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1 University of Bristol, Bristol, UK
2 University of Rostock, Rostock, Germany

3 Swansea University, Swansea, UK

Abstract—Smart home systems are becoming increasingly
relevant with every passing year, but while the technology is more
available than ever, other issues such as cost and intrusiveness are
becoming more apparent. To this end, we consider the types of
sensors which are most useful for fine-grained activity recognition
in the kitchen in terms of cost, intrusiveness, durability and ease
of installation. We install sensors into a conventional residence
for testing, and propose a system which meets the design
challenges such an environment presents. We show that cupboard
door sensors produce useful data about access to certain non
mechanical processes and items, while being cheap and simple.
We also show that they positively impact the activity recognition
performance of our model through their addition, while providing
information that we can make use of in future studies.

I. INTRODUCTION

Smart home monitoring is becoming an ever increasing

focus in many different areas of life, such as health care,

consumer technology and security. However, as the need for

a system which is practical for real world, large scale deploy-

ment increases, the problems which are faced by such systems

become ever more apparent and challenging. In general, people

are easily dissuaded from in-home monitoring by high costs,

visual/physical interference in their own homes and privacy

concerns. In addition, ease and cost of installation become an

issue when installing systems at scale, and varying domestic

configurations require systems to be extremely flexible to meet

the widest range of requirements.

Considerable work has already been done by the SPHERE

project [7] with regards to evaluating the cost, longevity and

ethical considerations of a home monitoring system. In our

work, we use a system deployed in the SPHERE House [9],

which we then augment with cupboard door sensors. We

hypothesize that data on cupboard and drawer manipulation

is of importance to recognising activities in a kitchen, as it

infers access to key cooking related objects and ingredients.

Additionally, it allows for more general awareness of the

kitchen environment with a lower cost than that associated

with sensing individual items. Normally, these interactions are

missed by smart home sensing systems or inferred inaccurately

from location and movement. In our work, we use a system of

miniature snap-action switches in order to gain more accurate

access to this information. We aim for this system to be low

cost, easy to install, unobtrusive and able to run for long

periods of time without maintenance.

We begin by presenting previous works in Background,

including an overview of the SPHERE project. The explana-

tion of our hardware choices, integration with the SPHERE

system and our experimental setup is presented in Method

and Materials. We evaluate each of the sensor groups in the

kitchen in increasing activity recognition performance with

our model, and present the experimental outcomes in Results.

Finally, we discuss the project as a whole and potential future

works in Conclusion and Future Work.

II. BACKGROUND

In this section, we first present a background overview of

different sensing systems and modalities which are commonly

used in SMART home setups, before giving an overview of

the SPHERE project and its current state.

A. Related work on sensing systems

Previous works have looked at evaluation of sensing sys-

tems; for example Lei et al. [5] performed fine-grained activity

recognition for kitchen activities using RGB-D cameras. While

they showed promising results, data used was collected in

a laboratory setting and had the advantage of a controlled

environment with scripted experiments. In reality, getting a

clear view of the counter-top in the manner they did is a non-

trivial issue for real residential environments.

In a recent work funded by Google [4], a general purpose

sensor was created which could be introduced into any envi-

ronment easily and trained to detect a range of different events.

The sensor plugs in at the wall and is capable of sensing an

entire room, with a wireless connection to a central processing

device. It is compact, easy to install and requires no setup in

terms of hardware. However, because it is not able to directly

sense any particular device or object in a room, it is highly

dependant on specific room setups, especially regarding the

requirement for a plug socket in an appropriate place. In the

presence of high background noise or multiple simultaneous

events, sensor accuracy is likely to fall. Additionally, while

some activities will produce the same or similar measurements

regardless of environment, and can therefore be detected

without specialised training for each location, other actions

are more specific to environments or individuals and so would

need to be trained by users, requiring a lot of data. While this

is clearly a very versatile and user friendly device, it does not



provide the coverage afforded by other more varied sensing

systems.

Zouba et al. [8] made use of a range of environmental

sensors attached to objects in the environment along with

visual sensing components. This system is installed in a

laboratory setting, which is notably uncluttered, weakening the

case for this system’s real world suitability. No consideration

is made for the price of the system, although the issues of

installation and destructiveness are addressed. Ultimately this

system is used to record a dataset of actions taken within the

environment, but is not tested with regards to its recognition

capability or the usefulness of the setup involved, although

they posit that such a system could be used in recognition.

In some real world deployments, state changing sensors are

attached to commonly used household objects [17], [3] and the

data collected is used to perform activity recognition, either on

the entire house or just a section of it. Systems such as these

are limited by the number of objects they have tagged, and

often lack coverage in certain areas. The solution to this is to

tag as many objects as possible, but this would be completely

impractical in a real residential environment where the set of

items requiring tags is constantly shifting as items are replaced

through normal usage. Additionally, maintaining such a system

over a long period of time would be difficult, especially when

considering power requirements for each of the devices.

In more practical systems, many different types of sensors

are positioned throughout the environment with the aim of

capturing data to classify a number of broad activities using

Hidden Markov Models [2], [18]. Some evaluation is done in

these works, showing that motion sensing outperforms other

sensing modalities. However, this was primarily because the

actions they were sensing were location-based and simply

knowing that a participant was present at a location was

enough to imply that a specific action was taking place. For

distinguishing between kitchen-based activities, motion alone

is less useful, since kitchen activities all take place in a similar

area. There was generally good performance on classifying

between some coarse-grained kitchen activities by the other

environmental sensors, although they are not clear on the

between-class separations.

Hnat et al. [12] evaluated some of the different types of

sensors which could be realistically deployed into a residential

environment. Their work did not consider the cost or useful-

ness of certain sensors, but primarily focused on the practical

side of deployment including some helpful considerations

regarding power consumption, visual intrusiveness and the

need to a system which does not require constant maintenance.

Ultimately, some of the issues highlighted by their paper can

be solved by reducing the number of sensors deployed in the

system, for which an evaluation of the sensors in order to

determine those which are most useful would be pertinent.

B. SPHERE

The SPHERE project [7] is an interdisciplinary project with

the remit to provide an in-home monitoring solution in order to

assist medical professionals in providing care to their patients.

This involves the combination of existing technologies in

order to create a complete and functioning system, as well

as developing new technologies to complement and improve

this system.

The system created by SPHERE and broadly described

in [9], [10] has been evaluated with the express intention

of extensive residential deployment, including consultation

to determine consumer acceptance. This system is able to

perform activity recognition on activities of daily living in a

real home-setting using a range of environmental and RGB-D

sensors. However, while the system is capable of integrating

additional sensors, the prototype version being rolled out for

residential deployment does not consider interactions with

certain environmental elements, such as cupboard doors, which

can limit the system’s capability for fine-grained kitchen-

based activity recognition. The recognition of the detailed

person’s actions in the kitchen, however, could be essential

in detecting nutrition-related medical conditions as well as

problems caused by cognitive diseases, such as dementia.

(a) Exterior of the
house.

(b) The left side of
the kitchen.

(c) The right side of
the kitchen.

Fig. 1: The SPHERE house in Bristol.

The SPHERE house in Bristol as shown in Figure 1, is

a two-bedroom, terraced house owned by the University of

Bristol close to the main campus. It is used for experimentation

on new sensors and systems that can then be deployed in

other houses. There are a number of different systems at

work within the house which gather data about the current

occupants. These systems are designed to be non-intrusive

and automatic, with data being transmitted to the external

SPHERE data hub for processing. Located in the kitchen is an

RGB-D camera, electricity and water monitoring systems, and

a range of environmental sensors monitoring light intensity,

humidity, motion and temperature. During our project, we have

augmented the system in the kitchen using our own system of

switches and gateways, and integrate these changes into the

house’s network and data storage facilities.

III. METHOD AND MATERIALS

We begin by expounding on the hardware choices we

considered, before explaining how our system was integrated

into the SPHERE platform for our experiments. Finally, we

outline how our experiments were conducted to collect the

data required for evaluating the sensors.



A. Hardware Design

Miniature snap-action switches were chosen as the means of

sensor cupboard door states. This simple binary data was col-

lected and processed by simple, programmable development

boards.

1) Sensors: When determining the hardware choice for

the sensing units, several properties had to be considered.

Firstly, any sensors used needed to be low cost, since a high

cost would inhibit the possibility of large scale deployment.

Initially, proximity sensors were considered since they could

be installed at the back of the cupboards out of the way while

still detecting the position of the cupboard door. However,

these can be expensive for accurate models with sufficient

ranges and additionally require a precise installation which

may be difficult for untrained technicians. This is another

important factor to consider in a large scale deployment. Data

obtained from these sensors would also be noisy due to their

continuous nature, susceptible to interference or obstruction

and also can contain much more information than would

actually be required.

Avoiding complexity was also important, since keeping the

system simple reduces the opportunities for failures. For this

reason, switches were chosen for their mechanical simplicity,

and their production of binary data which is easier to process

and transmit. These switches would need to be reliable and

durable. Considering all of these requirements, miniature snap-

action switches [13] are an optimal choice due to their low

cost, mechanical stability and reliable activation at specific

and repeatable positions. These were positioned flush with the

frame of each cupboard (see Figure 2) to maximise the force

acting on them from the cupboard doors. The same system

was also successfully used for drawers.

Fig. 2: Miniature snap-action switches installed in a cupboard

and a drawer.

2) Framework: Arduinos [1] were chosen to act as gateway

components for the miniature snap-action switches, since they

are low cost, low power, are easily programmable and have

sufficient computing ability. Additionally, their digital pins

come pre-equipped with a pull-up resistor which reduces the

overall footprint size of the system.

During testing, only one Arduino was used connected to 5

switches. In the house kitchen however, two Arduinos were

used connected to 9 switches in total and covering opposite

halves of the kitchen. This scalability allowed us to avoid

complications with wiring around the oven and other potential

issues due to cables stretching across the kitchen, such as

high latency and low signal strength. High gauge wire was

used to mitigate some of the signal strength concerns. A

plastic shell was used to protect the Arduinos from the kitchen

environment, and they were placed at the back of a cupboard

and behind the microwave to reduce exposure to kitchen

occupants.

B. System Integration

The SPHERE house hardware infrastructure is based on the

Next Unit of Computing (NUC) by Intel [14]. These fully

functioning computers are extremely compact, making them

highly suited to unobtrusive installation in a residence. They

primarily act as gateways for other devices around the house,

and are responsible for processing and relaying data.

The Arduinos from the cupboard door sensor system were

connected to a NUC via two 10 metre USB cables. The NUC

itself was already situated close to the kitchen making the

installation straightforward. Originally, a wireless connection

was considered to reduce physical location constraints, but

due to the power requirements of the Arduinos and the lack

of free electrical sockets, a USB carrying power and data

was a better working solution. Due to the length of the USB

cables, a powered USB hub was also added to aid in signal

and electrical transmission.

C. Software Design

Software needed to be written from both the Arduinos and

the NUC to process and relay data from the sensors into the

wider system. This was performed using the Arduino IDE

for programming the Arduino boards, Python for the NUC

scripts and Message Queue Telemetry Transport (MQTT) for

broadcasting data over the network.

1) Arduino Software: The software for the Arduinos was

simple, initialising the digital pin input from the miniature

snap action switches with the internal pull-up resistor enabled.

This ensured stable states while the cupboards remained open

or closed. Each Arduino continuously checks the state of each

of its connected switches, compiling any changes into a short

string and transmitting this over the USB connection to the

NUC.

In addition to these event messages, a heartbeat is sent every

10 seconds to indicate liveness. Development of this software

was made more convenient through the use of the Arduino

IDE, using a variant of the C programming language.

2) NUC Software: All incoming data has a timestamp

attached by the NUC to ensure synchronisation with the rest of

the house data. In order to properly integrate with the existing

smart house system, software on the NUC was written in

Python allowing access to the Paho MQTT library. MQTT is a

lightweight message passing system ideal for communication

between networked machines, and is the primary protocol for

high level data communication in the house [15]. A message



broker is responsible for logging and distributing messages,

while client software is used by devices to send messages to

the broker and subscribe to specific topics. Topics are given to

messages to allow for filtering of the most relevant information

by each machine.

In addition to being broadcast by MQTT, data collected

was also stored in an SQL database and in a plain text log

file. The software running on the NUC would read incoming

messages from the Arduinos, unpack the data and distribute

it via all communication methods to ensure parity across all

data repositories. The program was daemonised to run as a

service on the NUC and configured to run on start-up ensuring

constant monitoring.

D. Experimental Set-up

In this section we describe the data collection setup and

process, before explaining how the data was handled and

processed.

1) Data Collection: To evaluate the performance of the

cupboard sensors and their contribution to the recognition of

everyday activities, we collected a sensor dataset, showing the

preparation of meals in the kitchen of the SPHERE house.

The collected dataset contains sequences of individual hu-

man protagonists performing varied and complex activities in

the SPHERE kitchen, without any predefined scripts. Addi-

tionally, no information was recorded regarding the contents of

the cupboards or draws before or after the experiments. Thus,

the dataset is a good example of natural human behaviour in

a changing and unordered environment.

Each data collection event took place over the course of

around two hours in the kitchen, involving 9 participants. The

only instruction they received was to prepare a meal and/or

a drink of their choice in the kitchen. This resulted in the

collection of 15 unscripted meal preparation and consumption

tasks. The meals/drinks included: pasta, ready meal, carrot

sticks, rice and vegetables, toast, juice, tea, coffee, chicken and

vegetables snack, rice and curry, macaroons, salad, and toasted

cheese sandwiches. A total of 449 minutes were recorded with

individual recording durations between 10 and 88 minutes.

The sensor network in the kitchen of the house collects

data on temperature, humidity, motion within the room, and

water and electricity usage. Apart from that, we included the

cupboard and room door sensors to record changes in the

state of the cupboards’ and drawers’ sensors. A head-mounted

camera was used to record the actions of the participants to

allow for annotation of the observations. The resulting dataset

can be downloaded from [16].

2) Data Processing: The original sensor data was collected

in JSON format. In order to make the data more usable, it was

converted into a table with a separate column for each type of

sensor and a column for the timestamp at which each reading

was taken. Rows with the same timestamp were then combined

as long as per sensor type there was only one unique value. As

this new format produced undefined values for some sensors

at a given time, any blank readings were replaced with the

last known value for that sensor. The state of the most sensors

is being read at a heartbeat rate which varies from sensor to

sensor, with some sensors also reading when a state changes.

For that reason, we believe that this simple replacement of

undefined values is sufficient. The resulting data contained

identical observations for different action labels. To reduce the

impact of this artefact on the model performance, a sliding

window of 5 time steps with overlapping of 50% was used

and the observations in this window were represented by the

maximum value for each sensor in the window.

3) Annotation: To obtain the ground truth for the dataset, a

head mounted camera was used to record the experiment. The

video logs from the camera were later used to annotate the

sensor data. In that manner, each data instance in the sensor

data was assigned an action class (e.g. “put”), as well as a

ground action (e.g. “put ingredients”). This annotation was

later used for two purposes: for training the hidden Markov

model and for evaluating the model performance.

4) Model: To evaluate whether the cupboard door sensors

contribute to recognising the behaviour during the cooking

tasks, we built a Hidden Markov Model (HMM), in which

the number of hidden states was set to the number of action

classes: put tools, put ingredients, prepare, get tools, get

ingredients, eat, and drink plus an initial state.

clean

drink

eat

get

move

prepare

put

unknown

Fig. 3: The structure of the Hidden Markov Model showing

the likelihood of transitioning between the different actions.

Thicker lines indicate higher likelihood.

The transition model of the HMM consists of a transition

matrix and priors for each state. Both have been estimated

empirically from training data. For the transition matrix, the

relative frequency of state transitions have been counted. The

state priors are the relative frequencies of the states in the

training data. To train the model, the first recording (which is

the longest) was used for training and the remainder of the

dataset for testing. Figure 3 shows the structure of the hidden

Markov model.

To assess the performance of the cupboard sensors, we first

computed the accuracy for all combinations of features (212 =



4096 combinations) according to

Accuracy =

∑
C
λC

N
, (1)

where C is the action class and N is the number of all

classified instances. λ is the number of all correctly classified

instances for a given class. In order to calculate λ, we used

the classes as estimated by our model, and compared this to

the action class labels provided in the annotation (our ground

truth). Only the most likely class was considered for each

estimation. Then to evaluate which features contribute the

most to the model, the following procedure was performed

for each feature f ∈ F , where F is the set of all available

features: 1) the set of all possible feature combinations P(F )
was generated; 2) the accuracy of recognising the executed

activities a(X)|X ⊆ F given the ground truth was computed,

where X ∈ P(F ); 3) the mean of all models that use f was

compared against the mean of all models that do not use f ;

4) if the mean accuracy of the models with f was lower than

the mean accuracy of the models without f , we deduced that

f may contain only noise.

We then investigated whether the cupboard sensors con-

tribute to the model performance by applying a paired t-test

to the results with and without the cupboard sensors.

IV. RESULTS

The mean accuracies of all 4096 feature combinations can

be seen in Figure 4. The features showed accuracy between

0.269 and 0.433. This is to be expected as only one dataset

was used for training the model. Nevertheless, the results show

that there are feature combinations that perform considerably

better than others. The best overall feature combination was

〈“fridge”, “kitchen cupboard top right”, “PIR sensor”, “warm

water”, “cold water”〉 (accuracy 0.433). One of the cupboard

sensors is also in the best feature combination, which already

shows that the cupboard sensors contribute to the recognition

of cooking activities.

sensor with without

kettle 0.375 0.385
fridge 0.371 0.389
kitchen cupboard top left 0.384 0.376
kitchen draw middle 0.382 0.378
kitchen draw bottom 0.384 0.376
kitchen cupboard top right 0.382 0.378
kitchen cupboard sink 0.384 0.376
temperature 0.376 0.384
humidity 0.352 0.408
PIR sensor 0.381 0.379
hot water 0.387 0.374
cold water 0.382 0.378

TABLE I: Mean accuracies with and without a given sensor.

Table I shows the mean accuracy when a sensor is used and

when it is not used. It can be seen that the cupboard sensors

all contribute to the accuracy (the accuracy with the cupboard

sensors is higher than without). The small difference can be

explained with the fact that some of the sensor combinations

contained sensors such as temperature and humidity that

seriously reduced the performance of the feature combination.

For that reason also the difference with and without a given

sensor is very small.

To evaluate whether the difference in the accuracy with

and without the cupboard sensors is significant, we used the

paired t-test. The test t(4) had a t-value of 6.532 with a mean

difference of 0.006. The results showed p-value of 0.003,

which means that the difference is significant considering a

95% confidence interval. In other words, adding the cupboard

sensors shows significant improvement in the performance of

the HMM.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed the use of cupboard door sensors

as additional sensor modalities for activity recognition in home

settings. To justify this claim, we instrumented the kitchen

in the SPHERE house in Bristol with cupboard door sensors

and showed that they do not reduce the activity recognition

accuracy during cooking activities. In fact the results showed

an improvement in accuracy when using the cupboard sensors.

In the cooking experiment, which was used to evaluated

the cupboard sensors, we used simple activity classes such as

“prepare” and “get ingredients”. Since these are independent

of location, this helps to explain the small difference between

the accuracy with and without the cupboard sensors. How-

ever, due to the direct sensing capability of the sensors, we

believe that they will provide invaluable additional information

when reasoning about objects located at specific location. For

example, opening the left top cupboard could indicate that

a user has obtained a plate, while another cupboard could be

more closely associated with canned foods. We plan to exploit

this additional information in a more complex model that is

able to reason about the objects in the environment and their

manipulation through the user actions. In a previous work we

proposed such a model and applied it to the annotation from

the kitchen experiment [11]. We also used all available sensors

to evaluate the performance of a Computational State Space

Model (CSSM) [6] for the kitchen scenario. For future work,

we plan to test the model also on the best feature set from the

sensor data and thus better evaluate the effect of the cupboard

sensors on the model performance.

Another interesting avenue of research to consider would

be the use of different modelling paradigms. In this work,

the model used to evaluate the accuracy with the different

features was a HMM. In the future, we plan to compare

the performance of this with that of the CSSM that makes

use of the cupboard sensors and to see whether additional

context information in the model combined with the addi-

tional information from the cupboard sensors improves the

activity recognition performance. Additionally, the use of deep

learning techniques for action recognition may allow for better

use of our sensors, especially when temporal information is

exploited as is the case with a Long-Short Term Memory

(LSTM) network. Since our system is generic, this will allow

us to easily adapt our data to other modelling paradigms.
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Fig. 4: Accuracies of all feature combinations for DT. Each feature index corresponds to a 12-digit binary number that represents

which features are present. The order of these digits is the same as in Table I.

Finally, the cupboard sensors are not perfect and it is pos-

sible that they produce noisy observations. Some of the issues

with the sensors could come from a mechanical perspective,

since the precise switches used were not ideal for the irregular

kitchen environment. Some of the switches were damaged by

the force with which cupboards swung closed, or were simply

deformed over time by repeat usage, and were then stuck in

a closed position. We will seek to improve the mechanical

issues with the system (such as difficulty of installation and

sensor reliability) by using different types of switches and

switching to a wireless system. This would bring the cupboard

door sensors up to the same level as the rest of the SPHERE

system, making them more suited to residential deployment

and prolonged use.
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