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Multiple two-step regimes of the saxophone

A saxophone mouthpiece fitted with sensors is used to observe the oscillation of1

a saxophone reed, as well as the internal acoustic pressure, allowing to identifiy2

qualitatively different oscillating regimes. In addition to the standard two-step3

regime, where the reed channel successively opens and closes once during an4

oscillation cycle, the experimental results show regimes featuring two closures of5

the reed channel per cycle, as well as inverted regimes, where the reed closure6

episode is longer than the open episode. These regimes are well-known on bowed7

string instruments and some were already described on the Uillean pipes. A simple8

saxophone model using a measured input impedance is studied with the harmonic9

balance method, and is shown to reproduce the same two-step regimes. The10

experiment shows qualitative agreement with the simulation: in both cases, the11

various regimes appear in the same order as the blowing pressure is increased. Similar12

results are obtained with other values of the reed opening control parameter, as well13

as another fingering.14
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Multiple two-step regimes of the saxophone

I. INTRODUCTION15

Various oscillating regimes, defined as the pattern of oscillations both mechanical and16

acoustical that correspond to the production of a periodic sound, have been observed and17

classified on bowed string instruments(Schelleng, 1973). The strongly non-linear friction law18

between bow and string leads to an oscillation pattern known as stick-slip motion, where19

the string sticks to the bow for a part of the period and then slips for another part of the20

period. The stick-slip phases may occur twice per period, leading to the so-called “double21

stick-slip” motion.22

Reed conical instruments have often been compared to bowed strings, by virtue of the23

cylindrical saxophone approximation, which replaces the conical resonator with two parallel24

cylinders (Ollivier et al., 2004) because their impedance is similar in low frequency. In25

reed instruments, the analogous motion to stick-slip is called two-step motion (Ollivier26

et al., 2005). It consists in a beating reed regime, where the reed channel is closed for27

part of the period, and open for the rest of the period. The most common case, where28

the reed closure episode is shorter than half the period, is called standard two-step motion.29

Otherwise, the regime is called inverted. Standard and inverted two-step motions have30

been observed experimentally on a saxophone and predicted analytically on a cylindrical31

equivalent (Dalmont et al., 2000). Oscillating regimes showing more than one closure of32

the reed per period were never studied on the saxophone to our knowledge. They have33

been observed on a double reed instrument, the Irish Uillean pipes (Dalmont and Le Vey,34

2014). To observe the signals produced by a wind instrument in playing situation, with a35
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musician, an instrumented mouthpiece fitted with a reed displacement and pressure sensors36

can be used. Instrumented mouthpieces can help explain features of the produced sound, for37

instance spectral content on a saxophone (Guillemain et al., 2010) or transient descriptors38

on a clarinet (Pàmies-Vilà et al., 2018). They also provide a means to estimate some39

of the parameters of a physical model based on the dynamical behavior of the system40

(Muñoz Arancón et al., 2016).41

This paper reports experiments in playing conditions exhibiting classic standard and42

inverted regimes, as well as double two-step motions, where the reed channel closes twice43

per period. To complete the study, we show that a simple saxophone model based on the44

input impedance of the saxophone used for the experiment is able to reproduce these double45

two-step regimes. The Harmonic Balance Method associated with continuation (Asymptotic46

Numerical Method) is used to obtain periodic signals corresponding to several control47

parameter combinations. The numerical simulations, in addition to experimental data,48

provide insights about the possible ways of transition between single and double two-step49

regimes, as well as the second register of the instrument. We also show that similar behavior50

occurs for neighboring fingerings and control parameter values. Describing and categorizing51

the oscillation regimes of the saxophone, as well as the musician’s actions needed to obtain52

them, is among the first steps towards objective characterization of the ease of playing of53

an instrument.54
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II. EXPERIMENTAL OBSERVATION OF DOUBLE TWO-STEP MOTIONS ON55

A SAXOPHONE56

A. Experimental apparatus57

An instrumented mouthpiece is used to monitor the blowing pressure, the pressure inside58

the mouthpiece, and the position of the reed. It is shown in figure 1. It consists in a59

modified saxophone mouthpiece (Buffet-Crampon) incorporating two pressure probes: one60

going into the mouth of the musician and one into the mouthpiece, as well as an optical61

sensor (Everlight ITR8307) measuring the displacement of the reed. The pressure probe62

tubes are connected to a Honeywell TSCDRRN005PDUCV pressure sensor. The tubes have63

a radius of 0.55 mm and a length of 20 mm (mouth pressure) and 62 mm (pressure in the64

mouthpiece). According to (Guillemain et al., 2010), the transfer function of these capillary65

tubes is well represented by a model with non-isothermal boundary conditions (Keefe, 1984).66

An inverse filtering was performed on the pressure signals to compensate the effect of the67

probe tubes. Signals are then acquired using an NI USB-9234 card by National Instruments68

at a 51.2 kHz sampling rate. Experimental signals displayed hereafter are not scaled or69

converted as this work focuses on qualitative study of the regime types. The instrumented70

mouthpiece is equipped with a saxophone reed (Rico Royal strength 2) and mounted on a71

commercial alto saxophone (Buffet-Crampon Senzo).72

Throughout the remainder of the paper, a low B fingering (written pitch) is studied. In73

concert pitch, the fundamental note expected with this fingering is a D3 at the frequency74

146.83 Hz. The input impedance of the saxophone for this fingering has been measured75
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Optical sensor

Blowing

pressure probe

Mouthpiece

pressure probe

FIG. 1. Instrumented alto saxophone mouthpiece including pressure probes for the pressure in the

mouth of the musician and in the mouthpiece, and an optical sensor measuring the displacement

of the reed. The reed is pulled back so that the optical sensor is uncovered.

using the CTTM impedance sensor (Dalmont and Le Roux, 2008). Its modulus is displayed76

in figure 2. The B fingering, which produces the second lowest note on the instrument, is77

chosen because the double two-step regimes studied in this work tend to appear more easily78

on the lowest notes of the saxophone. Note that for this fingering, the note most commonly79

expected by musicians is the first register, whose frequency is around the first impedance80

peak. On this fingering, the first register is often hard to produce, especially for beginner81

musicians. This can be understood when looking at the impedance modulus curve on figure 2,82

where the first peak is lower than the next three peaks: the upper resonances of the bore play83

a large part in the sound production, leading to a complicated sound production behavior.84

This profile of amplitude of the first few impedance peaks is also found in soprano and tenor85

saxophone (Chen et al., 2009). The lowest fingering (B[) was not chosen, although it was86

tested, because it is more subject to producing undesired multiphonics and quasi-periodic87

regimes.88
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FIG. 2. Input impedance modulus measured for the studied fingering of the alto saxophone: low

B in written pitch. The modulus of the impedance is normalized by the characteristic impedance

at the input of the instrument.

B. Observation of single and double two-step oscillating regimes89

The main oscillating regimes of a saxophone are beating, which means that the reed90

channel closes completely during part of the cycle. They can be thought of as two-step91

motions (Ollivier et al., 2004) and classified as standard or inverted, depending on the92

relative duration of the open and closed episode. Different regimes can be obtained for the93

same fingering, just by varying the control parameters such as the blowing pressure. Figure94

3 shows measured examples of these two-step regimes. The reed displacement signal was95

post-processed by substracting its moving average over a period, to be centered around 0.96

The standard regime is characterized by an open episode and a short closed episode. As97

can be seen on figure 3 (a), the reed is opened – and displays small amplitude oscillations98

around the highest values of x – for about 6 ms. Its closure corresponds to the main dip in99
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the waveform and it lasts for about 1 ms per period. For the inverted motion on figure 3100

(b), the duration ratio is reversed: the reed channel is almost at its narrowest about 6 ms101

and opens wide briefly for about 1 ms. Note that the standard regime is obtained for lower102

values of the blowing pressure than the inverted regime.103

(a)

Open

Closed

(b)

Open

Closed

FIG. 3. Measured reed position for simple two-step motions: standard (a) and inverted (b). The

reed channel is closed when x is low. These waveforms correspond to different blowing pressures

(see circle markers on figure 5).

The analogy with bowed string instruments suggests the apparition of other types of104

regimes. For example, under given excitation condition, bowed strings are subject to the105

double stick-slip phenomenon (Woodhouse, 2014), an oscillation regime where the string slips106

under the bow twice per period (instead of once for the standard Helmholtz motion). When107

transposed to conical reed instruments, this phenomenon corresponds to two closures of the108

reed channel per period. These regimes are observed experimentally on the low fingerings of109

the saxophone and they can be standard or inverted, as shown in figure 4. This oscillating110

regime can be called “double two-step”. Note that the double two-step regime is distinct111

from second register regimes: it is a first register regime, as it produces the same note as112
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the standard two-step regime. For the standard version of the double two-step regime, the113

closure episodes are about 1 ms, almost the same duration as in the single standard two-step114

motion (figure 3, (a)). For the inverted double two-step regime, the short openings of the115

reed channel also last for about 1 ms. For illustration purposes, the audible sound outside116

the instrument was recorded and short clips are provided as multimedia files 3, 4, 1 and 2.117

Note that the audible sound corresponding to these double two-step regimes (Mm. 3 and118

4) is clearly different from single regimes (Mm. 1 and 2). The difference in audible sound is119

less clear between a standard regime and its inverted counterpart.120

Mm. 1. Sound recorded outside the resonator for the standard two-step motion, corresponding121

to the measured displacement shown in figure 3, (a).122

Mm. 2. Sound recorded outside the resonator for the inverted two-step motion, corresponding123

to the measured displacement shown in figure 3, (b).124

Mm. 3. Sound recorded outside the resonator for the double two-step motion, corresponding125

to the measured displacement shown in figure 4, (a).126

Mm. 4. Sound recorded outside the resonator for the inverted double two-step motion,127

corresponding to the measured displacement shown in figure 4, (b).128

In order to estimate the relative regions of production of each kind of regime in the129

control parameter space, a blowing pressure ramp is performed by a musician and recorded130

using an instrumented mouthpiece for the B fingering of the test saxophone. The musician131
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(a)

Open

Closed

(b)

Open

Closed

FIG. 4. Measured reed position for double two-step motions: standard (a) and inverted (b). These

waveforms correspond to different blowing pressures (see circle markers on figure 5).

sees the evolution of the blowing pressure parameter in real-time on a screen. The player132

makes as little embouchure adjustments as possible and focuses on increasing the blowing133

pressure progressively. Results are shown in figure 5. This ramp was obtained in a single134

breath after several tries. For clarity, the blowing pressure signal is smoothed by a moving135

average with a rectangular window, adjusted to reject the fundamental frequency of the136

oscillations and keep only the slowly varying value of the signal. Regimes are classified137

automatically based on the ratio of duration of the open and closed reed episodes. The reed138

displacement signal is high-pass filtered in order to remove the DC component. The reed139

is then considered “open” when the displacement signal is above 0 and “closed” when it is140

below 0. The ratio between closed duration and oscillation period is then computed and141

averaged over 4 periods. Thresholds are defined arbitrarily to separate between the different142

types of regimes, at 0.1, 0.25, 0.5, 0.6 and 0.8 (see dotted lines on figure 5). Looking at143

the pressure ramp in its entirety shows a possible order of the regimes when increasing144

the blowing pressure: standard and double two-step motions, second register, and inverted145
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double then inverted two-step motions. Note that in this ramp, the episode between 1 and 2146

seconds with a closure ratio of little above 0.25 is actually a quasi-periodic oscillation, with147

the actual double two-step oscillation starting at around 2.3 seconds.148

Fig 3(a) and 6(a) Fig 4(a) and 6(b)

Fig 4(b) and 6(c) Fig 3(b) and 6(d)

FIG. 5. Result of a blowing pressure increase (low B fingering, alto saxophone) recorded with the

instrumented mouthpiece. Left y-axis (red): measured smoothed blowing pressure in Pa. Right

y-axis: ratio between closure episode duration and oscillation period (solid black line), and regime

separation thresholds (dotted black lines). Greyed areas emphasize the duration of each type of

regime. Circles correspond to reed displacement signals in figures 3, 4 and pressure signals in figure

6.
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III. NUMERICAL STUDY OF THE REGIMES USING A PHYSICAL MODEL149

A. Saxophone model150

A simplified saxophone model consists of three main elements: the resonator, the reed

channel and reed dynamics. Here all variables are dimensionless and obtained from their

physical counterparts (denoted with a hat) as

p =
p̂

pM
, u = Zc

û

pM
, x =

x̂

H
, (1)

where pM is the static pressure necessary to close the reed completely, Zc is the characteristic151

impedance at the input of the resonator, and H is the distance separating the reed from152

the mouthpiece lay at rest. Note that x = 0 denotes the reed at equilibrium, and x = −1153

corresponds to a closed reed channel.154

The resonator is represented by its dimensionless input impedance, decomposed as a sum155

of modes156

Z(ω) =
P (ω)

U(ω)
=

Nm∑
n=0

Cn

iω − sn
+

C̄n

iω − s̄n
, (2)

where Cn are the complex residues and sn the complex poles. These modal parameters are

estimated from a measured saxophone input impedance (Taillard et al., 2018). Eq. (2) can

be transformed into the temporal evolution of the modal components pn, since jω translates

into a time-domain derivative by inverse Fourier transform

ṗn(t) = snpn(t) + Cnu(t). (3)
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The acoustic pressure p at the input of the tube is expressed as a sum including the modal

components

p(t) = 2
Nm∑
n=1

Re(pn(t)). (4)

The number of modes Nm is chosen as Nm = 12, sufficiently large to represent the main157

resonances of the resonator. Results obtained using Nm = 6 lead to similar conclusions. The158

flow u at the input of the resonator is governed by the nonlinear characteristic (Wilson and159

Beavers, 1974)160

u = ζ[x+ 1]+sign(γ − p)
√
|γ − p|, (5)

where [x+ 1]+ = max(x+ 1, 0). This nonlinear characteristic uses the dimensionless control

parameters of reed opening at rest ζ and blowing pressure γ. The expression of these

parameters are

ζ = wHZc

√
2

ρpM
, γ =

γ̂

pM
, (6)

where w is the effective width of the reed channel, ρ the density of air and γ̂ is the physical161

value of the blowing pressure. For this study the parameter ζ is fixed at ζ = 0.6, unless162

otherwise specified. Following the values of reed channel height at rest H = 17 × 10−5 m163

and reed stiffness K = 6.4 × 106 Pa.m provided in (Muñoz Arancón et al., 2016), with164

an approximate effective width of w = 1.10−2 m and characteristic impedance Zc =165

3.106 Pa.s/m3, one finds ζ = Zcw
√

2H/ρK = 0.58 which justifies studying ζ ' 0.6 in166

this work. To use Harmonic Balance Method and Asymptotic Numerical Method, described167

in subsection III B, it is convenient to regularize the characteristic of Eq. (5) using | · | '168 √
·2 + η, where the parameter η is fixed at 10−3 (Kergomard et al., 2016).169
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The reed is modeled as a single degree of freedom oscillator driven by the pressure170

difference between the input of the resonator and the mouth of the resonator171

ẍ

ω2
r

+ qr
ẋ

ωr

+ x = −(γ − p), (7)

where ωr and qr are the angular frequency and damping coefficient of the reed, chosen at172

ωr = 4224 rad/s based on (Muñoz Arancón et al., 2016) and qr = 1. In this model, the173

impact of the reed on the mouthpiece lay is ignored(Dalmont et al., 2000; Doc et al., 2014).174

For further details on the effect of ignoring reed impact in a saxophone model, see (Colinot175

et al., 2019).176

B. Numerical resolution with harmonic balance method177

Periodic solutions to the system of equations (2), (5) and (7) are found using the harmonic

balance method (HBM), under the formalism proposed in (Cochelin and Vergez, 2009). The

HBM was pioneered by (Krylov and Bogoliubov, 1949; Nakhla and Vlach, 1976), and was

applied to musical instrument models first in (Gilbert et al., 1989). Each variable X (where

X can stand for pn, u, x...) is assumed to be periodic and thus decomposed into its Fourier

series truncated at order H

X(t) =
∞∑

k=−∞

Xk exp(ikω0t) '
H∑

k=−H

Xk exp(ikω0t), (8)

where ω0 is the angular frequency. This yield an algebraic system where the unknowns are178

the Fourier coefficients and the angular frequency. Hereafter, H = 20 is chosen, because179

it appears sufficient for a good representation of the studied regimes. The emergence of180

these different regimes depends on the value of the blowing pressure parameter γ. To181
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compare the value of γ leading to each regime to the experimental results of figure 5, a182

Taylor-series based continuation method (Asymptotic Numerical Method) is applied to the183

algebraic system obtained by harmonic balance (Guillot et al., 2019). The source code184

for this method may be found online at http://manlab.lma.cnrs-mrs.fr/. The continuation185

yields possible periodic solutions, as well as their stability (Bentvelsen and Lazarus, 2018;186

Lazarus and Thomas, 2010). This may be displayed as a bifurcation diagram representing187

the evolution of one descriptor of the periodic solutions as a function of the blowing pressure.188

The bifurcation diagrams displayed here do not change when adding more harmonics, but189

their computation is more time consuming.190

C. Results191

Depending on the value of the blowing pressure parameter γ, all types of two-step regimes192

observed experimentally are found to be stable periodic solutions of the model. Figure193

6 compares the regime types found in measurement and simulation from their pressure194

waveforms. No a posteriori adjustment of the model is performed, and therefore no precise195

agreement of the waveforms is expected. Many differences between synthesized and measured196

signals could be explained by the reed opening parameter ζ being constant and not adjusted197

in the model, and the response of the pressure probe tube affecting the measured pressure198

signal. Some high frequency components of synthesized signal can also be misrepresented199

due to the modal truncation of the impedance. However, several main features of the200

measured signals can be identified on the synthesized signals, such as the duration of the201

short low-pressure episodes on the standard and double two-step regimes, and the short202
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high-pressure episodes on the inverted double and inverted two-step regimes. It can also203

be noted that both synthesized and measured signals exhibit secondary fast oscillations of204

small amplitude during the long episodes (open or closed). A similar “minor oscillations”205

phenomenon is known to appear on bowed strings (Kohut and Mathews, 1971). The opening206

duration of the synthesized inverted two-step regime presented in figure 6 (g) is longer than207

the closure duration of the synthesized standard two-step of figure 6 (a), which is contrary208

to the usual Helmholtz motion formulation in which both durations are determined only by209

the geometry of the resonator. This is always the case with the model of this paper, with210

both time-domain synthesis and the harmonic balance: the synthesized and standard and211

inverted two-step display a whole range of opening or closure durations depending on the212

value of the blowing pressure. This phenomenon is further detailed below, in multimedia213

file 5, figure 7 and the corresponding commentary.214

The bifurcation diagram summarizing the evolution of the different oscillating regimes215

depending on the blowing pressure parameter γ is presented in figure 7. A parameter of the216

oscillating regimes, the amplitude of the first cosine – i.e., the real part of the first Fourier217

coefficient of Eq. (8) – of the first modal pressure p1 is displayed. This parameter was chosen218

because it allows for clear separation of the branches corresponding to each regime. Note that219

the sign of this coefficient can be either positive or negative depending solely on a choice of220

phase of the oscillation. On the diagrams displayed hereafter, the sign of p1 chosen so that the221

different solution branches are as easy to distinguish as possible. The most important part222

of the branches are stable regimes (thick lines in the figure). Each branch is labeled with the223

type of regime it corresponds to. The regime type is determined manually by observing the224
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Synthesis Measurement

(a) Standard two-step (b)

Synthesis Measurement

(c) Double two-step (d)

Synthesis Measurement

(e) Inverted double two-step (f)

Synthesis Measurement

(g) Inverted two-step (h)

FIG. 6. Synthesized and measured pressure signals in the mouthpiece for two-step regimes.

Arbitrary units.

waveform, which can be done exhaustively using animations such as multimedia file 5. Note225

that the animation shows the standard two-step regime morphing gradually into the inverted226

two-step regime, on the same branch. The closure duration of the reed increases progressively227
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with the blowing pressure parameter γ, in clear contradiction with the Helmholtz motion228

approximation. The topic of continuous transition between standard and inverted regimes229

for a conical woodwind remains to be fully understood, although experimental explorations230

point to similar results (Dalmont, 2007). All the other branches correspond to only one type231

of regime each.232

Mm. 5. Animation: evolution of the acoustic pressure waveform and spectrum following the233

stable branches of the bifurcation diagram in figure 7.234

Figure 7 is qualitatively coherent with the experimental findings in figure 5, in terms of235

order of emergence of the stable regimes when varying the blowing pressure. Starting with236

a low blowing pressure, the first stable regime is the standard two-step. When the blowing237

pressure increases, the stable branch is followed until its end, and then the system jumps238

on another stable branch. At the end of the standard two-step branch, around γ = 0.69,239

there are two coexisting branches: the inverted two-step and the double two-step. Note240

that for the parameter values where two stable regimes coexist, different initial conditions241

may lead to one or the other. Describing the conditions leading to one or the other regime242

(called their “attraction basin”) exhaustively is almost impossible. Consequently, when243

using the bifurcation diagram to predict which regimes can be produced when increasing244

the blowing pressure, several scenarios can be devised, and it is extremely difficult to decide245

which one is the most probable without checking it experimentally. For instance, according246

to this bifurcation diagram, it would be possible for the system to start from the standard247

two-step, jump to an inverted two-step regime and follow this branch until extinction at248

18
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high blowing pressure (γ ' 1.5), with no production of double two-step regimes. However,249

we could not obtain this scenario experimentally. Another possible order suggested by the250

bifurcation diagram, after the standard two-step, is jumping to double two-step, second251

register, inverted double two-step, and then inverted two-step, when it is the only stable252

branch (for γ > 1.5). The experiment shows that it is possible to obtain all these regimes253

in this order of emergence when increasing the blowing pressure.254

Figure 7 shows that the double two-step branches are linked to the second register branch:255

a continuum of solutions exist between second register and double two-step motion – even256

though some of the solutions on the path are unstable. The junction between these branches257

can be seen as a period-doubling of the second register. Inverted regimes appear at high258

blowing pressure, which is coherent with the static behavior as the reed tends to close more259

and more when the blowing pressure is higher. During the oscillation, the reed closes for a260

longer and longer portion of the period, thus transitioning from standard to inverted motion.261

A high blowing pressure leads to extinction of the oscillation: the reed channel stays closed.262

Figure 7 (b) shows the same metric as figure 5, the duration ratio between closure episode263

and period. It can be noted that the thresholds between the different regimes are not the264

same as those fixed empirically. Additionnaly, the model predicts that inverted two-step can265

appear at relatively low closure ratios, but these were never found experimentally. This may266

be due to the inverted double two-step being very stable in this blowing pressure regions,267

thus making it hard to find other solutions.268

It is worth noting that the same oscillating regimes appear in the same order for other269

values of the reed opening parameter ζ, around the one used in figure 7 (ζ = 0.6). Figure 8270
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(a) (b)

FIG. 7. Bifurcation diagram: (a) amplitude of the first cosine of the first modal pressure p1 and

(b) ratio between closure episode duration and oscillation period ; with respect to the blowing

pressure parameter γ, for the low B fingering of an alto saxophone. In (a), the line aspect denotes

stability of the regimes: thick black is stable, dotted gray is unstable. Circle markers correspond

to the plots in figure 6. ζ = 0.6.

shows two bifurcation diagrams, obtained for ζ = 0.5 and ζ = 0.75 respectively. The stability271

region of the regimes are affected by the value of ζ. In particular, a lower ζ enlarges the272

zone of stability of the second register while a greater ζ reduces it. It can also be noted273

that in this particular case, a higher ζ value leads to a uninterrupted single two-step branch,274

where standard and inverted two-step are connected by stable regimes. Another comment275

can be made on the bifurcation diagram obtained for ζ = 0.5 (Figure 8 (a)), on the inverted276

double two-step branch. In this case, the inverted double-two-step branch that is connected277

to the second register branch only contains unstable regimes – on figure 8 (a) it is the small278

branch of negative p1, between γ = 0.86 and γ = 1.04. This branch corresponds to the279

branch in figure 7 where the inverted double two-step becomes stable. However, on figure 8280
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(a), another inverted double two-step branch shows stable regimes, that are indicated by the281

inverted double two-step arrow. This other branch is not connected to the second register,282

but to the inverted single two-step branch, by a long unstable portion of branch. Therefore283

it appears that double two-step regimes can be considered as degenerate from the single284

two-step or the second register, depending on the value of the control parameters.285

(a) (b)

FIG. 8. Bifurcation diagram: amplitude of the first cosine of the first modal pressure p1 with

respect to the blowing pressure parameter γ, for the low B fingering of an alto saxophone. (a)

ζ = 0.5, (b) ζ = 0.75. The line aspect denotes stability of the regimes: thick black is stable, dotted

gray is unstable

A similar behavior is also observed for neighboring fingerings. Figure 9 shows the286

bifurcation diagram for the fingering just above the one used for figures 7 and 8: the low C287

fingering. The bifurcation diagram in figure 9 has the same structure as the others, although288

the inverted double two-step regime is unstable. In particular, the transition between289

standard two-step and inverted two-step regimes is an unstable portion of branch featuring290

two fold bifurcations (two points where two solutions collide and disappear, which can be291
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seen as turning-up points on the bifurcation diagram), similar to that of figure 8, up, and292

figure 7. It is also worth noting that on this fingering, the double two-step branch and second293

register branch are connected by stable regimes only: the thick lines connect at γ = 0.8.294

This indicates that for this fingering, it is possible to have continuous transition between295

double two-step and second register using only stable regimes. A synthesized example of296

this transition is shown in multimedia file 6.297

Mm. 6. Animation: evolution of the acoustic pressure waveform and spectrum during a298

continuous transition between double two-step regime and second register for the low C299

fingering of an alto saxophone, following branches of the bifurcation diagram in figure 9.300

FIG. 9. Bifurcation diagram: amplitude of the first cosine of the first modal pressure p1 with

respect to the blowing pressure parameter γ, for the low C fingering of an alto saxophone. ζ = 0.6,

same as in figure 7.

The double two-step regime becomes unstable on fingerings D and higher for the main301

value of ζ = 0.6 studied here. This may be a sign that its production is linked to the high302
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amplitude of the second and third resonances of the resonator, which is a characteristic of303

the low fingerings of the saxophone.304

IV. CONCLUSION305

Alto saxophones are able to produce double two-steps motions, that seem analogous to306

double stick-slip motions in bowed strings (Woodhouse, 2014). The production region of307

these regimes appears linked to the second register of the resonator. The appearance of308

the many oscillating regimes on the studied fingerings may be due to the strong role of309

the second and third mode of the resonator. The simple saxophone model used in this310

paper is capable of reproducing these regimes, even though it ignores the impact between311

the reed and the mouthpiece lay. The model also corroborates the order of appearance of312

these regimes when increasing the blowing pressure on a real saxophone. Complementary313

numerical studies show that the double two-step phenomenon is not restricted to a particular314

set of parameters, but appears for several combinations of control parameters and several315

fingerings. The description of the playability of a saxophone in the low fingerings may316

take these regimes into account, whether they are undesirable, as is the case for the double317

fly-back motion in violins, or a useful tool of expressivity for the musician. Acoustical or318

geometrical characteristics of the resonator remain to be linked to the ease of production of319

double two-step regimes.320
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