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Abstract. Box-ball system (BBS) is a prominent example of integrable cellular au-

tomata in one dimension connected to quantum groups, Bethe ansatz, ultradiscretiza-

tion, tropical geometry and so forth. In this paper we study the generalized Gibbs

ensemble of BBS soliton gas by thermodynamic Bethe ansatz and generalized hydrody-

namics. The results include the solution to the speed equation for solitons, an intriguing

connection of the effective speed with the period matrix of the tropical Riemann theta

function, an explicit description of the density plateaux that emerge from domain wall

initial conditions including their diffusive corrections.

Keywords : Box-ball system, Integrable cellular automata, Solitons gas, Generalized Gibbs

ensemble, Generalized hydrodynamics

1. Introduction

The box-ball system (BBS) invented originally in [33] is an integrable cellular automaton

on one dimensional lattice. It accommodates solitons exhibiting factorized scattering.

Here is an example of collision of three solitons with amplitude 4, 2 and 1, where time

evolution goes downward:

. . . 00111100000110000010000000000000000000000000000 . . .

. . . 00000011110001100001000000000000000000000000000 . . .

. . . 00000000001110011100100000000000000000000000000 . . .

. . . 00000000000001100011011100000000000000000000000 . . .

. . . 00000000000000011000100011110000000000000000000 . . .

. . . 00000000000000000110010000001111000000000000000 . . .

. . . 00000000000000000001101000000000111100000000000 . . .

. . . 00000000000000000000010110000000000011110000000 . . .

. . . 00000000000000000000001001100000000000001111000 . . .
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One observes that the larger solitons are faster and a two body collision entails a

phase shift in the trajectory. They come back precisely in the original amplitude 1,2 and

4 after nontrivial intermediate states.

Subsequent studies have clarified that BBS originates either in the ultradiscretization

of a discrete KdV equation or also in the q = 0 limit of solvable vertex models associated

with the quantum group Uq(ŝl2). As such, it inherits and synthesizes a number of

rich aspects both in classical and quantum integrable systems. For example, one can

construct commuting family of time evolutions and the associated conserved quantities

by introducing the carriers on a hidden auxiliary space (see Example 2.4). Solitons in BBS

yield the quasi-particles that are exactly counted by Bethe’s formula [3] and its variant

(see (3.3)) for the number of string solutions to the Heisenberg chain (soliton/string

correspondence). The equation of motion takes the Hirota-Miwa bilinear form in which

the role of tau functions is played by an ultradiscrete analogue of corner transfer matrices

[1]. The initial value problem on a periodic lattice is solved by tropical Riemann theta

function1 whose period matrix and Poincaré cycle are simply related to the Bethe ansatz

data, and so forth. For the integrability and various generalizations of BBS, see for

example the review [23] and the references therein.

Recently there has been a renewed interest on BBS from the perspectives of statistical

physics and probability theory in and out of equilibrium [6, 7, 8, 18, 19, 29, 30, 25].

Our aim in this paper is to explore such features further in the light of generalized

hydrodynamics (GHD). The approach has flourished widely for the Bethe ansatz

integrable systems in general [5, 2, 11] by developing and unifying the ingredients known

earlier in [38, 35, 24, 14] for example.

Let us digest the main results of the paper. We consider the generalized Gibbs

ensemble (GGE) of BBS soliton gas and apply the thermodynamic Bethe ansatz (TBA)

[36, 34]. Due to the soliton/string correspondence mentioned above, the TBA equation,

the stationary condition of GGE, becomes the well-known Y-system involving many

temperatures (called driving terms) but without a spectral parameter. We present its

solution in the form of multi-fugacity series expansion by invoking the generalized Q-

system [26].

One of the basic ingredients in GHD is a speed equation. It governs the effective

speed of solitons taking the influence of the other ones into account. We find that the

speed equation of BBS is nothing but the inversion relation of the tropical period matrix

mentioned previously. The solution, i.e. the effective speed, is thereby identified with

an appropriately scaled off-diagonal elements of the inverse of the tropical period matrix.

These facts are integrated into a quite general proof that the current by solitons coincides

with the time average of the carrier current over the Poincaré cycle. This intriguing

connection deserves a further investigation which we expect to yield a deeper insight into

GHD.

We present a general formalism of the GHD [11] adapted to BBS. The essential

1 Analogue of the Riemann theta function in tropical geometry where infinite sum is replaced by a

minimum or maximum over an infinite set.
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variable is the occupation function, or equivalently the Y-function, in the TBA playing

the role of the normal mode. As an application we study the non-equilibrium dynamics

starting from domain wall initial conditions. It is a typical setting in the Riemann

problem called partitioning protocol. Our numerical analysis demonstrates the formation

of plateaux in the density profile after the evolution from the i.i.d. random initial states

in the non-empty region. It testifies the ballistic transport of solitons where each plateau

is filled with those having a selected list of amplitudes. The plateaux exhibit slight

broadening in their edges due to the diffusive correction to the ballistic picture. A general

recipe to calculate the diffusion constant for such a spread has been given in [9, 21]. We

make use of these GHD machinery to derive an analytical formula for the positions and

heights of the plateaux, and moreover the curves that describe their edge broadening.

They agree with the numerical data excellently.

The layout of the paper is as follows. In Sec. 2, we recall the basic features of

BBS in the periodic boundary condition including commuting time evolutions T1, T2, . . .

and a family of conserved quantities. In Sec. 3, we study the GGE of BBS solitons

by TBA. In particular for the two temperature case, closed formulas are given for the

densities of strings, holes and the energies in (3.24)–(3.26). For the general case, the

fugacity expansion solution is presented in Appendix B. In Sec. 4, we study the effective

speed of solitons and the stationary current in the spatially homogeneous setting. Our

speed equation (4.1) for the time evolution Tl coincides with [19, eq.(11.7)] at l =∞. It is

established quite generally that the current due to solitons coincides with the time average

of the carrier current [27, Prop.4.3]. The proof elucidates a new link between the effective

speed and the period matrix B (4.6) which appeared originally in the tropical Riemann

theta function [27, eq.(4.14)]. For the two temperature GGE, the effective speed and the

current are obtained in closed forms (D.2) and (D.3). The latter nontrivially agrees with

an alternative derivation (E.20) based on a transfer matrix formalism. It also reproduces

the earlier result in [6, Lem.3.15] for T∞. In Sec. 5, we formulate GHD in a form adapted

to BBS and apply it to the density plateaux generated form the domain wall initial

conditions. We perform an extensive numerical analysis and confirm an agreement with

high accuracy. Sec. 6 contains a future outlook concerning a more general BBS. Appendix

A presents a transfer matrix formalism of the GGE partition function. Appendix B

relates the TBA equation to the generalized Q-system and provides the multi-fugacity

series expansion formulas. Appendix C provides a proof of (4.14) which leads to the

general formula (4.19) of the effective speed in terms of the hole density. Appendix D

and Appendix E derive an explicit formula for the current in homogeneous case by two

different methods. Appendix F recalls the linearly degenerate hydrodynamic type systems

from [35, 24].

2. Box-ball system

In this section we recall the basic features of the generalized periodic box-ball system

(BBS) equipped with commuting time evolutions T1, T2, . . . [28] which includes T∞ studied

in [37].
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2.1. Combinatorial R

For a positive integer l, set Bl = {(x0, x1) ∈ (Z≥0)2 | x0 + x1 = l}. We shall use ⊗ to

denote the product of the sets Bl’s and their elements instead of × having the crystal

structure in mind although its consequence will not be utilized explicitly in this paper.

Define a map Rl,m : Bl ⊗Bm → Bm ⊗Bl by

Rl,m : (x0, x1)⊗ (y0, y1) 7→ (ỹ0, ỹ1)⊗ (x̃0, x̃1), (2.1)

x̃i = xi + min(xi+1, yi)−min(xi, yi+1), ỹi = yi −min(xi+1, yi) + min(xi, yi+1), (2.2)

where all the indices are in Z2. The map Rl,m is known as the combinatorial R of A
(1)
1 . It

is a bijection and satisfies the inversion relation Rl,mRm,l = idBm⊗Bl and the Yang-Baxter

relation (1⊗Rk,l)(Rk,m⊗ 1)(1⊗Rl,m) = (Rl,m⊗ 1)(1⊗Rk,m)(Rk,l⊗ 1). It also enjoys the

symmetry corresponding to the Dynkin diagram automorphism of A
(1)
1 :

R(ω ⊗ ω) = (ω ⊗ ω)R, ω
(
(x0, x1)

)
= (x1, x0). (2.3)

The BBS considered in this paper is mostly concerned with Rl,1 : Bl⊗B1 → B1⊗Bl.

Its action is given by (l − n, n) ⊗ (1 − η, η) 7→ (1 − η̃, η̃) ⊗ (l − ñ, ñ), where η̃, ñ are

determined from n, η according to the following diagrams:

η

?
n - ñ =

η̃

0

?
n - n−1

1 (n > 0)

0

?
0 - 0

0

1

?
n - n+1

0 (n < l)

1

?
l - l

1 (2.4)

2.2. States, time evolutions and energies

The BBS is a dynamical system on a periodic lattice of size L. An element η =

η1 ⊗ · · · ⊗ ηL ∈ B⊗L1 is called a state. In what follows a local state (1 − ηi, ηi) ∈ B1

is flexibly identified with ηi ∈ {0, 1} and interpreted as a box containing ηi balls at site

i ∈ ZL. Thus the state η is also presented as an array η = (η1, . . . , ηL) ∈ {0, 1}L.

In order to introduce the time evolution, consider the composition of Rl,1 L times

which sends Bl ⊗ B⊗L1 to B⊗L1 ⊗ Bl. If ξl ⊗ η1 ⊗ · · · ⊗ ηL 7→ η̃1 ⊗ · · · ⊗ η̃L ⊗ ξ̃l under this

map, the situation is depicted as a concatenation of the diagrams (2.4) in the form of a

row transfer matrix:

ξl ξ̃l

η1 η2

? ?
η̃1 η̃2

· · · -

ηL−1 ηL

? ?
η̃L−1 η̃L (2.5)

As with ηi, we identify the elements (l − n, n) ∈ Bl attached to the horizontal line with

n ∈ {0, 1, . . . , l}, and regard it as the capacity l carrier containing n balls [32]. In this
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interpretation, the diagrams (2.4) for Rl,1 describe a loading/unloading process of balls

between a local box and the capacity l carrier which is proceeding to the right.

Given ξl ∈ Bl and η = (η1, . . . , ηL), the diagram (2.5) determines η̃ = (η̃1, . . . , η̃L)

and ξ̃l ∈ Bl uniquely. This relation will be expressed as2 ξl ⊗ η ' η̃ ⊗ ξ̃l.
Suppose

∑
i∈ZL ηi < L/2, i.e., the ball density is less than one half. (See Remark 2.1

for the other case.) Then there is a unique ξl ∈ Bl such that ξ̃l = ξl in (2.5). Denoting it

by cl(η) ∈ Bl, it can be produced as (l, 0)⊗ η ' η̃ ⊗ cl(η). These facts have been proved

in [28, eqs.(2.9)–(2.11)]. Based on them we define the time evolution Tl(η) = (η′1, . . . , η
′
L)

and the associated l-th energy El(η) ∈ Z≥0 of η by

cl(η)⊗ η ' Tl(η)⊗ cl(η), (2.6)

El(η) =
∑
i∈ZL

θ(ηi > η′i). (2.7)

Here and in what follows we use

θ(true) = 1, θ(false) = 0. (2.8)

The RHS of (2.7) depends on l via η′i = Tl(η)i. Then the commutativity TlTk(η) = TkTl(η)

and the energy conservation El(Tk(η)) = El(η) are valid for all l, k ∈ Z≥1 [28, Th.2.2].

The time evolution Tl can be identified with a fusion transfer matrix with l+1-dimensional

auxiliary space at q = 0 [23]. The above properties are reminiscent of commuting transfer

matrices in the sense of Baxter [1].

When l = 1, the Rl,1 is the identity map (1−n, n)⊗(1−ηi, ηi) 7→ (1−n, n)⊗(1−ηi, ηi).
From this fact we see that T1 is a cyclic shift and E1 is a sum of a simple nearest neighbor

correlation:

T1
(
(η1, η2, . . . , ηL)

)
= (ηL, η1, . . . , ηL−1), (2.9)

E1

(
(η1, η2, . . . , ηL)

)
=
∑
i∈ZL

θ(ηi < ηi+1) (2.10)

As l→∞, the time evolution Tl converges to some dynamics T∞ describable without

a carrier [28, Ex. 2.7]. It is nothing but a translation in the extended affine Weyl group of

A
(1)
1 [28, Prop. 2.5], which is referred to as Pitman’s transformation in probability theory

literatures, e.g., [6].

Remark 2.1. Thanks to the symmetry (2.3), one can cover the case
∑

i∈ZL ηi > L/2

by Tl(η) = ω⊗L
(
Tl(ω

⊗L(η))
)
. The energy also obeys El(η) = El(ω

⊗L(η)). When∑
i∈ZL ηi = L/2, the cl(η) satisfying (2.6) is not unique but Tl(η) remains unique. For the

general treatment, see [28].

2.3. Solitons

We assume
∑

i∈ZL ηi < L/2. Let us illustrate the solitons along examples.

2 We use ' to signify that the RHS is actually the result of successive application of Rl,1 to the LHS

bearing in mind that it causes the isomorphism of crystals Bl ⊗B⊗L1 ' B⊗L1 ⊗Bl.
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Example 2.2. For the state η of length L = 13 on the top line, its time evolution T t3(η)

(left) and T t5(η) (right) are displayed.

t = 0 : 0 0 0 1 1 1 1 0 0 0 0 0 0
t = 1 : 0 0 0 0 0 0 1 1 1 1 0 0 0
t = 2 : 0 0 0 0 0 0 0 0 0 1 1 1 1
t = 3 : 1 1 1 0 0 0 0 0 0 0 0 0 1
t = 4 : 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0

These are examples of one soliton states. The consecutive array of balls keeps the pattern

and proceeds to the right periodically with the (bare) speed 3 and 4. It is an analogue of

stable wave packet. The energy spectrum (E1, E2, E3, . . .) is (1, 2, 3, 4, 4, . . .).

As Example 2.2 indicates, consecutive k balls (1’s) behave as a soliton of amplitude

k, or simply a k-soliton in general. Its speed under the time evolution Tl is min(l, k). It

does not exceed l since the carrier for Tl can load at most l balls. A sufficiently isolated

k-soliton contributes to El by min(l, k). This suggests us to define the number mk of

k-solitons in a state from the conserved energy spectrum as

El =
∑
k≥1

min(l, k)mk, mk = −Ek−1 + 2Ek − Ek+1 (E0 = 0). (2.11)

These features are parallel with the BBS on the infinite (non-periodic) lattice [20]. In

fact, so defined mk = mk(η) is know to satisfy mk ≥ 0 nontrivially [28, Prop. 3.4]. The

conserved quantity m = (mk)k≥1, which is a linear recombination of the energy spectrum,

is called the soliton content of a state. It is conveniently depicted as the Young diagram

Y (η) containing mk rows of length k:

Y (η) =
6
mk = mk(η)
?

� k-

(2.12)

By the definition Y (η) is the list of the amplitude of solitons which correspond to its rows.

The energy El is the number of boxes in the left l columns of Y (η). In particular E1, the

number of solitons, is the depth of Y (η), and E∞, the number of balls, is the total area

of Y (η). Now it is clear that the energy El has the saturation property

E1 < E2 < · · · < Es = Es+1 = · · · = E∞(η) = M :=
∑
i∈ZL

ηi, (2.13)

where s is the amplitude of the largest soliton, or equivalently, the width of Y (η). By

the definition mk = 0 holds for k > s. The upper bound M is the total number of balls.

Similarly it is known that Tl(η) = T∞(η) if and only if l ≥ s.
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Example 2.3. Let us observe the time evolution T t4(η) (left) and T t5(η) (right) of a two

soliton state η on the top line.

t = 0 : 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
t = 1 : 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
t = 2 : 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0
t = 3 : 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0
t = 4 : 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1

1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

A 5-soliton and a 2-soliton are colliding repeatedly and periodically. Their amplitude 5+2

look 3+4 or 4+3 temporarily in the course of the collisions, but they do come back to the

original 5 and 2 when separated sufficiently. The collisions cause a shift of the trajectory

of free solitons. We we call it the phase shift. In the above examples, the both larger and

smaller solitons have been dragged to each other by 4 lattice units.

As observed in Example 2.3, the phase shift in a collision of a j-soliton and a k-soliton

is 2 min(j, k) under any time evolution Tl as long as their relative speed min(j, l) and

min(k, l) are different. The independence of the value 2 min(j, k) on l is a manifestation

of the commutativity of the time evolutions.

Example 2.4. Let us observe the time evolution T t2(η) ∈ B⊗191 of a five soliton state η

on the top line.

t = 0 : 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0
t = 1 : 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0
t = 2 : 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1
t = 3 : 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0
t = 4 : 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1
t = 5 : 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0

Y (η) =

The energy spectrum (E1, E2, . . .) is (5, 8, 9, 9, . . .), which corresponds to m1 = m2 =

2,m3 = 1 and mk = 0 for k ≥ 4. The evolution from T2(p) to T 2
2 (p) has been computed

by the diagram (2.5) as

0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0
1 0 0 0 1 2 1 0 1 2 1 0 1 2 2 1 2 1 2 1

1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1

3. Generalized Gibbs ensemble of BBS solitons

3.1. Volume of iso-level set

We assume
∑

i∈ZL ηi < L/2. We have seen that the energy spectrum (Ej)j≥1 (2.7), the

soliton content (mj)j≥1 (2.11) and the Young diagram Y (2.12) are equivalent ways of

presenting the conserved quantities of BBS. The combination

pj = L− 2
∑
k≥1

min(j, k)mk = L− 2Ej (j ≥ 0) (3.1)

is called the vacancy, and pj/L the hole density. They will play an important role in the

sequel. From (2.13) one sees L = p0 > p1 > · · · > ps = ps+1 = · · · = p∞ = L − 2M ≥ 1.
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Given the data m = (m1,m2, . . . ,ms) ∈ (Z≥0)s such that
∑

1≤j≤s jmj < L/2, introduce

the set of BBS states whose soliton content is m:

Ps(m) = {η = (η1, . . . , ηL) ∈ {0, 1}L | El(η) =
s∑
j=1

min(l, j)mj for any l}. (3.2)

This is an iso-level set, which is invariant under the time evolutions of BBS. It consists

of solitons with amplitude not exceeding s. From [28, Cor. 4.4, eq.(4.8)], its cardinality

is given by a version of “Fermionic formula”:

|Ps(m)| = L

L− 2M

s∏
j=1

(
pj +mj − 1

mj

)
, (3.3)

where M =
∑

1≤k≤s kmk < L/2 as in (2.13). The formula (3.3) is known valid essentially

for the whole range 0 ≤ M ≤ L. In general mj = 0 for j > L/2, therefore any s such

that s ≥ [L/2] is equivalent and allows all the possible amplitude for the solitons. See

[28, eqs.(3.6), (4.21)] for the precise description.

Example 3.1. Cosider L = 9, m = (m1,m2,m3, . . .) = (1, 0, 1, 0, 0, . . .), hence

(p1, p2, p3, . . .) = (5, 3, 1, 1 . . .). For s ≥ 3, the iso-level set Ps(m) consists of the 45

states given by the Z9 cyclic shifts of

(000010111), (000100111), (001000111), (010000111), (000011011),

where the last one is the “intermediate” state during the collision in which amplitude 3+1

temporarily look 2 + 2. The cardinality is reproduced as |Ps(m)| = 9
9−8

(
5
1

)(
3
0

)(
1
1

)
= 45.

Example 3.2. Consider Example 2.4, which corresponds to L = 19 and m =

(m1,m2,m3, . . .) = (2, 2, 1, 0, 0, . . .), hence (p1, p2, p3, . . .) = (9, 3, 1, 1, 1 . . .). Thus (3.3)

with any s ≥ 3 gives

|Ps(m)| = 19

1

(
10

2

)(
4

2

)(
1

1

)
= 10260. (3.4)

3.2. Generalized Gibbs ensemble

We are going to study the gas of BBS solitons with amplitude not exceeding s in terms of

the generalized Gibbs ensemble involving the energies E1, E2, . . . , Es with the conjugate

inverse temperatures β1, β2, . . . , βs. It will be referred to as GGE(β1, β2, . . . , βs). The

canonical partition function reads

ZL(β1, . . . , βs) =
∑
η

e−β1E1−···−βsEs (3.5)

with the sum taken over η ∈ {0, 1}L such that mj = 0 for j > s. The free energy per site

is

F = − lim
L→∞

1

L
logZL(β1, . . . , βs) (3.6)

= − lim
L→∞

1

L
log

(∑
m

|Ps(m)|e−
∑

1≤j,k≤s βj min(j,k)mk

)
, (3.7)
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where the sum is taken with respect to m = (m1, . . . ,ms) ∈ (Z≥0)s. To get the second line,

we used the fact that the inclusion of the contributions from those η such that M ≥ L/2

in (3.5) at most doubles the quantity in log by Remark 2.1. In Appendix A, we present

a transfer matrix formalism of the partition function (3.5), which formally corresponds

to the maximal choice s = [L/2]. It enables us to compute the free energy F . However

to compute the current, we actually need a more refined information on the density on

solitons with each amplitude. (See Appendix E for an approach to bypass it at least for

the two temperature GGE, although.) To extract it, we resort to the thermodynamic

Bethe ansatz in the next subsection.

3.3. Thermodynamic Bethe ansatz

Assuming the L-linear scaling

mj ' Lρj, pj ' Lσj, Ej ' Lεj, (3.8)

εj =
s∑

k=1

min(j, k)ρk, σj = 1− 2εj, (3.9)

and substituting (3.3) into (3.7), we find

F = β1ε1 + · · ·+ βsεs −
s∑
i=1

(
(σi + ρi) log(σi + ρi)− σi log σi − ρi log ρi

)
, (3.10)

where ρi is the solution to the condition ∂F
∂ρi

= 0. It leads to the TBA equation:

s∑
j=1

min(i, j)βj = log(1 + Yi)− 2
s∑
j=1

min(i, j) log(1 + Y −1j ), Yi =
σi
ρi
. (3.11)

It is cast into the (constant) Y-system:

Y 2
1 = eβ1(1 + Y2), (3.12)

Y 2
i = eβi(1 + Yi−1)(1 + Yi+1) (1 < i < s), (3.13)

Y 2
s = eβs(1 + Ys−1)(1 + Ys). (3.14)

Note the irregularity of the very last factor which is not 1 +Ys+1. In terms of the positive

solution Y1, . . . , Ys to the Y -system, the free energy (3.6) is given by

F = −
s∑
i=1

log(1 + Y −1i ). (3.15)

In Appendix B we present low temperature series expansions for F , Yi, ρi and εi, etc.

3.4. Two temperature GGE

In this subsection we focus on the special case GGE(β1, β∞) including the two inverse

temperatures β1 and β∞. Their conjugate energies E1 and E∞ are the only cases that

become sums of local correlations. See (2.10) and (2.13).
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Consider the Y-system (3.12)–(3.14) with β2 = · · · = βs−1 = 0. It is equivalent to

the following equations and the boundary condition:

Y 2
i = (1 + Yi−1)(1 + Yi+1) (1 ≤ i ≤ s), (3.16)

1 + Y0 = eβ1 , 1 + Ys+1 = eβs(1 + Ys). (3.17)

An advantage of (3.16) over (3.13) is that it allows a general solution simply expressible

in terms of two parameters a, z:

Yi = Qi−1Qi+1, Qi =
a

1
2 z

i
2 − a− 1

2 z−
i
2

z
1
2 − z− 1

2

, (3.18)

where the latter satisfies another difference equation called Q-system:

Q2
i = Qi−1Qi+1 + 1 (i ∈ Z). (3.19)

Moreover, the boundary condition (3.17) relates a, z to the temperatures as

e
β1
2 = Q0 =

a
1
2 − a− 1

2

z
1
2 − z− 1

2

, eβs =
(Qs+1

Qs

)2 s→∞−→ eβ∞ = z−1, (3.20)

where we have assumed 0 < z < 1 without loss of generality to derive the latter relation.

On the other hand the first relation demands 0 < a ≤ z in order to satisfy β1 ≥ 0.

The free energy (3.15) is evaluated as

F = −
s∑
i=1

log

(
Q2
i

Qi−1Qi+1

)
= log

(
Q0Qs+1

Q1Qs

)
s→∞−→ log

(
1− a
1− az

)
. (3.21)

From F , the expectation values of the energy densities ε1 and ε∞ are derived as

ε1 =
∂F
∂β1

=

(
∂a

∂β1

∂

∂a
+

∂z

∂β1

∂

∂z

)
F = −a(1− a)

1 + a

∂

∂a
F =

a(1− z)

(1 + a)(1− az)
, (3.22)

ε∞ =
∂F
∂β∞

=

(
∂a

∂β∞

∂

∂a
+

∂z

∂β∞

∂

∂z

)
F =

(
−a(1− a)(1 + z)

(1 + a)(1− z)

∂

∂a
− z ∂

∂z

)
F =

a

1 + a
,

(3.23)

where the latter is the total density of balls due to (2.13). Note that ε∞ is not z
1+z

despite

that z = e−β∞ from (3.20).

So far, we have solved the Y-system (3.16)–(3.17). The remaining task is to find

εj, ρj, σj satisfying (3.9), σi/ρi = Yi (3.11) and the boundary condition (3.22)–(3.23) in

the limit s→∞. The answer is given by

εi =
a(1− zi)

(1 + a)(1− azi)
, (3.24)

σi =
(1− a)(1 + azi)

(1 + a)(1− azi)
, (3.25)

ρi =
azi−1(1− a)(1− z)2(1 + azi)

(1 + a)(1− azi−1)(1− azi)(1− azi+1)
. (3.26)

The result (3.25) reduces to ϕ
(1)
1 |κ=1 in [25, eq.(182)] when a = z = q. In view of (3.20),

it corresponds to β1 = 0 which is the Gibbs ensemble with the single inverse temperature

β∞. This is the unique case in which the probability distribution of the BBS local states

ηi becomes i.i.d. in which the relative probability is given by P(ηi = 1)/P(ηi = 0) = z.
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4. Stationary current

4.1. Effective speed of solitons

Consider the BBS with time evolution Tl as a gas of solitons. Each soliton is subject to the

interaction with the others via collisions. As explained along Example 2.2 and Example

2.3, an i-soliton has the bare speed min(i, l) and acquires the phase shift 2 min(i, k) in its

trajectory by a collision with a k-soliton. Let v
(l)
i denote the effective speed of i-solitons

under Tl. Then the above features of the soliton interaction lead to the consistency

condition [38, 14, 19]:

v
(l)
i = min(i, l) + 2

∞∑
k=1

min(i, k)(v
(l)
i − v

(l)
k )ρk (∀i ≥ 1), (4.1)

where ρk is the density of k-solitons. The first term on the RHS is the bare speed and the

second term takes the interaction effect into account. A speed equation of this kind has

been postulated in the generalized hydrodynamics [13, eq.(7)]. In particular (4.1) reduces

to [19, eq.(11.7)] as l→∞.

By the definition, the current J (l) in our BBS is the number of balls passing through

a site to the right by applying Tl once. It consists of contributions from i-solitons for any

i ≥ 1 as

J (l) =
∞∑
i=1

iρiv
(l)
i , (4.2)

where the effective speed v
(l)
i should be determined from (4.1) for a given density

distribution (ρk)k≥1. This formula corresponds to [11, eq.(3.62)].

4.2. Coincidence with time average

As demonstrated in Example 2.4, balls in a BBS state are moved to the right periodically

by a carrier of capacity l under the time evolution Tl. Thus the stationary current J (l)

(4.2) based on the soliton picture should coincide with the time average J̄ (l) of the number

of balls in the carrier over the Poincaré cycle of a given BBS state. An explicit formula

of J̄ (l) has been obtained in [27] by a calculation involving a tropical (or ultradiscrete)

analogue of the Riemann theta function. In this subsection we prove

J (l) = J̄ (l) (4.3)

quite generally without recourse to a specific choice of the soliton densities (ρk)k≥1. By

so doing we will illuminate an intriguing connection between the effective speed and

the period matrix of the tropical Riemann theta function [27, eq.(4.14)]. The latter has

emerged from the Bethe ansatz at q = 0. Its application to the BBS has revealed the Bethe

roots at q = 0 as action-angle variables, Bethe eigenvalues at q = 0 giving the Poincaré

cycle, torus decomposition interpretation of a Fermionic character formula, multiplicity

formula of the invariant torus and explicit solution of the initial value problem in terms

of tropical Riemann theta functions and so forth [28, 27].
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4.2.1. Time averaged current and topical period matrix The time average J̄ (l) for a given

state η has been obtained in [27, Prop.4.3]. It is independent of the position and expressed

in terms of the data determined from the conserved Young diagram Y (η) (2.12) as

J̄ (l) = κ̂(∞)TB−1κ̂(l). (4.4)

This was the first nontrivial dynamical characteristic of the BBS derived from an explicit

calculation using the tropical Riemann theta function. To explain the RHS of (4.4), let mi

be the number of i-solitons and assume the same notations for the vacancy pi (3.1) and the

densities ρi, σi (3.8) as before. Let s be the width of the Young diagram Y (η) (2.12), i.e.,

the amplitude of the largest solitons. Denote the depth of Y (η) by g = E1 = m1+· · ·+ms.

Thus in particular the vacancy (3.1) reads

pj = L− 2
s∑

k=1

min(j, k)mk (j ≥ 0), (4.5)

which satisfies L = p0 > p1 > · · · > ps = · · · = p∞ = L− 2M ≥ 1. Now B and κ̂(l) are a

g-dimensional matrix and a column vector possessing the block structure as follows [27,

eq.(4.27)]:

B =

B11 · · · B1s

...
. . .

...

Bs1 · · · Bss

 , Bij =
(
δijδαβpi + 2 min(i, j)

)
1≤α≤mi,1≤β≤mj

∈ Mat(mi,mj),

(4.6)

κ̂(l) = (κ
(l)
i )1≤i≤s,1≤α≤mi ∈ (Z>0)

g, κ
(l)
i = min(i, l). (4.7)

The matrix B is the tropical analogue of the period matrix of the Riemann theta function

and κ̂(l) is the velocity vector of the angle variables in the Jacobi variety on which the

dynamics becomes a straight motion [28, 27].3 The vector κ̂(∞)T in (4.4) denotes the

transpose of the column vector κ̂(∞).

Example 4.1. Consider the case m1 = m2 = m3 = 2 (s = 3, g = 6). Then B [27, eq.(4.6)]

is a 6× 6 matrix and κ̂(l) is a 6-dimensional row vector given by

B =



p1 + 2 2 2 2 2 2

2 p1 + 2 2 2 2 2

2 2 p2 + 4 4 4 4

2 2 4 p2 + 4 4 4

2 2 4 4 p3 + 6 6

2 2 4 4 6 p3 + 6


, (4.8)

κ̂(l)T =
(
min(l, 1),min(l, 1),min(l, 2),min(l, 2),min(l, 3),min(l, 3)

)
. (4.9)

3 It was denoted by hl in [27, eq.(4.27)].
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Example 4.2. For Example 2.4 and Example 3.2, we have

B =


11 2 2 2 2

2 11 2 2 2

2 2 7 4 4

2 2 4 7 4

2 2 4 4 7

 , κ̂(1) =


1

1

1

1

1

 , κ̂(2) =


1

1

2

2

2

 , κ̂(l) =


1

1

2

2

3

 (l ≥ 3). (4.10)

4.2.2. Inverse of tropical period matrix To elucidate the connection to the speed

equation, our first task is to compute the inverse X = B−1. It turns out that X also

has the same block structure as B:

X =

X11 · · · X1s

...
. . .

...

Xs1 · · · Xss

 , Xij =
(
δijδαβp

−1
i + xmin(i,j)

)
1≤α≤mi,1≤β≤mj

∈ Mat(mi,mj).

(4.11)

The condition
∑s

j=1BijXjk = δikidmi reads, in terms of the parameters x1, . . . , xs, as

pixmin(i,j) + 2 min(i, j)p−1j + 2
s∑

k=1

min(i, k)mkxmin(j,k) = 0 (1 ≤ i, j ≤ s). (4.12)

For instance when s = 4, it can be presented in a matrix form:p1 + 2m1 2m2 2m3 2m4

2m1 p2 + 4m2 4m3 4m4

2m1 4m2 p3 + 6m3 6m4

2m1 4m2 6m3 p4 + 8m4


x1 x1 x1 x1
x1 x2 x2 x2
x1 x2 x3 x3
x1 x2 x3 x4

 = −2

p
−1
1 p−12 p−13 p−14

p−11 2p−12 2p−13 2p−14

p−11 2p−12 3p−13 3p−14

p−11 2p−12 3p−13 4p−14

 .

(4.13)

In Appendix C, we prove that the over-determined s2 equations (4.12) on x1, . . . , xs admits

the unique solution:

xk = −
k∑
j=1

2

pj−1pj
. (4.14)

4.2.3. Speed equation as inversion of tropical period matrix By substituting (4.5) into

the first term of (4.12) with j replaced by l, we have

Lxmin(i,l) = −2 min(i, l)

pl
+ 2

s∑
k=1

min(i, k)
(
xmin(i,l) − xmin(l,k)

)
mk. (4.15)

Further substituting the scaling forms (3.8) and

xk ' L−2νk (4.16)
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and taking the limit L, s→∞ we get

νmin(i,l) = −2 min(i, l)

σl
+ 2

∞∑
k=1

min(i, k)
(
νmin(i,l) − νmin(l,k)

)
ρk (∀i, l ≥ 1). (4.17)

Comparing this with (4.1), we find that the speed v
(l)
i of i-solitons under Tl is given by

v
(l)
i = −σl

2
νmin(i,l) =

σl
σ∞

vmin(i,l), vi := v
(∞)
i = −σ∞

2
νi. (4.18)

Thus the effective speed of solitons can essentially be identified with appropriately scaled

elements of the inverse tropical period matrix. Our subsequent proof of (4.4) in Sec. 4.2.4

will further demonstrate this fact somewhat more directly.

Combining (4.14), (4.16) and (4.18) we discover the general relation connecting the

effective speed and the hole density (σ0 = 1):

v
(l)
k =

min(k,l)∑
j=1

σl
σj−1σj

, vk =
k∑
j=1

σ∞
σj−1σj

. (4.19)

We note that these are formally exact even for finite L provided that all the ' in (3.8)

and (4.16) are replaced by the equality.

In Appendix D, we evaluate this sum for (3.25) to obtain the effective speed and the

current explicitly in GGE(β1, β∞). The result are (D.2) and (D.3). In Appendix E, we

further confirm the result by a transfer matrix method.

4.2.4. Proof of (4.3) Given a column vector ξ = (ξi) = (ξ1, ξ2, . . .)
T whose components

are labeled by soliton amplitude i, we denote its mi-fold duplication for each i by attaching

hat as

ξ̂ = (

m1︷ ︸︸ ︷
ξ1, ..., ξ1,

m2︷ ︸︸ ︷
ξ2, ..., ξ2, . . .)

T. (4.20)

This convention matches the notation in (4.7). Note that the speed equation (4.1) is

expressed by using the vacancy pi = L− 2
∑

j min(i, j)mj as

piv
(l)
i +

∑
j

2 min(i, j)v
(l)
j mj = Lκ

(l)
i . (4.21)

Recalling that B = (δijδαβpi + 2 min(i, j))iα,jβ (4.6), the equation (4.21) is written in the

matrix form

Bv̂(l) = Lκ̂(l). (4.22)

On the other hand the soliton current density is

J (l) =
∑
i

iρiv
(l)
i =

1

L

∑
i

imiv
(l)
i =

1

L
κ̂(∞)T · v̂(l). (4.23)
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Thus we have the equality with the time average as

J (l) =
1

L
κ̂(∞)T · LB−1κ̂(l) = κ̂(∞)T ·B−1κ̂(l) = J̄ (l). (4.24)

It will be interesting to extend the result of this subsection to the periodic box-ball

system with n kinds of balls [27]. In fact, most of the necessary ingredients have already

been formulated universally in terms of the Bethe ansatz and the root system associated

with A
(1)
n including the time averaged current [27, Prop. 4.4] and the tropical period

matrix [27, eq.(4.6)].

5. Domain wall problem and generalized hydrodynamics

In this section we discuss the dynamics of the BBS model when the system is initially

prepared in an inhomogeneous state. We consider in particular a family of domain-wall

problems with different ball densities in the “left” and in the “right” halves of the system.

To be precise, at time t = 0, in the “left” half of the system (from site r = −L/2 to

r = 0), we have, on each site, a ball with probability pL and an empty site with probability

1− pL. In term of fugacity, we have zL : pL = zL/(1 + zL). Similarly, in the “right” half

(from site r = 1 to r = L/2 − 1) the ball density is pR. So, each halve of the system is

thus initially prepared in a one-temperature GGE state. Next we evolve, using Tl with

carrier capacity l, and mainly investigate the evolution of the ball density h(l)(r, t) at site

r and time t, averaged over a large number of initial states.

We present data for l = 2, 3, 4, 10, 20 and 100, and the simulations we carried out

up to t = 2000. Unless specified otherwise the simulations have been performed with

Nsamples = 5.104 random initial conditions and a system size L = 105. In a few cases,

to increase the precision, we pushed the simulations to Nsamples = 106 and L = 106.

The systems we simulate are sufficiently large, so that, in the time range we consider

the “wrapping effect” on the periodic ring does not play any role and we are therefore

effectively dealing with the infinite system.

The figure 1 represents the ball density h(l)(r, t) for an initial state with densities

pR = 0, various values of pL, and l = 10. When plotted as a function of ζ = r/t, the data

associated to different times t practically collapse onto a single curve and these density

profiles show some marked plateaux. As we will discuss in the following paragraphs,

this can be understood and described analytically in terms of generalized hydrodynamics

(GHD) [5, 2, 12, 13, 11] (see also [15, 16]) adapted to the BBS. We also note that a similar

domain-wall problem for a classical integrable model of hard-rods has been recently solved

using GHD [12].

The central idea is to assume that the system can locally, at some Euler scale,

be described by soliton densities ρj and effective velocities vj related through (5.2).

The evolution in space and time of these quantities is then obtained by imposing the

conservation of each soliton species (see (5.16) and (5.17)).
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Figure 1. Ball density plotted as a function ζ = r/t for different initial ball densities

pL in the left half of the system. The right half is initially empty, pR = 0, and l = 10.

For each density p two curves are plotted, corresponding to t = 500 and t = 1000. Both

curves turn out to be almost on top of each other. The density vanishes for ζ > l = 10,

which corresponds to the fastest velocity in this problem. Note that for ζ < l the curves

associated to p and 1− p are symmetric with respect to h = 1/2 (see Remark 2.1).

5.1. Densities and velocities

We first introduce some notations: if v is a vector, each entry vk being associated to

one soliton size, we denote vkl = vkδkl the corresponding diagonal matrix. If v, w are

vectors we denote by v ∗ w the vector with components (v ∗ w)k = vkwk. It is also equal

to v ∗ w = vw = w ∗ v. Also, v−1w = w/v. Note that for a matrix M , in general

(Ma) ∗ b 6= M(a ∗ b) unless M is diagonal.

In order to rewrite the equation (4.1) for the velocities, we define the scattering shift

matrix4

Mkj = 2 min(k, j). (5.1)

For the time evolution generated by Tl, the effective velocity v
(l)
k of amplitude-k solitons

in a state with soliton densities {ρj} satisfies (4.1), i.e.,

v
(l)
k = κ

(l)
k −

∞∑
j=1

Mkj(v
(l)
j − v

(l)
k )ρj. (5.2)

In the expression above the vector κ(l) encodes the bare soliton velocities and is defined

by κ
(l)
k = min(k, l) as in (4.7). In this section we will however omit the superscript (l) for

all quantities, for brevity. We thus have, in a compact form

(1−Mρ) ∗ v = κ−M(ρ ∗ v). (5.3)

4 The diagonal of M does not enter (5.2), and this leads to several possible choices for the matrix M .
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Next we know that the hole density is given by (3.9):

σ = 1−Mρ (5.4)

with 1 denoting the vector (1, 1, · · · ). We can define so-called filling fractions yi by

yi = ρi/σi. They correspond to Y −1i in (3.11), and the vector y satisfies

y ∗ σ = ρ. (5.5)

The relations (5.4) and (5.5) are equivalent to (3.8) and (3.9). As we will see, the vector

y plays a central role in the solution of the GHD equations.

The knowledge of y allows us to define a “dressing” operation. To any vector o we

associate a corresponding dressed vector odr which satisfies:

odr = o−Myodr. (5.6)

In practice odr can be computed from o using the inverse of the matrix 1 +My:

odr = (1 +My)−1o. (5.7)

In particular, (5.4) and (5.5) imply that

σ = 1−Myσ (5.8)

and thus

σ = 1dr. (5.9)

Using (5.5) and (5.8) we can rewrite (5.3) as

(1−Myσ) ∗ v = κ−My(σ ∗ v) (5.10)

or

σ ∗ v = κ−My(σ ∗ v), (5.11)

which means that σ ∗ v = κdr and, from (5.9)

1dr ∗ v = κdr. (5.12)

The equation above provides a way to compute the effective velocities from the knowledge

of y, using the dressing of two known vectors, 1 and κ. This gives naturally rise to a formal

expansion in powers of y (but y does not need to be small). Notice that (5.8) coincides

with (3.1), and (5.11) with (4.22), in a slightly disguised form.

Remark 5.1. Other choices for diagonal part of the matrix M are possible, since its

diagonal does not enter (5.2). In particular we can define n = (1 + y−1)−1. Then,

replacing M by M̃ = M − 1 modifies the previous expressions as follows: M → M̃, y →
n, σ → r = ρ+ σ. So, (5.8) and (5.11) become:

r = 1− M̃nr, (5.13)

r ∗ v = κ− M̃n(r ∗ v), (5.14)

And the dressing gets modified accordingly.
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For any vector h, one can define a charge qh =
∑

k hkρk = h · ρ which is conserved.

The dressing enables to express qh in terms of y:

qh = h · ρ = hdr · y. (5.15)

Indeed:

h · ρ = h · y1dr = (1 + yM)−1yh · 1 = y(1 +My)−1h · 1 = hdr · y

The BBS is a concrete realization of a linearly degenerate hydrodynamic system [35, 4]

(see also [24]), which we briefly describe in Appendix F.

5.2. Dynamics of an inhomogeneous system

We want to consider an inhomogeneous system, with the hypothesis that it can be locally

described using the above formalism, but where all densities have acquired a dependence

on space (x = i/L, i = lattice index) and time (t = i/L, i=time step). The main

assumption is that the hole current (jσ)k associated to amplitude-k solitons is given by

(jσ)k = σkvk (5.16)

and we have the hole conservation equation5

∂tσ + ∂xjσ = 0. (5.17)

Remarkably, it implies that the curves yk constant are characteristics. Using σ =

(1 +My)−11, the above equation rewrites:

∂t((1 +My)−1)(1) + ∂x((1 +My)−1)(κ) = 0. (5.18)

One has:

∂α((1 +My)−1) = −β(∂αy)(1 +My)−1 with α = t or x. (5.19)

where β is the matrix β = (1 +My)−1M . Factorizing β out of (5.18) we finally get

∂ty + v∂xy = 0, (5.20)

which means that the y are the normal modes of the hydrodynamics [11]. We now assume

that the system exhibits some ballistic scaling, so that yk only depends on the rays ζ = x/t.

Then (5.20) becomes

(ζ − vk)∂ζyk = 0. (5.21)

The equation above means that yk(ζ) must be constant except for possible discontinuities

at wave fronts ζ = vk. Since the set of velocities is discrete in this problem, we expect

the state of the system to be piecewise constant in the variable ζ. This will be confirmed

by the calculations presented in the following paragraphs, as well as by the simulations.

5 σk can be replaced by fk(yk)σk and jσ by fk(yk)jσ with fk arbitrary. In particular, taking fk(yk) = yk,

we recover the soliton conservation equation ∂tρ+ ∂x(v ∗ ρ) = 0.



19

5.3. Current conservation and discontinuities in y

We want to show that the filling fraction of a soliton can change discontinuously across

the wave front x/t = vk, equal to its speed, without violating the current conservation.

We show it for the following systems which are more general than (5.8) and (5.11):

σ = α−Myσ, (5.22)

σ ∗ v = κ−My(σ ∗ v), (5.23)

where α and κ are arbitrary vectors, and M an arbitrary symmetric matrix. Let y denote

the filling fraction vector. The dressing is defined as earlier (5.6) and σ = ρ/y = αdr,

v = κdr/σ.

Let P = (1 + My), and D its determinant. For o a vector, let us denote P (o)

the vector with components Pi(o) equal to the determinants of the matrices obtained by

substituting o to the i th column of P . The dressing can be expressed as: Dodr = P (o).

The yk dependence of P is only through its kth column. With this notation,

vk =
κdrk
αdrk

=
Pk(κ)

Pk(α)
, (5.24)

and as a result, the speed of the soliton k does not depend on yk.

In the frame moving at speed vk, the continuity of the j-soliton current takes the

form

σLj (vLj − vk) = σRj (vRj − vk) (5.25)

where L,R refer to the regions x/t < vk and x/t > vk. To show that (5.25) holds when

yLk 6= yRk we need to verify that both sides do not depend on yk.

Let us denote Pij(o, o
′) the antisymmetric tensor of the determinants of the matrices

obtained by substituting o to the i th column and o′ to the j th column of P . The

Desnanot-Jacobi identity (also called Sylvester determinant identity) rewrites:

Pj(o)Pk(o
′)− Pk(o)Pj(o′) = DPjk(o, o

′) (5.26)

Taking o = κ and o′ = α we obtain:

σj(vj − vk) =
Pjk(κ, α)

Pk(α)
. (5.27)

Since neither Pjk nor Pk(α) depend on yk, the result follows.6

5.4. Domain wall initial condition

Let us solve (5.21) for the time evolution of a domain-wall state with ball fugacities zL
at the left and zR at the right of the origin. This initial state defines some occupation

vectors yL and yR and we have to determine the vectors y(ζ). For ζ < 0, y(ζ) = yL, since

6 The same type of argument enables to show that for M given by (5.1), if αj = αl and κj = κl for j ≥ l,
one also has vj = vl.
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this region cannot be influenced by the right side. For ζ � 0 we have y(ζ) = yR since the

influence of the left side cannot propagate to the right infinitely fast.

We set ζ(k = 0) = −∞. Then, for each amplitude-k soliton, we can determine the ray

ζ(k) equal to its speed, vk(ζ(k)) = ζ(k) fixing yk(ζ) = (yL)k for ζ < ζ(k), yk(ζ) = (yR)k
for ζ > ζ(k). The vector y(ζ) and therefore, the speeds v(ζ) and densities are piecewise

constants and can jump at the discrete set ζ(k) coinciding with a k-soliton speed. This

piecewise structure is illustrated in figure 2, where ρj(r, t) are plotted as a function ζ = r/t

for k = 1, 2 and 3 in a case with l = 3.

Assuming ζ(k) is an increasing function of k, in the sector k: ζ(k) < ζ < ζ(k + 1),

yj(ζ) = (yR)j for j ≤ k and yj(ζ) = (yL)j for j > k. Knowing the occupation vector y(k)

in the sector k, we know the dressing matrix and we can deduce the associated density

vector σ(k) (thanks to σ = 1dr (5.9)) and the speed vector v(k) (thanks to v = κdr/1dr

(5.12)).

Next we determine the boundaries of the kth sector, which are given by the speeds

of the soliton k and k+ 1 evaluated in this sector [ζ(k), ζ(k+ 1)] = [vk(k), vk+1(k)]. Note

that above we have omitted the (l) superscript, but in general the plateaux boundaries

ζ(k) depend on the capacity l of the carrier (pL = 0 is a notable exception, discussed in

Sec. 5.7).

As we have seen in Sec. 5.3, the two determinations of ζ(k) from the sectors left

and right of it coincide, vk(k) = vk(k − 1). For the Tl evolution, we can restrict the

consideration to the l first solitons k ≤ l since the velocities vk are all equal for k ≥ l. So

there are l + 1 sectors [−∞, v1], · · · , [vl,∞]. The sectors k > l have zero width and their

height goes progressively to zero.

The figure 3 presents the ball density measured in a simulation for a domain-wall

initial state with pL > 0 and pR > 0. In the same plot we have shown (dotted lines) the

heights and positions of the plateaux predicted by the method described above, and the

agreement with the numerical results is excellent.

5.5. Case l = 2

Equating the current associated to amplitude-j solitons on both sides of the transition

from the plateau k and k + 1 (which is located at ζ = ζ(k + 1) = vk+1(k + 1)) reads:

ρj(k) [vj(k)− ζ(k + 1)] = ρj(k + 1) [vj(k + 1)− ζ(k + 1)] . (5.28)

The equation above was obtained from (5.25) by replacing σ by ρ, which is legitimate

thanks to the footnote 5. In the simple case with l = 2 these equations can be solved

directly, bypassing the use of y(ζ). Let us focus for instance on pL > 0 and pR = 0, as

illustrated in the left panel of figure 4. The ray space can be divided into three sectors

(or plateaux). (0) ζ < v
(2)
1 (0) where all the speeds v

(2)
j (0) and all the densities ρj(0)

coincide with the homogeneous case. (1) v
(2)
1 (0) < ζ < v

(2)
2 (1) = 2 where solitons j = 1

are absent and all the others move at speed v
(2)
j≥2(1) = 2. (2) ζ > 2 is empty. Across the

ray ζ(1) = v
(2)
1 (0) = v

(2)
1 (1), we use (5.28) with k = 0 to get:

ρj(0)
[
v
(2)
j (0)− v(2)1 (0)

]
= ρj(1)

[
v
(2)
2 (1)− v(2)1 (0)

]
(5.29)
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Figure 2. Soliton densities ρi for i = 1 (top panel), i = 2 (middle pane) and i = 3

(bottom). These densities are plotted as a function ζ = r/t for l = 3 and t = 2000. Here

we used Nsamples = 2.105 random initial conditions with initial ball densities pL = 0.3

and pR = 0 (same parameters as in figure 6). One observes the disappearance of the

solitons of size k when going from the plateau k − 1 to the plateau k, as expected from

GHD. Furthermore, the densities of the various types of solitons in each plateau are in

quantitative agreement with GHD (the horizontal lines represent the value ρi(k) at the

kth plateau obtained by solving the GHD equations).

In the sector 1 all solitons with j ≥ 2 move a speed 2 (= l), so the above equation gives:

ρj≥2(1) = ρj(0)
v
(2)
j (0)− v(2)1 (0)

2− v(2)1 (0)
. (5.30)

Knowing that the speed v
(l)
j (0) in the sector 0 (equivalent to the homogeneous state) is

independent of j for j ≥ l, we have v
(2)
j≥2(0) = v

(2)
2 (0) and we can write

ρj≥2(1) = ρj(0)
v
(2)
2 (0)− v(2)1 (0)

2− v(2)1 (0)
. (5.31)
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Figure 3. Left: ball density for l = 10, pL = 0.8 and pR = 0.3. The curves at t = 1000

(black) and t = 500 (blue) are practically on top of each other. Right: same for pL = 0.3

and pR = 0.8. Note that in the two cases the long intermediate density plateau turns out

to have a ball density equal to h = 1−pR (dotted line). The dotted lines are the plateau

heights and positions obtained by solving numerically the GHD equations (Sec. 5.4).

Together with ρ1(1) = 0 the above equation gives the soliton content of the sector 1 in

terms of known properties of the homogeneous state. Finally we get the ball density in

that sector:

h(1) =
∑
j≥1

jρj(1) =
v
(2)
2 (0)− v(2)1 (0)

2− v(2)1 (0)

∑
j≥2

jρj(0). (5.32)

An explicit calculation of the above sum gives finally

h(1) =
z4 + z3 + 2z2

z4 + z3 + 4z2 + z + 1
, (5.33)

in agreement with the numerical results of the left panel of figure 4. The heights and

positions of the plateaux for pL > 0 and pR = 0 and an arbitrary value of l will be given

in the next subsection (Sec. 5.6). The reversed case (pL = 0 and pR > 0) is discussed in

Sec. 5.7.

5.6. Explicit plateaux solutions for 0 < pL <
1
2

and pR = 0

We again use the parameter z related to pL by pL = z
1+z

(0 < z < 1) and the shorthand

[j] = 1− zj (5.34)

when the formula is bulky. Let us number the plateaux as k = 0, 1, 2, . . . from the left

to the right, where the leftmost 0-th one is of height pL. We employ the GHD equations

in the convention of Remark 5.1. Thus we use the velocity of the j-soliton vj(k), the
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Figure 4. Left: Ball density plotted as a function ζ = r/t for the carrier capacity l = 2

and different times. The initial ball densities: pL = 0.4 and pR = 0. A zoom on the

density spike at ζ = 2 is displayed in figure 8. The horizontal dotted line represents the

GHD prediction for the ball density at the nontrivial plateau (h(1) = 0.3511, see (5.33)

and (5.43)). The vertical dotted lines represent the GHD prediction for the end points of

this plateau (ζ(2)(1) = 0.7085 and ζ(2)(2) = 2, see (5.45)). Right: same, but with pL = 0

and pR = 0.4. In that case the density spike is at ζ = 1 and we have h(1) = 0.1935 (from

(5.52)), ζ(1) = 1 and ζ(l) = 2.6316 (from (5.53)) as solutions of the GHD equations, in

good agreement with the simulations.

total density rj(k) = ρj(k) + σj(k) and the occupancy nj(k) =
ρj(k)

ρj(k)+σj(k)
which satisfy

ρj(k) = nj(k)rj(k) for the k-th plateau. The (nj(k))j≥1 for the k-th plateau is given by

nj(k) = θ(j > k)
zj(1− z)2

(1− zj+1)2
. (5.35)

See (2.8) for the definition of θ. For the time evolution T∞, the GHD equations read as

ri(k) = 1−
∞∑
j=1

M̃ijnj(k)rj(k), (5.36)

ri(k)vi(k) = i−
∞∑
j=1

M̃ijnj(k)rj(k)vj(k), (5.37)

where M̃ij = (M − 1)ij = 2 min(i, j)− δij according to (5.1) and Remark 5.1.

For the time evolution Tl, (5.36) remains the same, whereas the first term i on the

RHS of (5.37) is replaced by min(l, i) (see also (5.2)). The solution of (5.36) is given by

rj(k) =
[2k + 3] + (2k + 1− 2j)[1]zk+1

[2k + 3] + (2k + 1)[1]zk+1
(1 ≤ j ≤ k), (5.38)

=
[k + 1][k + 2][2j + 2]

[j][j + 2]([2k + 3] + (2k + 1)[1]zk+1)
(j > k). (5.39)
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The solution to (5.37) is given by

vj(k) =
j[k + 1][k + 2]

(1 + zk+1) [k + 2] + 2(k − j)[1]zk+1
(1 ≤ j ≤ k), (5.40)

=
Γj(k)

(1 + zj+1)[k + 1][k + 2]
(j > k), (5.41)

where Γj(k) is defined by

Γj(k) = 2k2zk+2[j]− 2(k + 1)2zk+1[j + 2]− 2z2k+3[j − 2k − 2]

− 4zk+2[j − k][k + 1]

[1]
+ j(1 + zj+1)

(
[2k + 3] + (1 + 2k)[1]zk+1

)
.

(5.42)

From these results, the height h(k) of the k-th plateau is calculated as

h(k) =
∞∑
j=1

jρj(k) =
∞∑

j=k+1

jnj(k)rj(k) =
zk+1([k + 2] + k[1])

[2k + 3] + (2k + 1)[1]zk+1
. (5.43)

This certainly satisfies h(0) = z
1+z

= pL. And evaluating the above height for k = 1 gives

back (5.33).

The position ζ(k) of the boundary of the (k − 1)-th and the k-th plateaux is

ζ(k) = vk(k) =
k(1− zk+1)

1 + zk+1
(5.44)

for k ≥ 1. One can check from (5.40) and (5.41) that vk(k − 1) = vk(k) = ζ(k) for k ≥ 1,

in agreement with the discussion given in Sec. 5.4.

For Tl with finite l, the height of the k-th plateau is given by θ(k < l)h(k) with h(k)

still given by (5.43). On the other hand, the position ζ(k) gets modified into

ζ(l)(k) =
k(1− zk+1)(1 + zl+1)

(1 + zk+1)(1− zl+1)
(1 ≤ k ≤ l). (5.45)

The figures 1, 2, the left panel of figure 4, the left panel of figure 5, figure 6 and

figure 7 correspond to situations pL > 0 and pR = 0, as discussed above. The heights

of the plateaux turn out to be independent of l, but their positions depend on l. These

heights and positions are in perfect agreement with the GHD results of eqs. (5.43) and

(5.45).

5.7. Explicit plateaux solutions for pL = 0 and 0 < pR <
1
2

Set pR = z
1+z

. Let us number the plateaux as k = 0, 1, 2, . . . from the left to the right,

where the leftmost 0-th one is of height 0. Then the occupation function of the k-th

plateau is

nj(k) = θ(j ≤ k)
zj(1− z)2

(1− zj+1)2
, (5.46)
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Figure 5. Left: Ball density plotted as a function r/t for the carrier capacities l = 2, 3, 4

and 10, at fixed t = 500. Initial ball densities: pL = 0.4 and pR = 0. The ball density

is zero for r/t > l. One can see that the density of the first plateau (h(1) ' 0.35) is the

same for l = 2, 3, 4 and 10. Similarly, the second plateau has the same density for l = 3, 4

and 10, etc. This fact is well reproduced in the GHD approach (Sec. 5.6). Right: Same

with pL = 0 and pR = 0.4 (for t = 1000). Now we observe that not only the plateau

heights, but also the plateau positions (velocities) are independent of l (vertical dotted

lines), in agreement with the results of Sec. 5.7. Note that the last plateau for l = 10

starts at ζ(10) ' 31.2866, a velocity which is significantly larger than the largest bare

velocity l = 10.
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Figure 6. Left: Ball density plotted as a function ζ = r/t for l = 3 and different

times. Initial ball densities: pL = 0.3 and pR = 0. The horizontal dotted line represents

the GHD prediction for the ball densities in each plateau (5.43) and the vertical dotted

lines represent the GHD prediction for the end points of the plateaux (5.44). Here

Nsamples = 2.105 and L = 2.105. Right: Zoom on the vicinity of the transition from

the first to the second plateau at ζ(3)(2) ' 1.827 (5.45). The erratic variations reflect

the statistical fluctuations (Nsamples is large but finite). The quantitative analysis of the

(diffusive) broadening of the transition is carried out in Sec. 5.8
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which is complementary to (5.35). The GHD equations are formally the same as (5.36)

and (5.37) except that nj(k) is now specified as (5.46) instead of (5.35). Note that the

sums in (5.36) and (5.37) over j are reduced to the finite one over 1 ≤ j ≤ k. The solution

to (5.36) on rj(k) is

rj(k) =
[1][j + 1]Xj(k)

(1 + z)[j][j + 2]([2k + 3]− (2k + 3)[1]zk+1)
(1 ≤ j ≤ k), (5.47)

=
[1][k + 1][k + 2]

(1 + z)([2k + 3]− (2k + 3)[1]zk+1)
(j > k). (5.48)

The solution to (5.37) on the velocity vj(k) is

vj(k) =
(1 + z)[k + 1][k + 2]

(
j[j + 2]− (j + 2)[j]z

)
[1]2Xj(k)

(1 ≤ j ≤ k), (5.49)

=
(1 + z)

(
(2k(k + 2)− j(2k + 3))[1]2zk+1 − 2z[k][k + 2] + j[1][2k + 3]

)
[1]2[k + 1][k + 2]

(j > k),

(5.50)

where Xj(k) in (5.47) and (5.49) is defined by

Xj(k) = (1 + zj+1)[2k + 3] + (2k − 2j − 1)[j]zk+2 − (2k − 2j + 3)[j + 2]zk+1. (5.51)

From these results, the height h(k) of the k-th plateau is calculated as

h(k) =
∞∑
j=1

jρj(k) =
k∑
j=1

jnj(k)rj(k) =
z([2k + 2]− (k + 1)[2]zk)

(1 + z)
(
[2k + 3]− (2k + 3)[1]zk+1

) . (5.52)
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This certainly satisfies h(0) = 0 and h(∞) = z
1+z

= pR.

The position ζ(k) of the boundary of the (k − 1)-th and the k-th plateaux is

ζ(k) = vk(k) =
1 + zk+1

1− zk+1

(
k

1 + z

1− z
− 2z(1 + z)(1− zk)

(1− z)2(1 + zk+1)

)
= v

(k)
k

∣∣∣
a=z

in (D.2). (5.53)

In particular one has ζ(1) = 1. And here also one can check from (5.49) and (5.50) that

vk(k − 1) = vk(k) = ζ(k) for k ≥ 1.

It is also instructive to consider (5.52) and (5.53) in the half-filled limit z → 1. There

one finds

lim
z→1

h(k) =
k

2k + 3
(5.54)

and

lim
z→1

ζ(k) =
1

3
k(k + 2), (5.55)

with a step position ζ(k) which turns out to grow much faster than the bare velocity k.

For Tl with finite l, the results (5.52) remains valid for 0 ≤ k ≤ l − 1 and

h(l) = z
1+z

= pR. The result (5.53) is valid for 1 ≤ k ≤ l − 1.

The right panel of figure 4 and the right panel of figure 5 describe such situations,

where pL = 0 and pR > 0. In such cases, the heights and the positions (or velocities)

of the plateaux indeed appear to be independent of l, as expected from the GHD results

presented above.

5.8. Transitions between plateaux and diffusive broadening of the steps

At this stage the GHD approach predicts sharp (i.e. discontinuous) steps/transitions

between plateaux in the variable ζ. However, in the numerical simulations, the steps in

the density curves (ball density or soliton densities) exhibit some visible widths. This

can be seen, for instance, in the right panel of figure 6. A careful analysis of the time-

dependence of these transition regions, as proposed in figure 9, shows that the spatial

extent of these regions is ∼
√
t in the variable r, corresponding to a diffusive behavior.

The finite widths of the plateau transitions can be interpreted as the fact that some

solitons have traveled faster or more slowly than the mean velocity predicted by GHD. This

is to be expected, as the soliton densities are fluctuating from one initial configuration

to another, and these density fluctuations induce velocity fluctuations. If one assumes

that the density fluctuations that a given tagged soliton “sees” are uncorrelated, its mean

velocity computed over a certain time will be distributed in a Gaussian way (for long

enough time). This should lead to a diffusive broadening of the transitions between

consecutive plateaux, as observed numerically. We stress that the dynamics is here

completely deterministic, and the diffusion originates from the randomness in the initial

conditions.

In the following we explain how to describe quantitatively this diffusive broadening.

We will describe how to compute the shape of the density curves joining two consecutive

plateaux. There is already a abundant literature on diffusive corrections to GHD [12, 21,
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9, 22, 10] and the argument we propose below in the context of the BBS is close to the

one given in [21].

Across the characteristic (wave front) between plateau k−1 and k, the pseudoenergy

εk defined by yk = exp (−εk) changes abruptly from εk(k−1) = (εL)k to εk(k) = (εR)k. At

position r and time t, it takes the value (εL)k or (εR)k according to whether it is located

left or right of the fluctuating wave front. In other words, its value depends if the average

velocity of the wave-front position, v̄k = (1/t)
∫ t
0
vk(s)ds, is larger or smaller than r/t.

The above wave-front velocity fluctuates due to fluctuations in the background of

solitons i 6= k crossing it. For a given random initial condition these background

fluctuations can be described by pseudoenergy density fluctuations δε̄i. The fluctuations

of v̄k, denoted by δv̄k, can thus be written as

δv̄k =
∑
i 6=k

(
∂vk
∂εi

)
δε̄i. (5.56)

In the above expression, the pseudoenergy density fluctuation δε̄i is obtained by averaging

the pseudoenergy over the length t|vi − vk|, which is the distance the wave front has

traveled in a (moving) frame where the background of i-solitons is at rest. Assuming that

the pseudoenergy fluctuations at different point in space are uncorrelated, we find that

at long times δv̄k follows a Gaussian distribution with a variance given by:

〈(δv̄k)2〉 =
∑
i 6=k

(
∂vk
∂εi

)2 〈(δεi)2〉
|vi − vk|t

, (5.57)

where 〈(δεi)2〉 is the stationary (and homogeneous) i-soliton pseudoenergy variance per

site.

This quantity 〈(δεi)2〉 can be obtained by a thermodynamic calculation, by expanding

the free energy per site (3.7) at quadratic order in ε [17]. From (3.10) and (3.11), the free

energy derivative is given by:
∂F
∂εi

=
∞∑
n=1

Xn
∂ρn
∂εi

, (5.58)

where Xn = ∂F
∂ρn

is given by the TBA equation (3.11)

Xn =
∞∑
p=1

min(n, p)βp − log(1 + eεn) + 2
∞∑
p=1

min(n, p) log(1 + e−εp) (5.59)

and the free energy Hessian is given by:

∂2F
∂εk∂εp

=
∑
n

∂Xn

∂εp

∂ρn
∂εk

, (5.60)

where we have taken into account that it is evaluated at the minimum of the free energy,

where Xk = 0. Using the pseudoenergies σ = ρ/y = eερ, (5.4) can be rewritten as:

1 = (M + eε)ρ. (5.61)
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Differentiating with respect to ρn we deduce:

∂εj
∂ρn

= −σ−1j (M + eε)jn (5.62)

and from (5.59):
∂Xn

∂εp
= − 1

1 + eεp
(M + eε)pn. (5.63)

Substituting the inverse of (5.62) and (5.63) in (5.60) we obtain:

∂2F
∂εk∂εp

= δkp
σk

1 + eεk
. (5.64)

This yields diagonal pseudoenergy fluctuations:7

〈δεkδεp〉 = δkp
1 + eεk

σk
. (5.65)

Now, coming back to (5.57), we need to compute the ∂vk/∂εi terms. These velocity

derivatives can be obtained from (5.12), v = κdr/1dr, which can be written as v =

((1 +My)−1κ) / ((1 +My)−11). The result is:

∂vk
∂εi

= βki
ρi
σk

(vk − vi), (5.66)

where β is the matrix β = (1 + My)−1M . From the definition (5.7) of the dressing

operation, β corresponds to Mdr.

Putting (5.57), (5.65) and (5.66), together, we obtain:8

t〈(δv̄k)2〉 = Σ2
k =

∑
i

β2
ki

σ2
k

|vk − vi|σiyi(1 + yi). (5.67)

Since we expect a Gaussian distribution of the front-velocity fluctuations in the long

time limit, the above variance is essentially enough to characterize the distribution of

the front position. Let us consider a local quantity, the density of j-solitons, evaluated

at (r, t) for a value ζ = r/t close to the mean position ζ(k) of the step number k. For

realizations such that the front has a velocity v̄k larger than ζ, the j-soliton density will

be equal to its value ρj(k − 1) in the plateau k − 1. On the other hand, for realizations

such that the front has a velocity v̄k smaller than ζ, the j-soliton density will be equal to

its value ρj(k) in the plateau k. Since v̄k is distributed in a Gaussian way, the probability

to be above (or below) a certain value r/t can be written simply with the complementary

error function erfc(u) = 2√
π

∫∞
u

e−s
2
ds. The Gaussian being characterized by the mean

ζ(k) and the variance Σ2
k (5.67), the realization-averaged soliton densities in the vicinity

of the step k reads:

〈ρj(r, t)〉 =
1

2
(ρj(k − 1)− ρj(k)) erfc

(√
t

2

r/t− ζ(k)

Σk

)
+ ρj(k). (5.68)

7 This is a spectral parameter-free version of [17, eq.(A.1)]. A similar result was originally given in [36]

for the density correlations of the single-component boson.

8 With (5.14) we obtain an equivalent expression Σ2
k =

∑
i
β̃2
ki

r2k
|vk−vi|rini(1−ni) with β̃ = (1+M̃n)−1M̃ .
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Figure 8. Ball density in the vicinity of a step to (or from) a zero-density plateau when

pL or pR is set to zero. Contrary to the others, these steps do not broaden diffusively

since there is only one species of soliton on the nontrivial side of the step. Instead, these

steps show a peak (or spike) whose spatial extent is constant in time. From left to right:

i) l = 2 pL = 0 pR = 0.4 ζ = 1 ii) l = 2 pL = 0.4 pR = 0 ζ = 2 iii) l = 3 pL = 0.4

pR = 0 ζ = 3 iv) l = 4 pL = 0.4 pR = 0 ζ = 4. Note that the curve at different times are

superimposed.

And the above form should in fact hold for any local quantity which is a function of the

pseudoenergies.

We finish this subsection by giving a conjectural formula for the diffusive step width

Σk for the plateaux generated from the initial condition pL > 0 and pR = 0 by the time

evolution Tl. We denote it by Σ
(l)
k exhibiting the dependence on l. It was obtained by

computing successive approximations as a function of the initial state fugacity z = zL,

using a computer algebra software and truncations of the matrix M at increasing orders.

2
(
Σ

(l)
k

)2
=

8k2zk+1(1− zk+1)(1− zl−k)(1 + zl+k+2)

(1 + zk+1)3(1− zl+1)2
(1 ≤ k ≤ l). (5.69)

Note that for finite l, there are only l plateaux with non-zero height. The leftmost

step corresponds to Σ
(l)
1 , and the rightmost one Σ

(l)
l vanishes reflecting the no diffusive

broadening mentioned in the caption of figure 8. We checked that (5.69) matches the

numerical solutions of the GHD equations at a few fixed pL. As shown in figure 9, they

are also in very good agreement with the simulations.
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Figure 9. Zoom on the soliton density ρj(r, t) at four different steps between plateaux.

The red curves are the prediction of the diffusive corrections to GHD (5.67). In all cases

the horizontal axis corresponds to
[
r − ζ(l)(k)t

]
t−1/2 and provides a good collapse of

the curves measured at different times (t = 500, 1500 and 2000). This shows that the

scaling of the transition regions is diffusive. The high precision was achieved thanks to

simulations done up to t = 2000 with L = 106 sites and Nsamples = 106, corresponding to

∼ 1015 particle moves. The four panels correspond to different parameters of the model:

(a) pL = 0.4, pR = 0.2, l = 100 and k = 1. (b) pL = 0.4, pR = 0, l = 100 and k = 1. (c)

pL = 0.4, pR = 0, l = 100 and k = 2. (a) pL = 0.3, pR = 0, l = 3 and k = 1. The inverse

width A = 1/
√

2Σ2 in panel (a) was obtained by computing numerically Σ2
k in (5.67).

In panels (b), (c) and (d), A2 is calculated from (5.69) with (k, l) = (1, 100), (2, 100)

and (1, 3). The simulations and the theoretical values of Σ
(l)
k agree with a 10−2 ∼ 10−3

relative accuracy, which is the order of magnitude of the statistical fluctuations on the

simulation side.
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6. Outlook

In this paper we have exclusively treated the most basic BBS with only one kind of balls.

It is natural to extend the analysis to the BBS with n kinds of balls [31] which is known

to be associated with the quantum group Uq(ŝln+1). Here is an example of three soliton

scattering with amplitude 5, 3 and 2 for n = 3:

. . . 0003222100002110031000000000000000000000000000000 . . .

. . . 0000000032221002110310000000000000000000000000000 . . .

. . . 0000000000000321002203211100000000000000000000000 . . .

. . . 0000000000000000321022000032111000000000000000000 . . .

. . . 0000000000000000000310222000000321110000000000000 . . .

. . . 0000000000000000000003100222000000003211100000000 . . .

. . . 0000000000000000000000031000222000000000032111000 . . .

As one can observe, the amplitude of solitons are again individually conserved before

and after the collisions. A new aspects here is that they now possess the internal degrees

of freedom which are nontrivially exchanged like quarks in hadrons. It is an interesting

outstanding problem to seek a speed equation for such a system with non-diagonal

scattering, and more broadly, to formulate a systematic higher rank (nested) extension of

GHD that fits the generalized BBS associated with quantum groups in general [23]. We

hope to report on these issues in a future work.

Appendix A. Transfer matrix formalism of GGE partition function of BBS

Introduce the matrices

V (l)
η =

(
V (l)
η (n, ñ)

)l
n,ñ=0

∈ Mat(l + 1, l + 1) (η ∈ {0, 1}), (A.1)

V (l)
η (n, ñ) = θ

(
n, ñ and η fit (2.4)

)
e−βlθ(η>η̃), (A.2)

where θ is defined by (2.8). In (A.2), η̃ ∈ {0, 1} is also determined by the fitting diagram

in (2.4). The factor e−βlθ(η>η̃) incorporates the local Boltzmann weight from the l-th

energy El (2.7). Now consider the partition function

Z̃L(β1, . . . , βr, β∞) =
∑

η∈{0,1}L
e−β1E1−···−βrEr−β∞E∞ . (A.3)

This is equal to (3.5) with the corresponding choice s of the temperatures except that the

sum is not restricted by the condition mentioned under it. In the rest of this appendix,

we assume L is odd9. By the construction we have

Z̃L(β1, . . . , βr, β∞) =
∑

η1,...,ηL∈{0,1}

Tr(V (1)
η1
· · ·V (1)

ηL
) · · ·Tr(V (r)

η1
· · ·V (r)

ηL
)e−β∞(η1+···+ηL),

(A.4)

9 For even L, a correction term is necessary in (A.4) to take into account of the fact that cl(η) satisfying

(2.6) is not unique at
∑
i∈ZL

ηi = L/2 [28, Prop.2.1].
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where e−β∞(η1+···+ηL) is the Boltzmann factor for E∞ in (2.13). We have included it

separately from E1, . . . , Er since it can be incorporated by a simple scalar exceptionally.

Define the transfer matrix V by

V = V
(1)
0 ⊗ · · · ⊗ V (r)

0 + e−β∞V
(1)
1 ⊗ · · · ⊗ V (r)

1 ∈ Mat((r + 1)!, (r + 1)!). (A.5)

Then we have

Z̃L(β1, . . . , βr, β∞) = Tr(V L). (A.6)

This puts us in a standard situation, i.e., the free energy density in the thermodynamic

limit is reduced to − log of the largest eigenvalue of the transfer matrix V . We expect

that in the limit L→∞, the above Z̃L(β1, . . . , βr, β∞) yields the same free energy density

as (3.5).

Example A.1. The transfer matrix for Z̃L(β1, β∞) is

V =

(
1 0

1 0

)
+ e−β∞

(
0 e−β1

0 1

)
. (A.7)

By expressing β1, β∞ in terms of a, z according to (3.20), one finds that the largest

eigenvalue of V is 1−az
1−a in agreement with the free energy result (3.21).

Example A.2. The transfer matrices for Z̃L(β1, β2, β∞) is

V =

(
1 0

1 0

)
⊗

1 0 0

1 0 0

0 1 0

+ e−β∞

(
0 e−β1

0 1

)
⊗

0 e−β2 0

0 0 e−β2

0 0 1

 . (A.8)

The largest eigenvalue of this will be treated in Example B.2.

Appendix B. Low temperature expansion for GGE(β1, . . . , βs)

Here we treat the general Y-system (3.12)–(3.14). It is written as

Y 2
i = eβi

s∏
j=1

(1 + Yj)
Aij , (B.1)

where the quantity Aij and the related Cij with its useful property are given by

Aij = 2δij − Cij, Cij = 2θ(i = j < n) + θ(i = j = n)− θ(|i− j| = 1), (B.2)
s∑
j=1

min(i, j)Cjk = δik,
s∑
i=1

Cij = δj,1, (B.3)

where θ is defined in (2.8). The matrix (Cij)
s
i,j=1 is the symmetrized Cartan matrix of

so(2s + 1). The Y-system (B.1) is transformed into another difference equation called

Q-system:

Yi = e
βi
2

s∏
j=1

(Q̃j)
Aij , (Q̃i)

2 = e
βi
2

s∏
j=1

(Q̃j)
Aij + 1. (B.4)
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Further setting

Q̃i = e
1
2

∑s
j=1 min(i,j)βjQi, wi = e−

∑s
j=1 min(i,j)βj (B.5)

and using (B.3), the relations (B.4) are cast into

Yi = w−1i

s∏
j=1

(Qj)
Aij ,

s∏
j=1

(Qj)
−Cij + wiQ

−2
i = 1. (B.6)

Due to 1 + Y −1i =
∏

1≤j≤s(Qj)
Cij , the free energy (3.15) is expressed as

F = −
s∑

i,j=1

Cij logQj = − logQ1. (B.7)

The latter relation in (B.6) exactly fits [26, eq.(2.5)] withDij = −Cij andGij = −2δij.

Therefore we have the power series formulas [26, eq.(2.17)] and [26, eq.(2.38)]. In the

present setting they read as

Qµ1
1 · · ·Qµs

s =
∑

(m1,...,ms)∈(Z≥0)s

wm1
1 · · ·wmss

(∏
j∈H

(qj + 1)mj−1

mj!

)
det
(
Fjk
)
j,k∈H , (B.8)

logQ1 =
∑

(m1,...,ms)∈(Z≥0)s

wm1
1 · · ·wmss

(∏
j∈H

(q̄j + 1)mj−1

mj!

)∑
r∈H

det
(
F̄jk
)
j,k∈H\{r}, (B.9)

qj =
s∑

k=1

min(j, k)(µk − 2mk), Fjk = δjkqj + 2 min(j, k)mk, (B.10)

q̄j = qj|µ1=···=µs=0, F̄jk = Fjk|µ1=···=µs=0, (B.11)

H = {1 ≤ i ≤ s | mi > 0}, (x)n = x(x+ 1) · · · (x+ n− 1) (n ∈ Z≥0).
(B.12)

In (B.8), the powers µ1, . . . , µs ∈ C are arbitrary10, and (B.9) is deduced by differentiating

(B.8) with respect to µ1. These formulas are outcome of the theory of generalized Q-

systems. It is the most systematic synthesis of numerous preceding results on the constant

TBA equations for XXX, XXZ type spin chains and the Sutherland-Wu equations for ideal

gas with Haldane statistics. See for example [26, Sec. 2.4] for a historical account.

From (3.5)–(3.8), (B.5) and (B.7) one can derive the energy density as

εi =
∂F
∂βi

= −
s∑
j=1

min(i, j)wj
∂F
∂wj

=
s∑
j=1

min(i, j)wj
∂ logQ1

∂wj
. (B.13)

Comparing (B.13) with the left relation in (3.9) we get the density of i-solitons:

ρi = wi
∂ logQ1

∂wi
. (B.14)

10 Qi’s are power series in w1, . . . , ws with a unit constant term for which their complex power is

unambiguously defined.
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Substituting (B.9) into (B.14) we obtain

ρi =
∑

(m1,...,ms)∈(Z≥0)s

miw
m1
1 · · ·wmss

(∏
j∈H

(q̄j + 1)mj−1

mj!

)∑
r∈H

det
(
F̄jk
)
j,k∈H\{r}. (B.15)

In view of wm1
1 · · ·wmss = e−

∑
1≤j,k≤smin(j,k)βjmk , the series (B.8), (B.9) and (B.15) are

low-temperature expansions. They have a finite convergence radius mentioned after [26,

eq.(2.15)]. To investigate the behavior around them is beyond the scope of this paper.

Example B.1. For s = 2, the lower order terms wi1w
j
2 with i, j ≤ 2 read as follows:

Q1 = 1 + w1 − w2
1 + w2 − 3w1w2 + 10w2

1w2 − 3w2
2 + 20w1w

2
2 − 105w2

1w
2
2 + · · · ,

(B.16)

Q2 = 1 + w1 − w2
1 + 2w2 − 4w1w2 + 12w2

1w2 − 5w2
2 + 28w1w

2
2 − 135w2

1w
2
2 + · · · ,

(B.17)

w1Y1 = 1 + w1 − w2
1 + 2w2 − 4w1w2 + 12w2

1w2 − 5w2
2 + 28w1w

2
2 − 135w2

1w
2
2 + · · · ,

(B.18)

w2Y2 = 1 + 2w1 − w2
1 + 3w2 − 4w1w2 + 12w2

1w2 − 6w2
2 + 30w1w

2
2 − 140w2

1w
2
2 + · · · ,

(B.19)

ρ1 = w1 − 3w2
1 − 4w1w2 + 30w2

1w2 + 27w1w
2
2 − 308w2

1w
2
2 + · · · , (B.20)

ρ2 = w2 − 4w1w2 + 15w2
1w2 − 7w2

2 + 54w1w
2
2 − 308w2

1w
2
2 + · · · , (B.21)

ε1 = w1 − 3w2
1 + w2 − 8w1w2 + 45w2

1w2 − 7w2
2 + 81w1w

2
2 − 616w2

1w
2
2 + · · · , (B.22)

ε2 = w1 − 3w2
1 + 2w2 − 12w1w2 + 60w2

1w2 − 14w2
2 + 135w1w

2
2 − 924w2

1w
2
2 + · · · .

(B.23)

The results (A.5), (A.6) and (B.7) indicate

Q1 for GGE(β1, . . . , βr, 0, . . . , 0, βs)
s→∞−→ Largest eigenvalue of V in (A.5), (B.24)

where the power series expansion of the LHS is obtained by specializing (B.8) to µk = δk,1.

Example B.2. The power series (B.8) for Q1 for GGE(β1, β2, 0, . . . , 0, βs) converges as

s gets large. In terms of the variables zj = e−βj (j = 1, 2,∞), the lower order part of the

limit is

Q1 = 1 + z1z2z∞ + z1z
2
2z

2
∞ − z21z22z2∞ + z1z

2
2z

3
∞ − 3z21z

3
2z

3
∞ + 2z31z

3
2z

3
∞ (B.25)

+ z1z
2
2z

4
∞ − 3z21z

3
2z

4
∞ − 3z21z

4
2z

4
∞ + 10z31z

4
2z

4
∞ − 5z41z

4
2z

4
∞ + · · · (B.26)

up to the terms zi1z
j
2z
k
∞ with min(i, j, k) ≥ 1. One can check that this indeed gives

the largest eigenvalue of V in (A.8) confirming (B.24). For instance when (z1, z2, z∞) =

(0.4, 0.3, 0.2), they take the value 1.02511....
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Appendix C. Proof of (4.14)

We illustrate the proof partly along the 4× 4 examplep1 + 2m1 2m2 2m3 2m4

2m1 p2 + 4m2 4m3 4m4

2m1 4m2 p3 + 6m3 6m4

2m1 4m2 6m3 p4 + 8m4


x1 x1 x1 x1
x1 x2 x2 x2
x1 x2 x3 x3
x1 x2 x3 x4

 = −2

p
−1
1 p−12 p−13 p−14

p−11 2p−12 2p−13 2p−14

p−11 2p−12 3p−13 3p−14

p−11 2p−12 3p−13 4p−14

 .

(C.1)

From each row subtract the adjacent upper row starting from the bottom. The result

readsp1 + 2m1 2m2 2m3 2m4

−p1 p2 + 2m2 2m3 2m4

0 −p2 p3 + 2m3 2m4

0 0 −p3 p4 + 2m4


x1 x1 x1 x1
x1 x2 x2 x2
x1 x2 x3 x3
x1 x2 x3 x4

 = −2

p
−1
1 p−12 p−13 p−14

0 p−12 p−13 p−14

0 0 p−13 p−14

0 0 0 p−14

 .

(C.2)

From pi = L− 2
∑4

j=1 min(i, j)mj, one has the relations

p1 + 2m1 + 2m2 + 2m3 + 2m4 = p0, p2 + 2m2 + 2m3 + 2m4 = p1,

p3 + 2m3 + 2m4 = p2, p4 + 2m4 = p3,
(C.3)

where p0 = L. Thus taking the matrix product in (C.2) leads to the equation of the form
p0x1 s12 s13 s14

0 −p1x1 + p1x2 s23 s24
0 0 −p2x2 + p2x3 s34
0 0 0 −p3x3 + p3x4

 = −2


p−11 p−12 p−13 p−14

0 p−12 p−13 p−14

0 0 p−13 p−14

0 0 0 p−14


(C.4)

for sij which will be given explicitly later. Thus the lower triangular part of the matrix

equation is automatically satisfied. The diagonal part compels (4.14), i.e.,

xk = −2
k∑
j=1

1

pj−1pj
(C.5)

as a necessary condition. For sufficiency, one needs to further verify that (C.5) also

guarantees the equalities

sij = − 2

pj
(i < j). (C.6)

Let us write down the element sij for the general size g × g case. By imagining the

equation (C.2) for such a situation we have

sij = −pi−1xi−1 + (pi + 2mi)xi + 2(mi+1xi+1 + · · ·+mj−1xj−1) + 2(mj + · · ·+mg)xj,

(C.7)
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where 1 ≤ i < j ≤ g and x0 := 0. From pi = L− 2
∑g

j=1 min(i, j)mj, one has

2mk = pk−1 − 2pk + pk+1 (1 ≤ k < g), 2mg = pg−1 − pg. (C.8)

Substitution of them into (C.7) gives

sij = −pi−1xi−1 + (pi−1 − pi + pi+1)xi +
∑

i+1≤k≤j−1

(pk−1 − 2pk + pk+1)xk + (pj−1 − pj)xj

= pi−1(xi − xi−1) + pi(xi+1 − xi) +
∑

i+1≤k≤j−1

pk(xk−1 − 2xk + xk+1) + pj(xj−1 − xj).

(C.9)

Now that xk dependence enters only through the difference

xk − xk−1 =
−2

pk−1pk
(C.10)

implied by (C.5), the quantity (C.9) can be expressed entirely by p0, . . . , pg. After many

cancellations, one finds that the result exactly yields − 2
pj

, completing a proof of (C.6).

Appendix D. Current in GGE(β1, β∞)

The general result (4.2) and (4.19) on the current and the effective speed can be evaluated

explicitly in the GGE(β1, β∞) treated in Sec. 3.4. In fact from (3.25) we have

1

σj−1σj
=

(1 + a)2

(1− a)2
+

2(1 + a)2(1 + z)

(1− a)2(1− z)

( 1

1 + azj−1
− 1

1 + azj

)
. (D.1)

Thus the sum (4.19) can be taken, yielding the effective speed:

v
(l)
k =

1 + azl

1− azl
vmin(k,l), vk =

1 + a

1− a
k − 2a(1 + z)(1− zk)

(1− a)(1− z)(1 + azk)
. (D.2)

Further substituting this and (3.26) into (4.2), we obtain, after some calculation, the

stationary current:

J (l) =
a(1 + z)

(1 + a)(1− z)

(
1− (1− a)zl

1− azl
)
− lazl

1− azl
. (D.3)

From (3.20), one deduces some typical behavior as

J (l) =
z(1− zl − lzl(1− z))

(1− z)(1− zl+1)
+O(β1) (β1 → 0), (D.4)

=
z((1 + z)(1− zl)− lzl(1− z)

(1− z)3
e−β1 +O(e−2β1) (β1 →∞), (D.5)

=
l

2
− l(−1 + 3y−1 + 3ly−1/2 + l2)β∞

12(y−1/2 + l)
+O(β3

∞) (β∞ → 0), (D.6)

= e−β1−β∞ +O(e−2β∞) (β∞ →∞), (D.7)

where y and z are defined in (E.3).
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Appendix E. Alternative derivation of J (l) in GGE(β1, β∞)

Let us rederive the current (D.3) by an independent method as a consistency check.

Consider the concatenation of two vertices from (2.4) which forms a segment in the

diagram for the time evolution Tl in (2.5) as

?

-

?

-

α β

n m n,m ∈ {0, 1, . . . , l}, α, β ∈ {0, 1}.
(E.1)

Introduce the local transfer matrix T generating the Boltzmann weight of this

configuration in GGE(β1, β∞) as

T |n, α〉 =
∑
m,β

yθ(α<β)zβ|m,β〉, (E.2)

where the parameters y and z are specified by

y = e−β1 =

(
z

1
2 − z− 1

2

a
1
2 − a− 1

2

)2

, z = e−β∞ (E.3)

according to (3.20), and the local forms of the energies E1 (2.10) and E∞ (2.13) have been

taken into account. Explicitly (E.2) reads as

T |n, 0〉 = |n− 1, 0〉+ yz|n− 1, 1〉 (1 ≤ n ≤ l), (E.4)

T |0, 0〉 = |0, 0〉+ yz|0, 1〉, (E.5)

T |n, 1〉 = |n+ 1, 0〉+ z|n+ 1, 1〉 (0 ≤ n ≤ l − 1), (E.6)

T |l, 1〉 = |l, 0〉+ z|l, 1〉. (E.7)

The action on the dual basis is defined by postulating (〈n, α|T )|n′, α′〉 = 〈n, α|(T |n′, α′〉)
and 〈n, α|n′, α′〉 = δn,n′δα,α′ . Explicitly they read

〈n, 0|T = 〈n+ 1, 0|+ 〈n− 1, 1| (1 ≤ n ≤ l − 1), (E.8)

〈0, 0|T = 〈0, 0|+ 〈1, 0|, (E.9)

〈l, 0|T = 〈l, 1|+ 〈l − 1, 1|, (E.10)

〈n, 1|T = yz〈n+ 1, 0|+ z〈n− 1, 1| (1 ≤ n ≤ l − 1), (E.11)

〈0, 1|T = yz〈1, 0|+ yz〈0, 0|, (E.12)

〈l, 1|T = z〈l − 1, 1|+ z〈l, 1|. (E.13)

We stay in the regime 0 < a ≤ z < 1 as mentioned after (3.20). Then the left and right

Perron-Frobenius eigenvectors has the eigenvalue 1−az
1−a , and they are given by

|ψ〉 =
z(1− a)

a(1− z)
|0, 0〉+

l∑
n=1

zn|n, 0〉+
z(1− z)

1− a

l−1∑
n=0

zn|n, 1〉+ zl+1|l, , 1〉, (E.14)

〈ψ̄| =
l∑

n=0

〈n, 0|+ 1− a
1− z

l∑
n=0

〈n, 1|. (E.15)
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By writing them as |ψ〉 =
∑

n,α ψn,α|n, α〉 and 〈ψ̄| =
∑

n,α ψ̄n,α〈n, α|, the probability

P(n, α) of having the (n, α) part of the configuration in (E.1) is

P(n, α) =
ψ̄n,αψn,α∑
n,α ψ̄n,αψn,α

. (E.16)

A direct calculation of this gives

P(0, 0) =
1− a

(1 + a)(1− azl)
, P(n, 0) =

a(1− z)zn−1

(1 + a)(1− azl)
(1 ≤ n ≤ l), (E.17)

P(l, 1) =
a(1− a)zl

(1 + a)(1− azl)
, P(n, 1) =

a(1− z)zn

(1 + a)(1− azl)
(0 ≤ n ≤ l − 1). (E.18)

The probability of the capacity l carrier for holding n balls is

P(n) = P(n, 0) + P(n, 1) =


1−az

(1+a)(1−azl) (n = 0),
azn−1(1−z2)
(1+a)(1−azl) (1 ≤ n ≤ l − 1),
azl−1(1−az)
(1+a)(1−azl) (n = l).

(E.19)

When l → ∞ this result agrees with [6, Lem. 3.15] by identifying the parameter p0, p1
therein as p0 = a(1−z)

1−az , p1 = z(1−a)
1−az . Now it is elementary to calculate the expectation

value of the number of balls in the carrier as

l∑
n=1

nP(n) =
a(1 + z)

(1 + a)(1− z)

(
1− (1− a)zl

1− azl
)
− lazl

1− azl
. (E.20)

This reproduces the current (D.3).

Appendix F. Linearly degenerate hydrodynamic type systems

A junction point between GHD and linearly degenerate hydrodynamic type systems

[35, 24, 4] can be constructed through the current conservation (5.17):

∂tσ + ∂x(σv) = 0 (F.1)

together with the characteristic equation (5.20):

∂ty + v∂xy = 0. (F.2)

We now take into account that the densities σ and the velocities v are functions of the

vector y, and this vector y is a function of x and t. We can thus write ∂tσi =
∑

p ∂t(yp)∂pσi,

where ∂p means ∂p = ∂
∂yp

. Similarly, ∂x(σivi) =
∑

p ∂x(yp) [vi∂pσi + σi∂pvi]. Combined

with ∂t(yp) + vp∂x(yp) = 0, (F.1) becomes:∑
p

{−vp∂x(yp)∂pσi + ∂x(yp) [vi∂pσi + σi∂pvi]} = 0. (F.3)
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Since this relation should be verified for any vector ∂xy (one can choose arbitrarily the

initial condition), we have

∀i, p vp∂pσi = vi∂pσi + σi∂pvi, (F.4)

or, equivalently:

∂p log(σi) =
∂pvi
vp − vi

. (F.5)

In particular, setting p = i, we find that vi does not depend on yi:

∂ivi = 0 (no summation on i). (F.6)

Conversely, we can use the characteristic equation (F.2) as a starting point and

require the integrability conditions:

∂k(
∂pvi
vp − vi

) = ∂p(
∂kvi
vk − vi

), p 6= k 6= i, (F.7)

called “semi-Hamiltonian” property, together with (F.6) called “linear degeneracy”. The

densities σk defining the conserved currents (F.1) are then obtained by integrating (F.7).

In the BBS case, the y dependence of the velocities follows from the equation (5.12):

v = κdr/1dr. (F.8)

We know from the commmutation of the transfer matrices Tl, Tl′ that the flows

associated to two different sets of bare velocities κ(l) and κ(l
′) commute. One can verify

this propety directly within this formalism for an arbitrary pair κ, κ′ of vectors, by

evaluating d
dt
dyi
dt′
− d

dt′
dyi
dt

.11 A direct computation using (F.2) shows it is equal to

d

dt

dyi
dt′
− d

dt′
dyi
dt

=
∑
p6=i

(
v′p − v′i

)
(vp − vi)

[
∂pv

′
i

v′p − v′i
− ∂pvi
vp − vi

]
∂xyp∂xyi. (F.9)

The term in brackets turns out to vanish due to (F.5) and to the fact that σ = 1dr does

not depend on the bare velocities (κ or κ′). We thus get d
dt
dyi
dt′

= d
dt′

dyi
dt

.
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