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Abstract In this paper proof of the twin prime conjecture is going to be presented. Originally very difficult problem (in

observational space) has been transformed into a sampler one (in generative space) that can be solved. It will be shown

that  twin primes could  be obtained through two stage  sieve  process,  and that  will  be  used to  obtain a  reasonable

estimation of the number of twin primes. The same approach is used to prove the Polignac's conjecture for cousin

primes.

1 Introduction

In number theory, Polignac's conjecture states: For any positive even number n, there are infinitely

many prime gaps of size  n.  In other words: there are infinitely many cases of two consecutive

prime numbers with the difference n [1]. For n = 2 it is known as twin prime conjecture.

Conditioned on the truth of the generalized Elliot-Halberstam Conjecture [2], in [3] it  has been

shown that there are infinitely many primes' gaps that have value of at least 6. In this paper gaps 2

and 4 are analyzed. The problem is addressed in generative space, which means that prime numbers

are not going to be analyzed directly, but rather their representatives that can be used to produce

them. It will be shown that twin primes could be generated by two stage process (sieve), and that

will be used to generate formula for the number of twin primes. It will be shown that exist lower

bound for the number of twin primes smaller than some natural number n, n ϵ N, and that will be

used to show that overall number of twin primes is infinite. 

In the last part of the paper it will be shown that the number of cousin primes is infinite, too.



Remark 1: In this paper any infinite series in the form c1·l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to

the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 Proof of the twin prime conjecture

It is well known that every two consecutive odd numbers (psk,  plk) between two consecutive odd

numbers divisible by 3 (e.g. 9 11 13 15, or 39 41 43 45), can be expressed as 

psk = 6k - 1

plk = 6k + 1, k ϵ N.

Twin prime numbers are obtained in the case when both  psk  and plk are prime numbers. If any of

the  psk or plk (or both) is a composite number, then we cannot have twin primes.  In the text that

follows we will call numbers psk - numbers in mps form and numbers plk  - numbers in mpl form.

Here we are going to present a two stage process that can be used for generation of twin primes. In

the first stage we are going to produce prime numbers by removing all composite numbers from the

set of natural numbers. In the second stage, we are going to remove all prime numbers that have an

bigger odd neighbor that is composite number. At the end, only the prime numbers in the mps form,

that represent the smaller number of a twin prime pair, are going to stay. Their number is equal to

the number of twin primes. It is going to be shown that that number is infinite. It is easy to check

that  all  numbers in  mpl form are going to  be removed from the  set,  since their  neighbors  are

composite numbers divisible by 3.

STAGE 1

Prime numbers can be obtained in the following way: 

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary



to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (1)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after

simple calculation, equation (1) is obtained. This calculation is presented here. The form 2m + 1, m

ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(i 1+1)( j1+1) ,

where i
1
, j

1
 ϵ N. Now, it is easy to see that the following equation holds

m=
i1 j1+i 1+ j 1

2
.

In order to have m ϵ N, it is easy to check that i
1
 and j

1
 have to be in the forms

i
1
 = 2i and j

1
 = 2j,

where i, j ϵ N. From that, it follows that m must be in the form

m = 2ij + i + j = (2i + 1) j + i. (2)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers  that  cannot be represented by (1) will  stay.  This process is  equivalent  to  the sieve of

Sundaram [4].



Let us denote the numbers used for the generation of odd prime numbers with m2 (here we ignore

number 2). Those are the numbers that are left after the implementation of Sundaram sieve. The

number of those numbers that are smaller than some natural number n, is equivalent to the number

of prime numbers smaller than  n.  If  we denote with π(n) number of primes smaller than  n,  the

following equation holds

π(n)≈
n

ln (n)
.

STAGE 2

What was left after the first stage are prime numbers. With the exception of number 2, all other

prime numbers are odd numbers. All odd primes can be expressed in the form 2n + 1, n ϵ N. It is

simple to understand that their bigger odd neighbor must be in the form 2n + 3,  n ϵ N.  Now, we

should implement a second step in which we are going to remove number 2 (since 2 cannot make

twin pair) and all odd numbers in the form  2m + 3, m ϵ N and that are composite. If we make the

same analysis again, it is simple to understand that m must be in the form

m = 2ij + i + j – 1 = (2i + 1) j + i -1. (3)

All numbers (in observational space) that are going to stay must be numbers in mps form and they

represent a smaller primes of the twin pairs (it is simple to understand that prime numbers in mpl

form have neighbors that are composite odd numbers divisible by 3).

Since the methods that are applied in the first and the second stage are similar, it can be intuitively

concluded  that  the  number  of  numbers  left  after  the  second  “Sundaram”  sieve,  should  be

comparable to tplb(n),  n ϵ N, defined by the following equation

tplb(n)=
π(n)

ln (π(n))
. (4)

The tblp(n) would be obtained in the case when second stage sieve wold produce the same amount

of numbers removed with each thread, like the original Sundaram sieve. However, the result is not



correct and it requires some compensation terms since the second “Sundaram” sieve is applied on

an incomplete set, that is depleted by previously implemented Sundaram sieve. Actually,  tplb(n)

represents a lower bound for the number of twin primes that are smaller than some number  n. In

order to understand why it is so, we are going to analyze (2) and (3) in more detail. 

It is not difficult to be seen that m in (2) and (3) is represented by the threads that are defined by odd

prime numbers. For details see any of the previous version of this paper.

Now we are going to compare stages 1 and 2 step by step. Removal of number 2 in second stage is

ignored.

Table 1 Comparison of the stages 1 and 2

Step Stage 1 Step Stage 2

1 Remove even numbers (except 2)

amount of numbers left – 1/2

1 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 1/2

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 2/3

2 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 3/4

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 4/5

3 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 5/6

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 6/7

4 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 9/10

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 10/11

5 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 11/12

6 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 12/13

6 Remove numbers defined by thread
defined by 17 (obtained for i = 8)

amount of numbers left 15/16

What can be seen is that in every step, except step 1, threads in the second stage will leave bigger

percentage of  numbers  than the corresponding threads in the first  stage.  It  can be  noticed that

threads defined by the same number in first  and second stage will not remove the same percentage

of numbers. The reason is obvious – consider for instance the thread defined by 3: in the first stage



it will remove 1/3 of the numbers left, but in the second stage it will remove ½ of the numbers left,

since the thread defined by 3 in stage 1 has already removed one third of the numbers (odd numbers

divisible  by 3  in  observation  space).  So,  only odd  numbers  (in  observational  space)  that  give

residual 1 and -1 when they are divided by 3 are left, and there are approximately same number of

numbers that give residual -1 and numbers that give residual 1, when the number is divided by 3.

Same way of reasoning can be applied for all  other threads defined by same prime in different

stages. So, from Table  we can see  that bigger number of numbers is left in every step of stage 2

then in the stage 1 (except 1st step). From that, we can conclude that after every step bigger than 1,

part of the numbers that is left in stage 2 is bigger than number of numbers left in the stage 1 (that is

even more noticeable if we consider amount of numbers left after removal of all numbers generated

by threads that are defined by all prime numbers smaller than some natural number). Let us mark

the number of twin primes smaller than some natural number n with π
g2

(n).  From previous analysis

we can safely conclude that the following equation holds for every n > 4

πg2(n) >
1
3

tplb(n) ,

or for n > 100

πg2(n) >tplb(n) .

(Reason for introduction of constant 1/3 or postponing the  relevance of the relationship for some

big enough n (which is here 100), comes from the fact that fractures that were presented in Table 1

are not correct in the case when small number of numbers are analyzed. For small numbers their

values can fluctuate significantly).

Since it it easy to show that  following holds

lim
n→ ∞

tplb (n)= lim
n→ ∞

π(n)
ln (π(n))

=∞ ,

we can safely conclude that the number of twin primes is infinite. That concludes the proof.



Without going into details, here we will state the following conjecture: for n big enough, number of

twin primes is given by the following equation 

πg2(n) ∼
π

2

8
π(n)

ln (π(n))
=

3
4
ζ (2)

π (n)
ln (π(n))

,  

where  ζ represents Riemann zeta function. If we  mark the number of primes smaller than some

natural number n with π
g2

(n) = f (n), where function f  (n) gives good estimation of the number of

primes smaller than n, than π
g2

(n), for n big enough, is given by the following equation

πg2(n) ∼
3
4
ζ(2)⋅ f ( f (n)) .

 If particular case f (n) = Li (n), the following equation holds

πg2(n) ∼
3
4
ζ(2)⋅∫

2

n

(
dx

ln(∫
2

x

( dt
ln(t))))

.

3. Proof that the number of cousin primes is infinite

The cousin primes are successive prime numbers with gap 4. It is clear that cousin primes represent

pairs of odd numbers that surround odd number divisible by 3 (e.g. (7 9 11), or (13 15 17)). A pair

can only represent a cousin primes if both those numbers are primes. So, if we denote a pair of odd

numbers that surround an odd number divisible by 3 as pl
k
 = 6k + 1 and ps

k
 = 6(k + 1) – 1, k ϵ N,

these  numbers  can  represent  cousin  primes  only in  the  case  when both  pl
k
 and  ps

k
 are  prime

numbers. If  any of the  ps
k
 or  pl

k
 (or both) is a composite number, then we cannot have cousin

primes. 

Here, similar to the case of twin primes we are going to create a two stage process for generation of

cousin primes.



STAGE 1 

Using the same methodology as previously, generate all prime numbers. In order to do that, from

the set  of  all  natural  numbers  bigger  than 1,  remove all  even numbers  (except  2)  and all  odd

numbers generated by equation (2).

STAGE 2

What was left after first stage are prime numbers. With the exception of number 2, all other prime

numbers are odd numbers. All odd primes can be expressed in the form 2m + 1, m ϵ N. It is simple

to understand that their bigger odd cousin must be in the form 2m + 5,  m ϵ N.  Now, we should

implement a second step in which we are going to remove number 2 (since 2 cannot make cousin

pair) and all odd numbers in the form  2m + 5, m ϵ N and that are composite. If we make the same

analysis like in the case of twin primes, it is simple to understand that m must be in the form

m = 2ij + i + j – 2 = (2i + 1) j + i -2. (5)

All numbers (in observational space)| that are going to stay must be numbers in mpl form and they

represent a smaller primes of the cousin pairs (it is simple to understand that prime numbers in mps

form have cousins that are composite odd numbers divisible by 3).

Now, using the same method like in the case of the twin prime conjecture, it can be proved that

exists infinitely many cousin primes.

Let us mark the number of cousin primes smaller than some natural number n with π
g4

(n).Without

going into details, here we will state the following conjecture: for n big enough, number of cousin

primes is given by the following equation 

πg4(n) ∼
π

2

8
π (n)

ln (π(n))
=

3
4
ζ (2)

π(n)
ln (π(n))

,  

where ζ represents Riemann zeta function. If we mark the number of primes smaller than some

natural number n with π
g4

(n) = f (n), where function f  (n) gives good estimation of the number of



primes smaller than n, than π
g4

(n), for n big enough, is given by the following equation

πg4(n) ∼
3
4
ζ (2)⋅ f ( f (n)) .
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