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Multiple two-step oscillation regimes produced by the alto saxophone

Multiple two-step regimes of the saxophone A saxophone mouthpiece fitted with sensors is used to observe the oscillation of a saxophone reed, as well as the internal acoustic pressure, allowing to identifiy qualitatively different oscillating regimes. In addition to the standard two-step regime, where the reed channel successively opens and closes once during an oscillation cycle, the experimental results show regimes featuring two closures of the reed channel per cycle, as well as inverted regimes, where the reed closure episode is longer than the open episode. These regimes are well-known on bowed string instruments and some were already described on the Uillean pipes. A simple saxophone model using a measured input impedance is studied with the harmonic balance method, and is shown to reproduce the same two-step regimes. The experiment shows qualitative agreement with the simulation: in both cases, the various regimes appear in the same order as the blowing pressure is increased. Similar results are obtained with other values of the reed opening control parameter, as well as another fingering.

I. INTRODUCTION

Various oscillating regimes, defined as the pattern of oscillations both mechanical and acoustical that correspond to the production of a periodic sound, have been observed and classified on bowed string instruments [START_REF] Schelleng | The bowed string and the player[END_REF]. The strongly non-linear friction law between bow and string leads to an oscillation pattern known as stick-slip motion, where the string sticks to the bow for a part of the period and then slips for another part of the period. The stick-slip phases may occur twice per period, leading to the so-called "double stick-slip" motion.

Reed conical instruments have often been compared to bowed strings, by virtue of the cylindrical saxophone approximation, which replaces the conical resonator with two parallel cylinders [START_REF] Ollivier | Idealized models of reed woodwinds. Part I: Analogy with the bowed string[END_REF] because their impedance is similar in low frequency. In reed instruments, the analogous motion to stick-slip is called two-step motion [START_REF] Ollivier | Idealized models of reed woodwinds. Part II: On the stability of "two-step" oscillations[END_REF]. It consists in a beating reed regime, where the reed channel is closed for part of the period, and open for the rest of the period. The most common case, where the reed closure episode is shorter than half the period, is called standard two-step motion.

Otherwise, the regime is called inverted. Standard and inverted two-step motions have been observed experimentally on a saxophone and predicted analytically on a cylindrical equivalent [START_REF] Dalmont | Reed instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF]. Oscillating regimes showing more than one closure of the reed per period were never studied on the saxophone to our knowledge. They have been observed on a double reed instrument, the Irish Uillean pipes [START_REF] Dalmont | The irish uillean pipe: a story of lore, hell and hard d[END_REF]. To observe the signals produced by a wind instrument in playing situation, with a musician, an instrumented mouthpiece fitted with a reed displacement and pressure sensors can be used. Instrumented mouthpieces can help explain features of the produced sound, for instance spectral content on a saxophone [START_REF] Guillemain | An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays[END_REF] or transient descriptors on a clarinet [START_REF] Pàmies-Vilà | Analysis of tonguing and blowing actions during clarinet performance[END_REF]. They also provide a means to estimate some of the parameters of a physical model based on the dynamical behavior of the system [START_REF] Muñoz Arancón | Estimation of saxophone reed parameters during playing[END_REF]. This paper reports experiments in playing conditions exhibiting classic standard and inverted regimes, as well as double two-step motions, where the reed channel closes twice per period. To complete the study, we show that a simple saxophone model based on the input impedance of the saxophone used for the experiment is able to reproduce these double two-step regimes. The Harmonic Balance Method associated with continuation (Asymptotic Numerical Method) is used to obtain periodic signals corresponding to several control parameter combinations. The numerical simulations, in addition to experimental data, provide insights about the possible ways of transition between single and double two-step regimes, as well as the second register of the instrument. We also show that similar behavior occurs for neighboring fingerings and control parameter values. Describing and categorizing the oscillation regimes of the saxophone, as well as the musician's actions needed to obtain them, is among the first steps towards objective characterization of the ease of playing of an instrument.

II. EXPERIMENTAL OBSERVATION OF DOUBLE TWO-STEP MOTIONS ON

A SAXOPHONE

A. Experimental apparatus

An instrumented mouthpiece is used to monitor the blowing pressure, the pressure inside the mouthpiece, and the position of the reed. It is shown in figure 1. It consists in a modified saxophone mouthpiece (Buffet-Crampon) incorporating two pressure probes: one going into the mouth of the musician and one into the mouthpiece, as well as an optical sensor (Everlight ITR8307) measuring the displacement of the reed. The pressure probe tubes are connected to a Honeywell TSCDRRN005PDUCV pressure sensor. The tubes have a radius of 0.55 mm and a length of 20 mm (mouth pressure) and 62 mm (pressure in the mouthpiece). According to [START_REF] Guillemain | An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays[END_REF], the transfer function of these capillary tubes is well represented by a model with non-isothermal boundary conditions [START_REF] Keefe | Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions[END_REF]).

An inverse filtering was performed on the pressure signals to compensate the effect of the probe tubes. Signals are then acquired using an NI USB-9234 card by National Instruments at a 51.2 kHz sampling rate. Experimental signals displayed hereafter are not scaled or converted as this work focuses on qualitative study of the regime types. The instrumented mouthpiece is equipped with a saxophone reed (Rico Royal strength 2) and mounted on a commercial alto saxophone (Buffet-Crampon Senzo).

Throughout the remainder of the paper, a low B fingering (written pitch) is studied. In concert pitch, the fundamental note expected with this fingering is a D3 at the frequency 146.83 Hz. The input impedance of the saxophone for this fingering has been measured using the CTTM impedance sensor [START_REF] Dalmont | A new impedance sensor for wind instruments[END_REF]. Its modulus is displayed in figure 2. The B fingering, which produces the second lowest note on the instrument, is chosen because the double two-step regimes studied in this work tend to appear more easily on the lowest notes of the saxophone. Note that for this fingering, the note most commonly expected by musicians is the first register, whose frequency is around the first impedance peak. On this fingering, the first register is often hard to produce, especially for beginner musicians. This can be understood when looking at the impedance modulus curve on figure 2, where the first peak is lower than the next three peaks: the upper resonances of the bore play a large part in the sound production, leading to a complicated sound production behavior. This profile of amplitude of the first few impedance peaks is also found in soprano and tenor saxophone [START_REF] Chen | Saxophone acoustics: introducing a compendium of impedance and sound spectra[END_REF]. The lowest fingering (B ) was not chosen, although it was tested, because it is more subject to producing undesired multiphonics and quasi-periodic regimes. 

B. Observation of single and double two-step oscillating regimes

The main oscillating regimes of a saxophone are beating, which means that the reed channel closes completely during part of the cycle. They can be thought of as two-step motions [START_REF] Ollivier | Idealized models of reed woodwinds. Part I: Analogy with the bowed string[END_REF] and classified as standard or inverted, depending on the relative duration of the open and closed episode. Different regimes can be obtained for the same fingering, just by varying the control parameters such as the blowing pressure. Figure 3 shows measured examples of these two-step regimes. The reed displacement signal was post-processed by substracting its moving average over a period, to be centered around 0.

The standard regime is characterized by an open episode and a short closed episode. As can be seen on figure 3 (a), the reed is opened -and displays small amplitude oscillations around the highest values of x -for about 6 ms. Its closure corresponds to the main dip in Multiple two-step regimes of the saxophone the waveform and it lasts for about 1 ms per period. For the inverted motion on figure 3 (b), the duration ratio is reversed: the reed channel is almost at its narrowest about 6 ms and opens wide briefly for about 1 ms. Note that the standard regime is obtained for lower values of the blowing pressure than the inverted regime. The analogy with bowed string instruments suggests the apparition of other types of regimes. For example, under given excitation condition, bowed strings are subject to the double stick-slip phenomenon [START_REF] Woodhouse | The acoustics of the violin: a review[END_REF], an oscillation regime where the string slips under the bow twice per period (instead of once for the standard Helmholtz motion). When transposed to conical reed instruments, this phenomenon corresponds to two closures of the reed channel per period. These regimes are observed experimentally on the low fingerings of the saxophone and they can be standard or inverted, as shown in figure 4. This oscillating regime can be called "double two-step". Note that the double two-step regime is distinct from second register regimes: it is a first register regime, as it produces the same note as the standard two-step regime. For the standard version of the double two-step regime, the closure episodes are about 1 ms, almost the same duration as in the single standard two-step motion (figure 3,(a)). For the inverted double two-step regime, the short openings of the reed channel also last for about 1 ms. For illustration purposes, the audible sound outside the instrument was recorded and short clips are provided as multimedia files 3, 4, 1 and2. Note that the audible sound corresponding to these double two-step regimes (Mm. 3 and 4) is clearly different from single regimes (Mm. 1 and 2). The difference in audible sound is less clear between a standard regime and its inverted counterpart. In order to estimate the relative regions of production of each kind of regime in the control parameter space, a blowing pressure ramp is performed by a musician and recorded using an instrumented mouthpiece for the B fingering of the test saxophone. The musician sees the evolution of the blowing pressure parameter in real-time on a screen. The player makes as little embouchure adjustments as possible and focuses on increasing the blowing pressure progressively. Results are shown in figure 5. This ramp was obtained in a single breath after several tries. For clarity, the blowing pressure signal is smoothed by a moving average with a rectangular window, adjusted to reject the fundamental frequency of the oscillations and keep only the slowly varying value of the signal. Regimes are classified automatically based on the ratio of duration of the open and closed reed episodes. The reed displacement signal is high-pass filtered in order to remove the DC component. The reed is then considered "open" when the displacement signal is above 0 and "closed" when it is below 0. The ratio between closed duration and oscillation period is then computed and averaged over 4 periods. Thresholds are defined arbitrarily to separate between the different types of regimes, at 0.1, 0.25, 0.5, 0.6 and 0.8 (see dotted lines on figure 5). Looking at the pressure ramp in its entirety shows a possible order of the regimes when increasing the blowing pressure: standard and double two-step motions, second register, and inverted Multiple two-step regimes of the saxophone double then inverted two-step motions. Note that in this ramp, the episode between 1 and 2 seconds with a closure ratio of little above 0.25 is actually a quasi-periodic oscillation, with the actual double two-step oscillation starting at around 2.3 seconds. A simplified saxophone model consists of three main elements: the resonator, the reed channel and reed dynamics. Here all variables are dimensionless and obtained from their physical counterparts (denoted with a hat) as

p = p p M , u = Z c û p M , x = x H , (1) 
where p M is the static pressure necessary to close the reed completely, Z c is the characteristic impedance at the input of the resonator, and H is the distance separating the reed from the mouthpiece lay at rest. Note that x = 0 denotes the reed at equilibrium, and x = -1 corresponds to a closed reed channel.

The resonator is represented by its dimensionless input impedance, decomposed as a sum of modes

Z(ω) = P (ω) U (ω) = Nm n=0 C n iω -s n + Cn iω -sn , (2) 
where C n are the complex residues and s n the complex poles. These modal parameters are estimated from a measured saxophone input impedance [START_REF] Taillard | Modal analysis of the input impedance of wind instruments. application to the sound synthesis of a clarinet[END_REF]. Eq. ( 2) can be transformed into the temporal evolution of the modal components p n , since jω translates into a time-domain derivative by inverse Fourier transform

ṗn (t) = s n p n (t) + C n u(t). (3) 
The acoustic pressure p at the input of the tube is expressed as a sum including the modal components

p(t) = 2 Nm n=1
Re(p n (t)).

(4)

The number of modes N m is chosen as N m = 12, sufficiently large to represent the main resonances of the resonator. Results obtained using N m = 6 lead to similar conclusions. The flow u at the input of the resonator is governed by the nonlinear characteristic [START_REF] Wilson | Operating modes of the clarinet[END_REF])

u = ζ[x + 1] + sign(γ -p) |γ -p|, (5) 
where [x + 1] + = max(x + 1, 0). This nonlinear characteristic uses the dimensionless control parameters of reed opening at rest ζ and blowing pressure γ. The expression of these parameters are

ζ = wHZ c 2 ρp M , γ = γ p M , ( 6 
)
where w is the effective width of the reed channel, ρ the density of air and γ is the physical value of the blowing pressure. • 2 + η, where the parameter η is fixed at 10 -3 [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF].

ẍ ω 2 r + q r ẋ ω r + x = -(γ -p), (7) 
where ω r and q r are the angular frequency and damping coefficient of the reed, chosen at ω r = 4224 rad/s based on (Muñoz Arancón et al., 2016) and q r = 1. In this model, the impact of the reed on the mouthpiece lay is ignored [START_REF] Dalmont | Reed instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy[END_REF][START_REF] Doc | A minimal model of a single-reed instrument producing quasi-periodic sounds[END_REF].

For further details on the effect of ignoring reed impact in a saxophone model, see [START_REF] Colinot | Influence of the "ghost reed" simplification on the bifurcation diagram of a saxophone model[END_REF].

B. Numerical resolution with harmonic balance method

Periodic solutions to the system of equations ( 2), ( 5) and (7) are found using the harmonic balance method (HBM), under the formalism proposed in [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF]. The HBM was pioneered by [START_REF] Krylov | Introduction to non-linear mechanics[END_REF][START_REF] Nakhla | A piecewise harmonic balance technique for determination of periodic response of nonlinear systems[END_REF], and was applied to musical instrument models first in [START_REF] Gilbert | Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique[END_REF]. Each variable X (where X can stand for p n , u, x...) is assumed to be periodic and thus decomposed into its Fourier series truncated at order H

X(t) = ∞ k=-∞ X k exp(ikω 0 t) H k=-H X k exp(ikω 0 t), (8) 
where ω 0 is the angular frequency. This yield an algebraic system where the unknowns are the Fourier coefficients and the angular frequency. Hereafter, H = 20 is chosen, because it appears sufficient for a good representation of the studied regimes. The emergence of these different regimes depends on the value of the blowing pressure parameter γ. To compare the value of γ leading to each regime to the experimental results of figure 5, a

Taylor-series based continuation method (Asymptotic Numerical Method) is applied to the algebraic system obtained by harmonic balance [START_REF] Guillot | A taylor series-based continuation method for solutions of dynamical systems[END_REF]. The source code for this method may be found online at http://manlab.lma.cnrs-mrs.fr/. The continuation yields possible periodic solutions, as well as their stability [START_REF] Bentvelsen | Modal and stability analysis of structures in periodic elastic states: application to the ziegler column[END_REF][START_REF] Lazarus | A harmonic-based method for computing the stability of periodic solutions of dynamical systems[END_REF]. This may be displayed as a bifurcation diagram representing the evolution of one descriptor of the periodic solutions as a function of the blowing pressure.

The bifurcation diagrams displayed here do not change when adding more harmonics, but their computation is more time consuming.

C. Results

Depending on the value of the blowing pressure parameter γ, all types of two-step regimes observed experimentally are found to be stable periodic solutions of the model. phenomenon is known to appear on bowed strings [START_REF] Kohut | Study of motion of a bowed violin string[END_REF]. The opening duration of the synthesized inverted two-step regime presented in figure 6 (g) is longer than the closure duration of the synthesized standard two-step of figure 6 (a), which is contrary to the usual Helmholtz motion formulation in which both durations are determined only by the geometry of the resonator. This is always the case with the model of this paper, with both time-domain synthesis and the harmonic balance: the synthesized and standard and inverted two-step display a whole range of opening or closure durations depending on the value of the blowing pressure. This phenomenon is further detailed below, in multimedia file 5, figure 7 and the corresponding commentary.

The bifurcation diagram summarizing the evolution of the different oscillating regimes depending on the blowing pressure parameter γ is presented in figure 7. A parameter of the oscillating regimes, the amplitude of the first cosine -i.e., the real part of the first Fourier coefficient of Eq. ( 8) -of the first modal pressure p 1 is displayed. This parameter was chosen because it allows for clear separation of the branches corresponding to each regime. Note that the sign of this coefficient can be either positive or negative depending solely on a choice of phase of the oscillation. On the diagrams displayed hereafter, the sign of p 1 chosen so that the different solution branches are as easy to distinguish as possible. The most important part of the branches are stable regimes (thick lines in the figure). Each branch is labeled with the type of regime it corresponds to. The regime type is determined manually by observing the waveform, which can be done exhaustively using animations such as multimedia file 5. Note that the animation shows the standard two-step regime morphing gradually into the inverted two-step regime, on the same branch. The closure duration of the reed increases progressively with the blowing pressure parameter γ, in clear contradiction with the Helmholtz motion approximation. The topic of continuous transition between standard and inverted regimes for a conical woodwind remains to be fully understood, although experimental explorations point to similar results [START_REF] Dalmont | Analytical and experimental investigation of the dynamic range of conical reed instruments[END_REF]. All the other branches correspond to only one type of regime each.

Mm. 5. Animation: evolution of the acoustic pressure waveform and spectrum following the stable branches of the bifurcation diagram in figure 7.

Figure 7 is qualitatively coherent with the experimental findings in figure 5, in terms of order of emergence of the stable regimes when varying the blowing pressure. Starting with a low blowing pressure, the first stable regime is the standard two-step. When the blowing pressure increases, the stable branch is followed until its end, and then the system jumps on another stable branch. At the end of the standard two-step branch, around γ = 0.69, there are two coexisting branches: the inverted two-step and the double two-step. Note that for the parameter values where two stable regimes coexist, different initial conditions may lead to one or the other. Describing the conditions leading to one or the other regime (called their "attraction basin") exhaustively is almost impossible. Consequently, when using the bifurcation diagram to predict which regimes can be produced when increasing the blowing pressure, several scenarios can be devised, and it is extremely difficult to decide which one is the most probable without checking it experimentally. For instance, according to this bifurcation diagram, it would be possible for the system to start from the standard two-step, jump to an inverted two-step regime and follow this branch until extinction at high blowing pressure (γ 1.5), with no production of double two-step regimes. However, we could not obtain this scenario experimentally. Another possible order suggested by the bifurcation diagram, after the standard two-step, is jumping to double two-step, second register, inverted double two-step, and then inverted two-step, when it is the only stable branch (for γ > 1.5). The experiment shows that it is possible to obtain all these regimes in this order of emergence when increasing the blowing pressure.

Figure 7 shows that the double two-step branches are linked to the second register branch:

a continuum of solutions exist between second register and double two-step motion -even though some of the solutions on the path are unstable. The junction between these branches can be seen as a period-doubling of the second register. Inverted regimes appear at high blowing pressure, which is coherent with the static behavior as the reed tends to close more and more when the blowing pressure is higher. During the oscillation, the reed closes for a longer and longer portion of the period, thus transitioning from standard to inverted motion.

A high blowing pressure leads to extinction of the oscillation: the reed channel stays closed.

Figure 7 (b) shows the same metric as figure 5, the duration ratio between closure episode and period. It can be noted that the thresholds between the different regimes are not the same as those fixed empirically. Additionnaly, the model predicts that inverted two-step can appear at relatively low closure ratios, but these were never found experimentally. This may be due to the inverted double two-step being very stable in this blowing pressure regions, thus making it hard to find other solutions.

It is worth noting that the same oscillating regimes appear in the same order for other values of the reed opening parameter ζ, around the one used in figure 7 (ζ = 0.6). Figure 8 In this case, the inverted double-two-step branch that is connected to the second register branch only contains unstable regimes -on figure 8 (a) it is the small branch of negative p 1 , between γ = 0.86 and γ = 1.04. This branch corresponds to the branch in figure 7 where the inverted double two-step becomes stable. However, on figure 8 (a), another inverted double two-step branch shows stable regimes, that are indicated by the inverted double two-step arrow. This other branch is not connected to the second register, but to the inverted single two-step branch, by a long unstable portion of branch. Therefore it appears that double two-step regimes can be considered as degenerate from the single two-step or the second register, depending on the value of the control parameters. The double two-step regime becomes unstable on fingerings D and higher for the main value of ζ = 0.6 studied here. This may be a sign that its production is linked to the high

IV. CONCLUSION

Alto saxophones are able to produce double two-steps motions, that seem analogous to double stick-slip motions in bowed strings [START_REF] Woodhouse | The acoustics of the violin: a review[END_REF]. The production region of these regimes appears linked to the second register of the resonator. The appearance of the many oscillating regimes on the studied fingerings may be due to the strong role of the second and third mode of the resonator. The simple saxophone model used in this paper is capable of reproducing these regimes, even though it ignores the impact between the reed and the mouthpiece lay. The model also corroborates the order of appearance of these regimes when increasing the blowing pressure on a real saxophone. Complementary numerical studies show that the double two-step phenomenon is not restricted to a particular set of parameters, but appears for several combinations of control parameters and several fingerings. The description of the playability of a saxophone in the low fingerings may take these regimes into account, whether they are undesirable, as is the case for the double fly-back motion in violins, or a useful tool of expressivity for the musician. Acoustical or geometrical characteristics of the resonator remain to be linked to the ease of production of double two-step regimes.

  FIG. 1. Instrumented alto saxophone mouthpiece including pressure probes for the pressure in the

FIG. 2 .

 2 FIG. 2. Input impedance modulus measured for the studied fingering of the alto saxophone: low

  FIG. 3. Measured reed position for simple two-step motions: standard (a) and inverted (b). The

  Mm. 1. Sound recorded outside the resonator for the standard two-step motion, corresponding to the measured displacement shown in figure 3, (a). Mm. 2. Sound recorded outside the resonator for the inverted two-step motion, corresponding to the measured displacement shown in figure 3, (b). Mm. 3. Sound recorded outside the resonator for the double two-step motion, corresponding to the measured displacement shown in figure 4, (a). Mm. 4. Sound recorded outside the resonator for the inverted double two-step motion, corresponding to the measured displacement shown in figure 4, (b).

  FIG. 4. Measured reed position for double two-step motions: standard (a) and inverted (b). These
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  For this study the parameter ζ is fixed at ζ = 0.6, unless otherwise specified. Following the values of reed channel height at rest H = 17 × 10 -5 m and reed stiffness K = 6.4 × 10 6 Pa.m provided in (Muñoz Arancón et al., 2016), with an approximate effective width of w = 1.10 -2 m and characteristic impedance Z c = 3.10 6 Pa.s/m 3 , one finds ζ = Z c w 2H/ρK = 0.58 which justifies studying ζ 0.6 in this work. To use Harmonic Balance Method and Asymptotic Numerical Method, described in subsection III B, it is convenient to regularize the characteristic of Eq. (5) using | • |

Figure 6

 6 compares the regime types found in measurement and simulation from their pressure waveforms. No a posteriori adjustment of the model is performed, and therefore no precise agreement of the waveforms is expected. Many differences between synthesized and measured signals could be explained by the reed opening parameter ζ being constant and not adjusted in the model, and the response of the pressure probe tube affecting the measured pressure signal. Some high frequency components of synthesized signal can also be misrepresented due to the modal truncation of the impedance. However, several main features of the measured signals can be identified on the synthesized signals, such as the duration of the short low-pressure episodes on the standard and double two-step regimes, and the short high-pressure episodes on the inverted double and inverted two-step regimes. It can also be noted that both synthesized and measured signals exhibit secondary fast oscillations of small amplitude during the long episodes (open or closed). A similar "minor oscillations"

  FIG. 6. Synthesized and measured pressure signals in the mouthpiece for two-step regimes.

  FIG. 7. Bifurcation diagram: (a) amplitude of the first cosine of the first modal pressure p 1 and

  FIG. 8. Bifurcation diagram: amplitude of the first cosine of the first modal pressure p 1 with
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