration over v and φ is straightforward and
gives us the probability to eject the electron along the direction defined by θ for a given
orbital i . Using the above hydrogenic assumption, we obtain:

d Pi

d cos θ
∝ 2παiv

(α2
i + v2 + q2 + 2vq cos θ)2

(15)

and

Pi ∝ 4παiv

(α2
i + p2+)(α2

i + p2−)
(16)

where p± = v2 +q2 ±2vq. The above probability Eq. 16 is obtained for a discrete energy
level characterized by its binding energy ui . In our model, such a level can be degenerated
according to the occupation of level i by the bound electrons of the target and the probability
needs to be weighted by this occupation number ni . For the valence band of the target, the
band width should be accounted for, in principle by integrating over the binding energy for
a given density of states. We avoid such an integration by considering for a given band of
levels one single energy taken as the average energy of the band. In other words, the above
probability is used with a parameter αi equal to the energy given in Table 1 (column ’B’) and
for the corresponding occupation of the band (column ne− ). Of course, the kinetic energy
of the ejected electron should be above the Fermi level. This constrains the available bound
energy levels i to those such like uFermi − ui < ω. It is thus a simple matter to sample
the energy level i from the known allowed probabilities ni Pi , after normalization to all the
contributing energy levels.

Once i is known, the direction of emission is obtained by sampling the cosine of the angle

θ from equation 15 followed by the composition with the direction of
→
q in the laboratory

frame. Figure 3 shows the angular distribution of the ejected electron with respect to the

direction of
→
q . It displays the influence of the parameters α, q and E = v2/2, the kinetic

energy of the ejected electron. In Fig. 3a, α was taken equal to 0.74 a.u., which corresponds
to the value of the valence band for gold. When the transferred momentum q decreases, the
angular distribution tends to be more and more uniform. For high momentum transfer on
the contrary, the secondary electron is emitted in forward direction. For a fixed momentum
transfer and fixed α, an increase in the incoming electron energy leads to a more uniform
distribution as well. Finally, when α increases, i.e. when the electron is emitted from a deeper
orbital, the distribution becomes more and more isotropic, as observed in Fig. 3b.

3.2.5 From ‘atomic’ model to collective excitations

It is difficult to define a clear criteria to distinguish between an ‘atomic’ model with bound
electrons and a ‘solid state’ model with nearly free electrons. Commonly, the interaction with
the less bound electrons is described by the dielectric formalism, while the BEB model is
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Fig. 3 Distribution of secondary electron emission angle θ with respect to direction of the momentum transfer.
The influence of kinetic energy of the ejected electron (E) (resp. effective charge α) on θ sampling is displayed
in Fig. 3a (resp. Fig. 3b) for several q values. All values are given in a.u

appropriate for deep-shell electrons. However, the electrons from external shells with binding
energies around 100 eV may not be adequately described by any of these models. The number
of electrons included in the collective effect description was set to obtain a good description
of the dielectric function. For gold, the corresponding sum of the oscillator strength leads
to 17.3 electrons, and includes the atomic orbitals 4 f , 5s, 5p, 5d and 6s. The sum of all
accounted electrons in both descriptions should be equal to the total number of electrons per
atom in the target. Therefore, we introduce a dual description of the intermediate 4f and 5s
shells, by introducing a correction coefficient c according to:

Ntot =
∑
i∈I1

ne,i +
∑
i∈I2

cne,i +
∑
j∈I3

A j

4πna
(17)

where the sets I1, I2, I3 are defined as I1 = [1s, 2s, 2p, .., 4d], I2 = [4 f, 5s], and I3

includes the fitted peaks of the bulk excitation spectrum of the energy loss function. ne,i is
the number of electrons in the atomic shell i , A j - the corresponding amplitude of the j-th
mode, as it is given in Table 2 and na the number of atoms per unit volume. The values for
gold medium are given in Appendices B and C.
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3.3 Vacancy decay and Auger cascade

In MDM, the simulation of relaxation of the electronic excitation associated with hole cre-
ation is based on the use of recombination probabilities taken from the Evaluated Atomic
Data Library (EADL) [48], which describes the bound-to-bound radiative and non-radiative
transitions for a given shell vacancy. In the present work, the fluorescence photons are not
tracked. This is not essential for the present study limited to relatively low electron energies,
for which the inner-shell ionization is very limited and because the outer-shell relaxation is
dominated by non-radiative relaxation.

The energies provided by the EADL database are strictly valid for singly ionized atoms,
while for gold, Auger cascades often lead to multiple holes configuration. The transition
energies associated with such multiply ionized configurations are different from the transition
energies of the singly ionized configuration, and this leads to a broadening of the Auger peaks
[40]. Instead of taking into account explicitly this complex effect, we simply introduced a
sampling of the binding energy of the level from which the Auger electrons originate. For the
sake of simplicity, we associated with each level an energy broadening, which was adjusted
to match roughly the experimental width of the Auger peaks. The broadening was obtained
by sampling a Gaussian distribution of binding energy with the desired width, as given in
Table 1 of “Appendix B”. We emphasize that such a broadening does not change the number
of Auger electron and has no influence of the total number secondary electrons. The effect
of the broadening will be shown in Sect. 8.

The input data file of MDM was arranged as a table, each line representing one transition.
For each transition, the corresponding probability PEADL, the index for the type of emitted
particle (either electron or photon), its energy and the hole configuration after transition
are given. It should be noted that the entire cascade is taken into account for every initial
vacancy. We treat hole recombination through a recursive algorithm with increasing shell
energy (i.e. decreasing binding energy). To account for the evolution of shell population
during the cascade process, we apply the following probability scaling to PEADL,

⎧
⎪⎪⎨
⎪⎪⎩

P(i) = PEADL(i) ni
ni,0

, for fluorescence

P(i) = PEADL(i) ni
ni,0

ni −1
ni,0−1 , for Koster-Cronig

P(i, j) = PEADL(i, j) ni
ni,0

n j
n j,0

, for Auger

(18)

where i, j are the shell(s) the recombination electrons are taken from, ni and n j the
associated population updated along the cascade process, ni,0, n j,0 are the corresponding
shell occupation for the neutral atom, i.e. number of electrons ne− in shells i and j as defined
in Table 1. In the case of a gold atom, a total number of 1622 transitions is considered.
Typically, if an electron is ejected from a deep shell, such as 2s2, an average number of 13
Auger electrons is ejected. For intermediate shells such as 4d10, an average number of 4
Auger electrons is ejected.

4 Cross sections of electron interaction with gold target

4.1 Elastic scattering cross sections

The total elastic scattering cross section of isolated gold atoms is shown in Fig. 4 for different
choices of qcut and RMT (Sect. 3.1), as well as the electron–phonon interaction cross section.
The probability of electron–phonon interaction dominates only at very low energies (< 1eV).
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Fig. 4 Elastic scattering cross section as a function of electron kinetic energy. MDM results are presented for
three different muffin tin radii RMT (2.72 a.u., 2.45 a.u., 3.00 a.u., i.e., 0.144 nm, 0.123 nm and 0.158 nm), for
qcut = 0.5 a.u. (red lines), and for different cut-off values qcut with RMT = 2.72 a.u. They are compared with
theoretical studies [21,43]

As it is expected, when qcut increases, the elastic cross section reduces for small energies.
For qcut = 0.5 a.u., the impact is mainly observable at low energies. However, when qcut =
1 a.u., there is a clear decrease in the total cross section for the energies up to 1000 eV, with
a difference of a factor of 2 at 100 eV. The final cut-off set up was qcut = 0.5 a.u., which
roughly corresponds to the inverse of the diameter of an atom.

We have checked the sensitivity of the elastic scattering cross section on the muffin tin
radius by varying the latter by ± 10 % and keeping qcut=0.5 a.u. The corresponding cross
sections are depicted by the red dashed line in Fig. 4. The cross section changes are observable
mostly at low energies, i.e. below 100 eV. There is a shift of the peak, from ≈ 20 eV for
RMT =2.45 a.u. to ≈ 7 eV for RMT =3.00 a.u. We further investigate the role of these changes
on the yield and energy distribution of backscattered electrons. The secondary electron yield
follows the variation of the muffin tin radius. It changes at most by 10 % when the projectile
energy is around 100-200 eV. At projectile energies beyond 10 keV, the changes are negligible.
The study of energy distribution shows that the changes are limited to secondary electron
energies lower than 30 eV and do not exceed 10 %. Such a result may be understood by
considering the nature of low-energy electron transport. In this energy range, elastic collisions
are rather isotropic and the electron transport is dominated by multiple scattering. As a result,
the details of each collisions are not critical for the electron yields we are interested in.

The results obtained using the atomic model for elastic cross section were compared
with the data by Mayol and Salvat [43] and Ding et al. [21]. Our cross section obtained
with ELSEPA is visibly lower than the reference results given by Mayol and Salvat [43].
This difference may be attributed to our inclusion of the muffin tin option to account for
condensed matter effects. Ding et al. [21] find a globally higher elastic cross section at
energies above 100 eV. Besides, they also observe a deep valley around 20 eV. This structure
is not well pronounced in the cross section calculated in our model, but tends to be more
noticeable when qcut increases. The differential cross section dσ

dω
was compared to another
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Fig. 5 Bulk (solid line) and
surface (dashed line) plasmon
cross sections versus electron
energy for different depth from
the surface z (in atomic units)
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theoretical study by Czyzewski et al. [16] at a projectile energy of 100 eV and to experimental
results from Reichert et al. [50] in “Appendix E”. Both show also good agreement with our
simulation.

4.2 Core ionization

The core ionization cross sections are important for high-energy collisions with lattice atoms.
Our analysis shows that the BEB model underestimates the cross section with respect to
experimental values for energies larger than 100 keV. This may be explained by the fact
that in the current version, our BEB model does not take into account relativistic effects,
which play an important role at high energies. Relativistic effects will be considered in a
future work [39]. However, the impact of uncertainty in the core ionization cross sections
has limited significance for our benchmark, because electron transport is mainly determined
by interactions with the outermost shells.

4.3 Bulk and surface collective modes

As it was previously mentioned, the cross sections of surface modes were calculated in
the present work for a gold–vacuum interface, as experimental systems for which data are
available consist of thin slabs of gold put in vacuum. Cross sections were calculated assuming
a single planar surface with a semi-infinite gold–vacuum geometry, with several distances
of the projectile to the surface: z = 0.01, z = 0.1, z = 1, z = 10 and z = 100 a.u.
Figure 5 shows the variation of the cross section as a function of the projectile energy, for
bulk modes only (respectively surface modes only). Results are as expected. As the distance to
the surface increases, the probability to excite a bulk mode dominates while the contribution
of surface modes becomes negligible. When z = 1 a.u., the IMFP associated with surface
modes exceeds the bulk IMFP. For z = 10 a.u., however, the surface IMFP is smaller than
the bulk IMFP for energy below 100 eV. The transition from bulk to surface modes takes
place in a rather thin layer. For z > 100 a.u. (about 5 nm) the bulk mode dominates because
the characteristic depth zeff is small (below 2 nm). For keV energies, zeff increases up to a
dozen of nanometres for the mode with the lowest energy, but for the other modes it remains
of the order of a few nm. Finally, it is interesting to note that the maximum of the surface
IMFP is higher than the maximum of bulk IMFP. This is explained by the redshift of the
surface resonance energy by a factor of

√
2 with respect to the bulk energy. Adding surface
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Fig. 6 MDM cross sections for
the different processes (core
ionization, bulk plasmon,
phonons, elastic and total) as a
function of the projectile energy
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modes thus impacts the total inelastic cross section in the close vicinity of the surface and
thus potentially impacts the secondary electron emission.

4.4 Total cross section

Figure 6 shows the different cross sections for the various types of interactions, calculated
in the energy range from 0 keV to 90 keV. The cross sections based on dielectric formalism
are represented for a z value much larger than zeff (i.e. bulk excitations). For energies below
1 eV, only electron–phonon interaction can lead to particle thermalization. Atomic elastic
scattering is predominant for energies above 1 eV. Regarding inelastic interactions, the cross
sections based on the dielectric model dominate in the whole energy range. Although they
do not individually lead to large energy loss, the larger number of interactions lead to a large
contribution to the cumulated energy loss. As expected, the core ionization cross sections start
only at energy higher than 100 eV, where the cut-off between the ‘solid state’ and ‘atomic’
model was defined.

4.5 Inelastic mean free path

Figure 7 represents the inelastic mean free path for gold, accounting only for the bulk modes
(solid red line) or only for surface modes (black dashed line), in comparison with the results
from literature. Theoretical results are plotted with solid lines and experimental data are
shown by discrete points. It must be kept in mind that IMFP are not directly measurable
quantities, in contrast to electron emission yield. The experimental values presented here are
thus dependent on the model used to extract them. For energies above 1000 eV, MDM results
are comparable to what is found in literature in case only bulk plasmons are accounted for. It
shows the same trend as other studies [21,69] and falls within the cloud of experimental data.
Around the valley at 100 eV, it is also quite close to the values obtained in other theoretical
studies, but a bit higher than the experimental data. For low energies (<100 eV), the IMFP is
slightly shifted towards lower energies, but is still close to experiment and other theoretical
results. It should be noted that the results in this energy range may be highly sensitive to the
actual value of V0. Using a deeper V0 value reduces the difference between the experiment
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Fig. 7 Inelastic mean free path as a function of electron energy. MDM results are represented in solid red
line (bulk plasmon, i.e. z → +∞) and dashed grey line (surface plasmon, i.e. z → 0). The values referred
to ‘Ding’ and the set of experimental data were taken from Ding et al. [21], ‘Jablonski’ from Jablonski et
al. [34], ‘Wilson’ from Wilson et al. [69], ‘Kanter’ and ‘Krolikowski’ from Kanter et al. [36], and ‘Ashley’
from Ashley et al. [5,6]. Note that no systematic analysis of the experimental errors was provided in the
experimental literature

and our model, for the lowest energy part. However, as discussed later, changing the V0 value
has also a significant impact on electron emission.

5 Simulation set up for the benchmarking study

To check the reliability of our theoretical models and validate the Monte Carlo simulation, a
set of benchmarks was performed with available experimental and theoretical results. The next
sections give a comparison of primary and secondary electron yields, energy distributions
and elastic peak angular distribution with experiments. The experimental measurements
consisted in irradiating a gold foil in vacuum with an electron beam and collecting backward
and forward emitted electrons. The energy and angle of incidence of the incoming beam and
the thickness of the gold target were varied to investigate the behaviour of electron transport.

The electron yield is defined as the number of detected backward or forward emitted
electrons divided by the number of electrons impinging the foil surface. Among the electrons
escaping the foil, one distinguishes primary electrons (i.e. coming from the incident beam) and
secondary electrons (generated by interactions in the medium). Secondary electrons initially
occupy the valence and core energy levels of the target and have been excited by impact of the
primary electron, up to an energy sufficient to escape from the material. As it is impossible
to distinguish whether the electron comes from the primary beam or from the irradiated
medium, an energy threshold is necessary to separate primary electrons from secondary
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Fig. 8 Elastic scattering intensity as a function of the energy of the incident electron beam, for different
angles of detection α. As done experimentally [35], the simulation results were scaled by a uniform factor
common to all angles. Red solid line: MDM simulation. Green solid line: Jablonski [35] (simulation). Blue
dots: Jablonski et al. [35] (experimental)

electrons. Following numerous authors in this field [51], we chose an energy threshold of
50 eV. Although some of the secondary electrons escape the sample with energies greater
than 50 eV, this threshold is a good experimental criterion to separate secondary and primary
electrons. The backscattered elastic peak represents all the electrons that undergo an elastic
scattering in the metal and are backscattered without energy loss. In the simulations reported
in the next sections, the surface modes were turned on and off to study their influence on the
results.

6 Backscattered elastic peak

The study of the backscattered elastic peak gives good indications on the quality of the
differential elastic cross section. In Fig. 8, we present the relative intensity I (α) ∝ dσ

sin αdα
,

for a given scattering angle α as a function of incident electron energy, where α is defined as

the angle between the normal vector to the surface
→
n and the velocity of the reflected electron

→
v . Our results are close to the experimental data in the whole energy range considered here.
It provides a better agreement with experiment than the simulation by Jablonski et al. [35]
at large angles for E > 100 eV.

Other elastic backscattering measurements were done in the work of Jablonski et al. [34]
to measure the angular distribution of elastically backscattered electrons. The results show
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Fig. 9 Elastic scattering intensity (arbitrary units) as function of the electron emission angle, for different
electron energies. The results of simulation were normalized to the local maximum peak around 45–60 eV, as
the measurements did not provide absolute values. Note that a different normalization factor was applied for
each energy [34]. Red solid line: MDM simulation. Green solid line: Jablonski [34] (simulation). Blue dots:
Jablonski et al. [34] (experimental)

the intensity I (α) of the elastic scattering peak according to the reflection angle α. The
calculations were performed accounting for the experimental angular resolution Δα = ±4.1
degrees. Again, there is a good agreement between experimental data and our numerical
results, despite a small deviation with respect to the distribution by Jablonski et al. [34] at
small angles of emission (i.e. maximal backscattering), which is magnified by the sin−1(α)

factor (Fig. 9).

7 Electron emission yields

7.1 Comparison with experimental yields by Reimer et al.

Our simulation results were compared with experimental data from Reimer et al. [51]. The
simulations were performed for various energies of primary electrons. The incident electronic
beam was approximated as a an ideal pencil beam, directed normally to the surface. The gold
layer was surrounded by vacuum, and each transmitted or backscattered electron was recorded
and distinguished as primary or secondary electrons depending on the energy cut-off equal
to 50 eV. To achieve a meaningful statistics, a total number of 50,000 electrons were sent for
each energy and layer thickness. The results with and without surface modes are presented
in Fig. 10.
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Fig. 10 Electron yields (primary and secondary) as a function of the foil thickness. Secondary forward electron
yields were magnified by a factor of 3 for a better visualization. Experimental data (points) were taken from
Reimer et al. [51]. MDM simulation results were obtained both with (solid line) and without (dashed line)
surface excitations

The primary electron yields are in excellent agreement with the experimental data, for
both transmission and backscattering processes. Moreover, the surface modes do not have
any influence on the primary electron yields. For large thickness, the region in which the
surface plasmons can be excited is negligible compared to the thickness of the foil. Therefore,
surface plasmons play a minor role. We may expect a more important role for lower thickness.
However, the primary yield is dominated by elastic diffusion and hard collisions.

Regarding the secondary electrons, the yield of the forward emitted electrons is close to
experimental results. The forward yield is overestimated when only bulk modes are activated,
especially for low primary energy and thin thickness. However, accounting for the surface
excitation modes tends to decrease the yield for thin foils and improves the agreement with
experiment. This may be explained by two reasons. First, the cross sections of the surface
modes are higher than that of the bulk modes, which increases the probability of low-energy
secondary electrons to lose a part of their energy. Second, the surface modes dominate near the
medium border, where the produced secondary electrons have more chances to escape from
the medium. As a result, with an increase in the energy loss caused by the surface modes, the
secondary electrons are less likely to leave the sample. When the sample becomes thicker, the
contribution of surface modes decreases, and both yields, with and without surface modes,
asymptotically approach the same limit, which is close to experimental value.

A systematic underestimation of the backscattered secondary electrons is noticeable. We
found that the backward emission yield is very sensitive to the sampling of the energy level
from which the secondary electron is ejected (not shown here), especially for shells 5d
and 6s. If we use only the highest possible energy level, uup, instead of a random energy
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Fig. 11 Comparison of experimental data (points) with MDM simulation results (solid lines). a Primary
backscattering yield as a function of the thickness of the gold foil, for various angles of incidence. All the
experimental results are taken from Neubert et al. [45] (energy 30 keV), except for the light blue dots which
are taken from Reimer et al. [51] (energy 32.4 keV). Angles correspond to 0, 40, 60 and 80◦ from bottom to
top; b The primary backscattering yield as a function of the incidence angle, for various gold-foil thicknesses.
Experimental results are taken from Neubert et al. [45]. Thicknesses are 98, 198, 461, 603 and 1110 µg/cm2

(44, 89, 207, 270, 497 nm) from bottom to top

distribution between uup and umin, the number of backward secondary electrons strongly
increases. This effect has already been observed by Ding et al. [22], whose results are shown
in Fig. 12 in the next subsection. However, it has the direct consequence of increasing the
number of forward-scattered secondary electrons. A reasonable compromise was to set the
upper electron band width (which includes 5d10 and 6s1) equal to 0.2 a.u. Alternatively, the
situation may probably be improved by more accurate parametrization of the energy loss
function for q �= 0 and improving the plasmon annihilation. More work is necessary, with
different materials, to better understand this discrepancy.

7.2 Influence of incidence angle on backscattering

In the experimental study reported in the work by Neubert et al. [45], the incidence angle of
the electron beam was varied. The primary electron beam energy was set at 30 keV. Figure 11a
(respectively Fig. 11b) shows the primary electron backscattering yield, i.e. electrons having
energies above 50 eV, as a function of the gold film thickness for different incidence angles
(respectively the backscattering yield as a function of the incidence angle for different layer
thickness). In Fig. 11a, we added the results from Reimer et al. [51] obtained for a similar
energy value (32.4 keV) to demonstrate the good consistency of our simulation with the
results from two distinct experiments. The simulation results were obtained with surface
modes on.

The simulation results by MDM are in excellent agreement with the experimental data for
all incidence angles and foil thickness. It is worth mentioning that the lowest foil thickness
considered was equal to 58 μg/cm2, which corresponds to 26 nm for gold. This agreement
gives a good confidence in the modelling of elastic scattering but also the inelastic collisions
for this energy.
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Fig. 12 Theoretical (lines) and experimental (points) yields of backscattered primary electrons (a) and sec-
ondary electrons (b) as a function of the projectile energy, for a thick gold foil. The blue line in panel a
represents MDM results with an energy cut-off set at 100 eV as used for the MC simulation with Penelope
in Sempau et al. [61] (‘Penelope’). Geant4 MC simulation data are taken from Sakata et al. [55] (‘Sakata’).
Experimental data are taken from Gomati et al. [23] (‘Gomati’), Bronstein et al. [13] (‘Bronstein’), Reimer
et al. [51] (‘Reimer’), Castaing et al. [14] (‘Castaing’), Neubert et al. [45] (‘Neubert’), Fitting et al. [24]
(‘Fitting’), Hunger et al. [33] (‘Hunger’). In Fig. 12b, MC simulation data are taken from Ding et al. [22]
(‘Ding1’ + ‘Ding2’). Experimental data were taken from Bronstein et al. [13] (‘Bronstein’), Gomati et al. [23]
(‘Gomati (cleaned)’ or ‘(as inserted)’)

7.3 Backscattering coefficient

The experimental backscattering coefficient is obtained when the thickness of the gold foil
is large enough so that no electrons are transmitted. Many experimental results are available.
It is worth mentioning that for energies above 2 keV, when approaching the plateau, the
experimental results for backscattering coefficient vary from 0.45 to 0.5. As it was pointed out
by Belhaj et al. [8], it is important to clean the sample: if the surface is oxidized, the coefficient
tends to be underestimated for gold, which could explain the variability of experimental data.
Results were compared with experimental data for primary electron beam energy varying
from 0.1 to 90 keV.

The plots presented in Fig. 12a confirm the good agreement between the simulated
backscattering coefficient and the experimental data, up to an energy of 80 keV, after which
there is a visible drop due to the fact that relativistic effects are not included in the simulation.
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Fig. 13 Backscattered electron
yield as a function of the
projectile energy. Experimental
data (points) are from Belhaj et al.
[8]. Note that MDM simulations
(lines) were magnified by a factor
3 for the sake of clarity. Red line:
full simulation; green line:
simulation without surface
plasmon; blue line: simulation
without secondary
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Again, an introduction of surface modes does not impact the results, even at low irradiation
energy (100 eV). Our simulation was done for two cut-off energies (0 and 100 eV), in order to
estimate the impact of this cut-off and to compare with Penelope predictions [61]. Although
this energy cut-off does not impact the yield for primary electron energies above 5 keV, there
is a visible difference at lower energies. This leads to the conclusion that the contribution of
low-energy electrons (50 eV < E <100 eV) must be taken into account, even for keV incident
energies, to get accurate results.

Figure 12b shows backward secondary electron emission. As it was already seen in the
previous subsection, this yield is systematically underestimated. For thick foils and low ener-
gies, the surface modes tend to give a higher secondary electron yield, but it still remains
underestimated. Many possible reasons could explain this underestimation: a possible uncer-
tainty regarding V0, an inaccuracy of the model used for elastic scattering at low energies,
an uncertainty in electronic density of states, to which the secondary electron emission is
very sensitive, and the hydrogenic model used for the plasmon annihilation. The low-energy
electron backward yield is sensitive to the choice of the mesoscopic potential V0. We tried
to reduce its value to recover the very low backward energy yield but it was found that an
attempt to correct the value of V0 results in a too large yield of forward secondary electrons
for higher impact energies, meaning that the problem cannot be fixed in this way. Besides,
it should be noted that the experimental results from Gomati et al. [23] were obtained for
samples that were either cleaned or not before irradiation. Cleaning of the sample increases
the yield by nearly a factor of two. More experimental results for a wider range of energies
would be necessary to validate the experimental data, as it is very sensitive to the experimen-
tal set-up, in particular to the impurities on the surface and surface charging effects, as, for
example, shown by Hespeels et al. and Gomati et al. [23,31,32] (Fig. 13).

7.4 Irradiation with low-energy electrons

We base our analysis on the experimental results obtained by Belhaj et al. [8]. The incident
low-energy electron beam was directed normally to the sample surface. For our simulation,
different situations were considered: with and without account of surface excitation modes
and without account of secondary electrons in the simulation.

Similar to the situation with high-energy incident electrons, a systematic underestimation
of the backward electron yield by a factor of at least 2 was observed at low energies. Only
very few secondary electrons are emitted, thus having a limited impact on the yield. This
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Fig. 14 a Yield of transmitted primary electrons versus gold-foil thickness, for different incident energies.
MDM (solid lines); PENELOPE (dashed lines): Sempau et al. [61] (‘Penelope’). Experiment (points): Reimer
et al. [51] (‘Reimer’), Neubert et al. [45] (‘Neubert’), and Al-Ahmad et al. [2] (‘Al-Ahmad’). b Yield of
transmitted primary electrons versus energy for different foil thicknesses. MDM (solid lines); Experiment
(points): Al-Ahmad et al. [2]

greatly reduces the impact of surface plasmons. It is remarkable that the experimental yield
is close to unity for primary electron energy below the work function of gold. Indeed, the
conservation of energy during inelastic scattering constrains the energy of the primary to be
shared between the scattered electron and the secondary electron. If the scattered electron
has enough energy to escape the solid, the secondary is below the vacuum level and cannot
leave the solid. Vice versa, if the secondary electron has enough energy to leave the solid, the
scattered primary cannot. Thus, the experimental yield close to unity indicates that a only
small fraction of the primary electron energy is wasted in inelastic events. On the other hand,
for elastic collision, our approach does not take into account any structure factor of the solid,
and it is likely that this effect is important for the penetration of low-energy electrons into
metallic media. Additional effects intrinsic to wave penetration in the foil might be necessary
to accurately simulate the experiment.

7.5 Transmission yield

As there is a significant fluctuation of the measured yields depending on the experimental
set up, the simulated transmission yield was compared with several experimental data sets
to check the consistency of experimental results and to validate the simulation approach in a
wide energy range. A set of numerical and experimental results are shown in Fig. 14a, b.

Similar to the case of backscattered electrons, there is a systematic underestimation of
the transmitted electrons by the Penelope code [61] in comparison to MDM results, which
may come from the choice of the low-energy cut-off at 100 eV. The experimental data by
Al-Ahmad et al. [2] tends to overestimate the transmission yield with respect to results of the
other measurements. This is probably the reason of the large difference in Fig. 14b between the
experimental and numerical results. However, one should note that the qualitative behaviour
of the energy dependence of the yield is the same for the simulation and the experiment.

7.6 Conclusion on electron emission yields

Primary electron yields obtained using the MDM simulation are in good agreement with
experimental data, in both transmission and backscattering cases, for different incidence
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angles and different values of the foil thickness. Concerning the role of the surface excitation
modes, it was found that they practically do not impact the result for primary electrons. The
backscattered secondary electron yields are found to be underestimated in comparison with
experimental data, for any thickness or energy values. For incident electron energies above
1 keV, surface modes do not impact the results, while for lower energies, addition of the
surface modes tends to slightly increase the secondary electron yield for thick samples. The
calculated yields of transmitted secondary electrons are in good agreement with experiments
in a wide range of parameters, though for very thin foils (≤ 300µg/cm2) the simulated
yield is slightly overestimated compared to the experimental yield. In that case, an addition
of the surface modes leads to reduced yield and improves the agreement of the results with
the experimental data. In our approach, the energy loss by surface plasmon excitation when
the electron is in close vicinity of the surface outside the medium was not included. This is
certainly a source of additional electron emission which might be responsible for some of
the observed deviation from the experimental values.

8 Energy distribution of emitted electrons

8.1 Energy distribution of backward electron emission

The doubly differential yields with respect to electron emission energy and angle is definitely
a very stringent benchmark for our simulation. It is thus desirable to compare our simulated
spectra to data available in the literature. We shall consider here the simulated results obtained
by Ding et al. [20] by means of a MC simulation quite similar to ours. This work reported
a rather complete set of simulated data for gold and other materials. We shall also compare
our results to the experiments performed by Goto and coworkers [20,28,63], which provide
the most complete set of experimental data, and also to the reference spectrum published by
Seah and Smith [59].

A total of 1 × 108 incident electrons were used in our simulation. Electrons were shot
with either normal incidence to the surface of the sample [20,63], or at an angle of 30◦ to
the surface normal [59]. The detection angle for emitted electron was chosen equal to 42.3◦
± 6◦ with respect to the normal to the surface (Goto and coworkers [20,63]), or at 0◦ ±
6◦ (Seah et al. [59]). Each spectrum was convolved with a Gaussian profile with a standard
deviation equal to the experimental energy resolution (0.24 %). All simulated spectra were
normalized to represent the distribution per incoming electron, per unit of solid angle and
energy. To check the influence of the binding energy distribution in Auger spectra and the
contribution of surface modes, the simulations were performed with or without accounting
for surface modes, and with or without accounting for the binding energy distribution in the
Auger cascade simulation.

Regarding the comparison with experimental spectra, it is important to keep in mind that
obtaining good-quality experimental spectra is an extremely difficult task. The main reason
is that the transmission and detection efficiencies of the spectrometer are difficult to obtain
accurately [59]. Moreover, for a given energy selection, there is always a background due
to secondary electron generated inside the analyser by high-energy electrons. We believe
that experimentalists take great care of such effects, but they are intrinsically difficult to
analyse and no information was given regarding their significance. The problem is probably
not severe for sufficiently high energy of the emitted electron. In a paper dedicated to the
transmission analysis of a cylindrical mirror analyser (CMA) [3], it was shown that the ratio
between the current delivered by a mini-electron gun located at the entrance of the CMA
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Fig. 15 Energy distribution of backward emitted electrons from a thick gold target, for a projectile energy
of 5 keV, (1) for a normal incidence and a detection angle of 42.3◦and a solid angle defined by an opening of
± 6◦ (‘MDM 0◦’) and (2) for at 30 ◦ incidence with respect to the normal surface and a detection angle of
0◦ and a solid angle defined by an opening of ± 6◦ (‘MDM 30◦’). Experimental results are taken from Goto
et al. [63] and from Seah et al. [59]. The other simulation result was taken from Ding et al. [20]. Note that
simulation result appears smoother than in the original work, due to our extraction method

and the detected current reaches a constant value for energies beyond 200 eV approximately.
This means that the experiment is certainly reliable above this energy, where the spectrum is
not subject to deformation inherent to the detection apparatus. For energy below this value,
on the contrary, it is difficult to estimate the actual detection efficiency of the spectrometer,
and the comparison between our results and those published by Goto and coworkers should
be considered as a limited qualitative comparison. We also compare our simulation with
the reference spectrum published by Seah and Smith [59]. According to these authors, their
spectrum is corrected from transmission and detection efficiency.

Experimental and simulation results are shown in Fig. 15 for an incident electron energy
of 5 keV and in Fig. 16 for an incident electron energy of 0.5 keV. As experimental spectra
are essentially on a relative scale, we multiplied the experimental spectra with the ratio of
integrals over the simulated and measured spectra. According to common practice in Auger
electron spectroscopy, the spectra are weighted by the secondary electron energy.

Considering the 5 keV results, we first note that the agreement between both experiments
is excellent. The change of incidence angle from 0◦ to 30◦ has a negligible effect on the
spectral shape, as it can be observed in Fig. 15. The solid angle affects the intensity of the
spectrum, with a higher intensity for a detection angle normal to the surface. The consistency
of the experimental results obtained with two different spectrometers suggests that the CMA
detection efficiency below 200 eV [3] is probably not going to strongly modify the shape of
the spectrum at these energies.

The agreement between the experiments and both simulations is excellent for energies
above 2 keV. It is interesting to note that both our simulation and the one by Ding [20]
underestimate the electron emission between 0.1 and 1.0 keV. The main difference between
both simulations is the account for the Auger process and the surface plasmon excitation in
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our work. The surface plasmon excitation plays only a minor role at 5 keV, but the influence
of the Auger process can be observed around 200 eV in Fig. 15. As shown in a previous
experimental work[28], we obtain a good reproduction of the Auger structures NOO at 140
and 236 eV (which may also be visualized in Fig 16), and the OVV structure at 65 eV.
Our spectrum does not display clearly the MNN Auger peaks at 2011 and 2097 eV. In this
energy range, experimental peaks have a rather small intensity. It is thus difficult to conclude
whether this is due to an underestimated intensity or the noise that prevents the peaks from
being visible.

Considering now the secondary electron emission below 100 eV, we obtain a fair agreement
between our simulation and the experiment. In doing this comparison, it must be kept in mind
that the experimental data were normalized such that the area under the spectrum was the same
as for the simulated spectra. Therefore, the comparison is sensitive to the renormalization
factor. We noticed in the previous section that our simulation underestimate the backward
emission below 50 eV by a factor of approximately 2 at 5 keV (Fig. 12). A higher emission of
low-energy electrons would globally shift upwards the experimental spectra, thus enhancing
the differences between experiment and simulation. Nevertheless, the agreement regarding
the spectral shape would still be fair.

Considering now the 0.5 keV results, we observe also a global agreement between simu-
lation and experiment. We have only one experiment at this energy. However, it was obtained
with the same apparatus as for the 5 keV results reported above and we expect the quality to
be the same. We notice in Fig. 16 a similar underestimation by our simulation of the exper-
imental spectral intensity between 100 and 200 eV. The simulation by Ding et al. performs
better in that respect. Both simulations overestimate slightly the low-energy electron emis-
sion, but the normalization factor applied to the experimental spectrum is quite uncertain and
no definitive conclusion can be reached regarding the accuracy of the simulation.
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With respect to the 5 keV results, this lower energy spectrum exhibits more details related
to surface plasmon and Auger emission, which can be analysed in the simulation by adding
or removing them. Adding an energy distribution in the decay of Auger electrons allows us
to reproduce the Auger peaks much more accurately. One should note that several groups of
Auger peaks in our spectrum appear too intense, especially the group of narrow lines around
70 eV. However, this apparent overestimation is most likely due to an underestimation of the
backward electron yield, as it was shown in the Sect. 7. Increasing the relative contribution
of low-energy electrons would reduce the peaks intensity.

When surface effects are not accounted for, there is a reduction of intensity at small
energy losses associated with a reduction of the emission of low-energy electron. The lack
of surface excitation in the simulation by Ding et al. also leads to a lower intensity at small
energy losses with respect to experiment. This effect is much more significant at 0.5 keV
than at 5 keV. The surface specific interactions are only partially included in our simulation.
In particular the emission induced by a particle moving in the close vicinity of the surface
outside the material is neglected. A comparison of our simulation results with the electron
energy loss spectroscopy measurements by Hagelin et al. [30] (not shown here) confirms that
the probability of low energy loss was underestimated. In order to analyse the possible reason
of this underestimation, we tentatively added an extra excitation line in the optical spectrum
at the energy of 0.11 a.u. (3 eV). It was possible to reproduce the shape of the spectrum by
tuning the amplitude of this mode. However, it strongly impacts the production of secondary
electrons by greatly reducing the number of electrons able to escape the sample. We conclude
that additional experimental energy loss data with various well-defined values of thickness
and for q �= 0, would be extremely useful to better understand the origin of low-energy losses
and to improve the theoretical model.

8.2 Energy distribution of transmitted electrons

A total of 2 × 109 primary electrons were sent to obtain Fig. 17. As in the experiment by
Wehenkel et al. [66], the foil thickness was set at 22 nm, and the electron beam energy to
35 keV. The transmitted particles were collected within an acceptance angle of 0 ± 5 mrad.
A recursive method was applied by Wehenkel to differentiate the bulk, surface and multiple
scattering contributions of the experimental spectrum [66,67]. In our simulation, most of
the transmitted electrons have only one interaction on their path through the foil. For each
transmitted electron, the number of interactions of each type was recorded to account for the
contributions of the surface modes, bulk modes, core ionization, double inelastic interaction
and triple inelastic interaction. The final energy loss spectrum is shown in Fig. 17 from 0 to
120 eV. The results of the simulations were normalized to the number of incoming electrons
and the histogram was converted to a double differential spectrum by taking into account the
solid angle and the histogram bin width (0.25 eV). The experimental spectrum was multiplied
by the ratio of integrals over the simulated and measured spectra.

In Fig. 17, one can see that the simulation results are in very good agreement with exper-
imental data in the energy range of 40–120 eV. The two peaks around 25 and 35 eV are
also well reproduced. However, the peaks at lower energies are slightly redshifted, and the
simulation intensity slightly differs from the experimental data. This shift may be explained
by the difference of the contribution of the surface modes between the experiment and our
simulation. It is difficult, however, to conclude whether the discrepancy in the estimation
of the surface effect contribution results from limitations of our theoretical model based on
the macroscopic dielectric function of the media, or from the analysis used in the work by
Wehenkel et al. [66] to estimate the contribution of surface effects in the experiment. More
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electron beam energy 35 keV. MDM results are shown by lines, experimental data [66] by filled plots

experimental measurements with different values of the foil thickness would help to better
separate the bulk and surface contribution.

9 Conclusion and outlook

We presented the theoretical framework of the MDM Monte Carlo simulation for transport of
non-relativistic electrons down to low energy in metallic media. The approach is based on a
model which includes solid state effects in the metal and at the medium interface. The surface
excitations were taken into account explicitly by means of a simple position-dependent cross
sections.

We performed a thorough benchmark of our model for the case of gold with available
theoretical and experimental data in the literature. We emphasize that numerous aspects of
electron emission were consistently reproduced with one single model of electron transport. It
was demonstrated that our results are in good agreement with experimental data both for elec-
tron yields and energy loss spectra. Primary electron yields showed an excellent agreement.
The simulated energy spectrum of transmitted electrons also reproduces the experimental
dependence with reasonable accuracy. However, the yield of backward secondary electrons
is systematically underestimated. Applying a rescaling of the cross sections for low-energy
modes, or changing the average mesoscopic potential V0 alone, which defines the surface
potential barrier, did not fix the problem.

The discrepancy with experimental data might be due to the quadratic extension of the
dielectric function for q �= 0 and in the domain of low energy loss ω. However the success
of HREELS simulation for aluminium target with a parameterization of the dielectric func-
tion similar to the one used here [58] suggests that this is probably not a strong source of
discrepancy. Additional experimental data would be useful to better understand and improve
the theoretical results in this energy region. However, the energy loss by surface plasmon
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excitation when the electron is in the close vicinity of the surface outside the medium was not
included in our simulation. This may be a source of additional backward electron emission,
and including it in our model may improve the agreement with experimental results [68].
Besides, additional comparisons with other metallic targets are in progress.

Nevertheless, the results of our study indicate the possibility to use the model in other
research fields, in particular transport of electrons in nano-objects, which requires an explicit
description of the transport of low-energy electrons. The results for the thinnest foils (a few
tens of nm) are quite reasonable, according to the broad benchmark we performed against
experiment. This is particularly encouraging to investigate nanodosimetry in the context of
gold nanoparticle enhanced radiation therapy. We emphasize that this model may be easily
implemented in a MC simulation, introducing bulk/surface excitations and IMFP depending
on the position of the electron while remaining computationally efficient. This is essential in
order to achieve reasonable calculation time for such applications. Besides, it is noteworthy
that our simulation can also be used together with physico-chemical tools to investigate the
production of radical species induced by gold nanoparticles in water.

The presented study opens wide perspectives in further development. An influence of
the collective excitation on the electron emission processes from irradiated nanoparticles
surrounded by water medium could be investigated. Moreover, the models constitute a solid
basis to extend the simulation to other metallic materials such as platinum or silver, which
are also used for nanoparticle radiosensitizing effects. We also intend to extend the MDM
simulation towards higher energies by taking into account relativistic effects for electron
transport.
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Appendix A: Energy loss function fitting from optical data

For bulk plasmons, the optical energy loss function is expanded into a sum of several terms
of the Drude-type energy loss function. For a projectile electron of kinetic energy Ekin,1, the
DIMFP is given by,

dλ−1
b,∞

dω
=

∑
i

dλ−1
b,∞,i

dω
, (A1)

with
dλ−1

b,∞,i

dω
given by,

dλ−1
b,∞,i

dω
= 1

π Ekin,1

∫ q+

q−
dq

q
Ai

× γiω

(ω2 − (ωb,i + q2

2 )2)2 + (ωγi )2
. (A2)
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were taken from Wehenkel et al. [66], Philipp et al. [15] and Daniels et al. [17]. The final fit was done using
the experimental data of Wehenkel et al. [66]

ω is the projectile energy loss, q is the transferred momentum, Ai a weight factor, ωb,i is
the resonance energy and γi represents the full-width at half-maximum of the mode i . Ai ,
ωb,i and γi were obtained by fitting the energy loss function of the medium of interest. The
final parameters are given in “Appendix C” in the case of gold. As shown in the work by
Ashley et al. [7], Ai is constrained and must respect the sum rule given in Eq. A3,

∑
i

Ai = 4π Nena, (A3)

where Ne is the number of valence electrons per atom, and na the number of atoms per
volume unit. The choice of the number of electrons considered as valence electrons, for
which collective effects are taken into account, determines by complementarity the number
of inner-shell electrons which are described like purely atomic electrons. If deep subshells,
such as the K and L levels, can clearly be identified as atomic shells, and the 11 outermost
electrons can clearly be described as valence electrons, there is an uncertainty regarding the
intermediate shells, such as 5p6. Their binding energies are smaller than 100 eV, and it is
rather difficult to consider them a priori as weekly bound electrons or core electrons. The
key point to our strategy relies in finding a good fit for experimental data, which are available
up to energies of about 100 eV. A fit was done without constraints on the Ai coefficients, and
the number of electrons contributing to collective effects was then deduced. In this fit, the
energies up to the 4f shells were considered, for which the binding energy is about 97 eV.
Using 9 fitting Lorenz profiles, 17.3 valence electrons per atom were effectively included in
the dielectric function. This number represents the 11 outermost electrons, the 4 electrons of
the subshell 5p6

3/2 (binding energy of 61 eV), the 2 electrons of the subshell 5p6
1/2 (binding

energy of 78 eV) and a fraction of the electrons from the subshells 5s2 and 4f14. These results
are overall very consistent: as the fit is done up to about 100 eV, it includes the subshells that
have their binding energies in this range. The final fit is shown in Fig. 18.
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Appendix B: Parameters for core ionization

Table 1 presents the parameter used for the core ionization model based on Kim et al. [38].

Table 1 Parameters used for the BEB model and Auger decay

Shell Subshell Label Orbital B
〈
Ee−

〉
ΔB ne− c Eff. e− Index

K 1s2 K 1s1/2 2975.4 4 779 0.02 2 2 1

L 2s2 L1 2s1/2 526.87 1 107.5 0.02 2 2 2

2p6 L2 2p1/2 506.28 1 346 0.02 2 2 3

L3 2p3/2 438.15 732.8 0.02 4 4 4

M 3s2 M1 3s1/2 125.01 342.8 0.02 2 2 5

3p6 M2 3p1/2 115.556 400.7 0.02 2 2 6

M3 3p3/2 100.48 248.4 0.02 4 4 7

3d10 M4 3d3/2 84.55 543.7 0.02 4 4 8

M5 3d5/2 81.3 224.7 0.02 6 6 9

0.3cmN 4s2 N1 4s1/2 27.47 108.5 0.02 2 2 10

4p6 N2 4p1/2 23.38 118.7 0.02 2 2 11

N3 4p3/2 19.75 79. 0.02 4 4 12

4d10 N4 4d3/2 13.0 71. 0.02 4 4 13

N5 4d5/2 12.32 65.7 0.02 6 6 14

4 f 14 N6 4 f5/2 3.58 51.2 0.184 6 0.981 5.886 15

N7 4 f7/2 3.43 49.7 0.184 8 0.981 7.848 16

O 5s2 O1 5s1/2 4.24 24.6 0.184 2 0.981 1.962 17

5p6 O2 5p1/2 2.89 23.44 0.368 2 0. 18

O3 5p3/2 2.26 15.67 0.368 4 0. 19

O + P 5d10 + 6s1 O4O5 + P1 6s1/2 0.269 8.6 0.2 11 0. Weakly bound

Total 79 61.7

All the results are given in atomic units. B is the binding energy.
〈
Ee−

〉
is the average kinetic energy of the

bound electron and ΔB the binding energy broadening that is effectively used for Auger electron emission.
ne− is the number of electrons per shell, which is effectively used for the Auger cascade, while c is a scaling
coefficient as introduced in Sect. 3.2.5. Eff. e− represents the final numbers of electrons accounted for in each
shell for the BEB model
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Appendix C: Optical data fit parameters for dielectric-based interaction

Table 2 presents the parameters obtained by fitting of the optical data of [66] that are used in
MDM for the plasmon excitation cross sections.

Table 2 Parameters obtained by the energy loss function fit

Ai ωb,i ωs,i γi e− C0 Eff. e−

1 0.054 0.1069 0.0707 0.029 0.0043 4. 0.0171

2 0.349 0.2158 0.1526 0.098 0.0278 1. 0.0278

3 2.531 0.4279 0.3026 0.201 0.2014 1. 0.2014

4 4.937 0.6093 0.4308 0.231 0.3929 1. 0.3929

5 14.442 0.9117 0.6446 0.244 1.1493 1. 1.1493

6 14.253 1.2047 0.8518 1.205 1.1342 1. 1.1342

7 96.933 1.5994 1.1309 0.961 7.7137 1. 7.7137

8 45.313 2.3735 1.6783 0.785 3.6059 1. 3.6059

9 38.425 3.0205 2.1358 0.974 3.0578 1. 3.0578

Total 17.29 17.30

Ai is the amplitude of the mode i , ωb,i (resp. ωs,i ) the resonance energy of the bulk (resp. surface) mode
i , and γi the dissipation constant. Eff. e− represents the total number of electrons described by the mode i
following Eq. A3 and Eq. 17. All the results are given in atomic units. As the results obtained for electron
energy loss clearly showed an underestimation of the surface plasmon peak intensity for mode 1, the cross
section of this mode was multiplied by 4

Appendix D: Position-dependent mean free path Monte Carlo procedure

For an uniform homogeneous medium, the free path s of a projectile between two successive
interaction events obeys an exponential law of probability distribution,

p(s) = λ−1 exp

(−s

λ

)
, (D1)

where λ is the total mean free path, and λ−1 is determined as the sum of the IMFPs for
all the processes considered. Introduction of surface excitation modes in our model leads to

the dependence of IMFPs on the position of the particle
→
r (s). As a consequence, sampling

the free path by using the distribution (D1) is no longer valid and must be replaced by

p(s) = λ−1(
→
r (s)) exp(−U (s)), (D2)

with U (s) = ∫ s
0 λ−1(

→
r (s′))ds′

To evaluate the dependence of λ−1(
→
r (s)) on the current position of the particle, the

geometry given in Fig. 19 is considered. We assume that locally the surface is planar. At the

initial position s = 0, the distance to the surface is given by z = z0, and at the position
→
r (s)

the distance to the surface is given by z(s). Given the normal vector to the surface
→
n , and
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Fig. 19 Geometry of the system: the electron passes a distance s with velocity
→
v , starting at an initial position

at z0 from the surface

the velocity of the particle
→
v , at any position

→
r (s) along the trajectory, we have

z(s) = z0 + s cos(θ), (D3)

cos(θ) =
→
n · →

v∥∥∥→
v

∥∥∥
. (D4)

At a given position
→
r (s), the inverse mean free path λ−1(z(s)) is equal to

λ−1(z(s)) = λ−1
surf exp(−z/zeff) + λ−1

bulk(1 − exp(−z/zeff))

+
∑

i

λ−1
i , (D5)

where λ−1
surf is associated with surface excitation modes, λ−1

bulk is associated with bulk
modes, and

∑
i

λ−1
i are associated with all the other interaction without position dependence.

The probability density of having an interaction is therefore given by:

p(s) = λ−1(z(s)) exp[−λ−1
surf F(s, z0, cos θ)

+(λ−1
bulk + λ−1

i )s − λ−1
bulk F(s, z0, cos θ)], (D6)

where

F(s, z0, cos θ) = zeff exp(−z0
zeff

)

cos(θ)

(
1 − exp

(
cos(θ)s

zeff

))
. (D7)

To sample the free path s, a rejection method is used, using the density of probability p(s).
Once s is sampled, the new position is calculated and used to sample the next interaction
process. Then, the sampling of the type of interaction i which an electron undergoes is done
by the standard MC procedure described for instance in the work by Ding. et al. [21], using
the different IMFPs λ−1

i . We emphasize that λ−1
i depends on the position and has therefore

to be calculated at the position of the interaction.

Appendix E: Differential elastic cross section

Figures 20 and 21 show differential elastic cross section obtained with our model and other
theoretical and experimental data.
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