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Introduction

Our goal in this paper is, given a connected set of balls, to select and inflate one ball to cover the whole set with the minimal radius. More formally, we are given an abstract metric space and a path-connected set of balls with given centres c 1 , c 2 , . . . , c n and radii r 1 , r 2 , . . . , r n . We want to choose one of the centres and create a ball of radius R around it to cover the whole set of balls with minimal R. By using arguments from graph theory, we show that R ≤ r a + j r j , where r a is the mean of the two biggest radii among the r i . This bound is tight. Finally, we show that in the usual complexity models, computing this centre requires Θ(n 2 ) operations.

This problem is closely related to the smallest enclosing ball problem, which has been studied since the early 1980s [START_REF] Megiddo | Linear-time algorithms for linear programming in rˆ3 and related problems[END_REF][START_REF] Welzl | Smallest enclosing disks (balls and ellipsoids)[END_REF][START_REF] Mordukhovich | The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of solutions[END_REF]. The main difference is that, instead of computing the smallest enclosing ball without constraints on the centre, our centre is imposed from a small set, and we are concerned with precise bounds on the radius. Our motivation comes from facility location [GK99, [START_REF] Charikar | Clustering to minimize the sum of cluster diameters[END_REF][START_REF] Vygen | Approximation algorithms for facility location problems[END_REF] and dynamic clustering problems [START_REF] Eisenstat | Facility location in evolving metrics[END_REF][START_REF] Hyung-Chan An | Dynamic facility location via exponential clocks[END_REF], where fractional solutions to the linear programs generally come in the form of such structures. Being able to replace a connected set of balls by a single optimal ball in such problems could be a step towards solutions that have better approximation ratios and are easier to analyse, especially in the dynamic metric setting where some bounds are still far from being tight [START_REF] Nikola | Dynamic Sum-Radii Clustering[END_REF].

Upper and lower bounds

Definitions

We work in a general metric space E endowed with a distance d(., .) and the natural topology generated by open balls. Paths on E are well-defined as continuous functions [0, 1] → E.

We consider a set of n points c 1 , c 2 . . . c n in the metric space E, and to each point c i associate a closed ball B i of radius r i (corresponding to all the points in E that are at distance at most r i from c i ). The subspace corresponding to the union of all the balls will be written as S. We have one constraint on the the set of balls: the union S is assumed to be path-connected, meaning that there is a path from x to y through S, for any x, y ∈ S.

Problem

We seek to cover S by increasing the radius of a single ball, and have two questions. Which center c i should we choose, and how can we minimise the ratio of the new radius R compared to the sum of the previous radii? That is, how do we minimise R j r j

.

The immediate answer is to find the ball closest to the "center" of S and open it with a sufficient radius, but that center might not be easy to manipulate in some abstract metric spaces and does not immediately give the best bound. Before proving the tight, bound we need an elementary lemma.

Lemma 1. If a shortest path P between two arbitrary points x, y ∈ S through S is of length d, then the sum of radii j r j is at least d/2.

Proof. Without loss of generality, let B 1 , . . . , B k be the sequence of balls that the path P follows. Note that by the triangle inequality, the path P passes through each ball onceotherwise there exists a shorter path between x and y than P , which contradicts P being the shortest. Write e 1 , . . . , e k to be the "entry" points on the path P into the balls B 1 , . . . , B k respectively. We will define by convention e 1 = x and e k+1 = y. We have d(e 1 , e 2 )+d(e 2 , e 3 )+ . . . + d(e k , e k+1 ) = d. By the triangle inequality with the centres c 1 , c 2 , . . . , c k , we finally get:

d = k i=1 d(e i , e i+1 ) ≤ k i=1 (d(e i , c i ) + d(c i , e i+1 )) ≤ k i=1 2r i ≤ 2 n i=1 r i .
From Lemma 1 it follows that we can easily have R j rj ≤ 2 by opening any facility with a big enough radius to cover everyone. Suppose that we take a centre c i and a point x farthest from c i , opening c i with radius d(c i , x) is enough to cover S -because a point not inside that new ball would have to be at distance higher than d(c i , x). But the cost of the initial solution was at least d(c i , x)/2, hence the result.

The previous result extends to arbitrary paths as long as their total length inside each ball is at most 2r i . If there is a path of length d satisfying such a condition, then j r j ≥ d/2.

We also need a theorem from graph theory:

Theorem 2 ([WC04]
). For any tree graph T , we have:

2 × radius -max i,j (d(c i , c j )) ≤ diameter.
Our goal is now to prove the following:

Theorem 3. We can always cover S by a ball with radius R ≤ r a + j r j , where r a is the mean of the two biggest radii among the r i .

Proof. Let us consider a weighted complete graph K n with c 1 , . . . , c n as nodes, where the weight of an edge (c i , c j ) is equal to d(c i , c j ). Let T be a minimum spanning tree of the graph G. We expand T to a second tree T in the following way. For each node c i , we add a leaf l i , and assign the weight of the edge (c i , l i ) to be the radius r i . We observe that, if we define the ball centred at a central node of T with radius R equal to the radius of T , then this ball covers S entirely. Let us now take a path corresponding to the diameter of the tree T . We know that its length d is less than 2 j r j . We also know from Theorem 2 that d ≥ 2 × R -max i,j d(c i , c j ). However, d(c i , c j ) is at most the sum of the two biggest radii among the r j , which we will denote by 2r a . By combining this with Lemma 1, we get that:

R ≤ d 2 + r a ≤ r a + j r j
Lemma 4. This bound is tight.

Proof. Consider two balls of radius r in the Euclidean space that touch in a single point. Any of these two balls has to be inflated with radius 3r to cover their union. This proves the lower bound.

Remark 5. We can consider another situation in the Euclidean space, to show that this bound applies to instances of arbitrary sizes. Suppose that we have an even number 2n of identical balls of radius r in a line touching one another and a ball of a high radius r on each side of the middle of the line. The optimal solution is then to inflate one the two big balls with sufficient radius to cover everyone other ball. The radius of the inflated ball in this case is 2n × r + 3r a , while the sum of radii is 2n × r + 2r a .

Remark 6. If we don't look at the values of the radii but only consider a multiplicative bound, this means that we can get examples with 3 2 ≤ R j rj (as in the first previous example), and the theorem becomes R j rj ≤ 3 2 .

Algorithmic considerations

Using the same notations as before, we now look at the following algorithmic question: in how many operations can we find a centre c * ∈ {c 1 , . . . , c n } such that we can cover all balls B 1 , . . . , B n by a ball centred at c * with minimal possible radius R. The answer to this question depends on the choice of the model of how the input data is accessed. We will now investigate multiple models and give the lower bounds on the worst-case complexities for each of them.

Different input methods. We consider two models. The first and most general is: given any two centres c 1 and c 2 , we have access to an oracle that outputs the distance between c 1 and c 2 in O(1) time. This corresponds to a matrix representation of the complete distance graph.

The second model is to have an adjacency list, where for each ball we can access in O(1) time to its radius as well as to the list of all centres within the ballpotentially sorted by distance to the ball's centre.

General algorithm. We will now describe a simple algorithm that finds c * . We compute for each centre c i , the radius R i of the smallest ball centred at c i that covers S. We will leave for now the complexity of finding the radius R i as a parameter k. To find c * , we pick the centre c i with the minimal R i . As we have n different centres, the complexity of the algorithm is thus O(nk).

If we have access to the distance between c i and c j in O(1) operationsor access to the list of distances between c i and all c jwe can check each center in O(n), leading to an O(n 2 ) algorithm. As shown in the following lemma, we cannot do better than this in the general case.

Lemma 7. With the matrix representation, Ω(n 2 ) queries can be needed, making the previous algorithm asymptotically optimal.

Proof. We will use an adversary argument, with a game for two players on a complete graph K n , where the n nodes correspond to the centres c 1 , . . . , c n . All edge weights in the graph K n can be either 1 or 1 + ε for some fixed ε ∈ (0, 1). Note that any assignment of the weights on the edges in the graph K n satisfies the triangle inequality, hence the weighted graph K n defines a metric space.

The first player (the user) chooses an edge in the graph and the second player (the adversary) chooses the weight of this edge from 1 and 1 + ε. The goal of the user is to efficiently decide whether there exists a node in the graph K n such that all its incident edges have weight 1, with the adversary trying to make the user lose as much time as possible. We will now show that the adversary has a strategy to make the user pick Ω(n 2 ) edges in K n to decide.

Let e be an edge picked by the first player with two endpoints c i and c j . If e is not the last picked edge for either c i or c j , then the adversary assigns to the edge e the weight 1. Otherwise, the adversary assigns to e the weight 1 + ε, unless c i or c j is the last node with no distance equal to 1 + ε. In this case, the adversary arbitrarily sets the distance to be either 1 or 1 + ε.

Recall that the user needs to check for each node if there is an incident edge with weight 1+ε. When an edge with weight 1+ε is detected, this check is complete for the two endpoints of the edge. Therefore, at least n/2 edges with weight 1 + ε need to be queried. Moreover, by construction, for each such edge, at least n -2 edges of weight 1 were queried previously. We counted each edge of weight 1 at most twice, leaving us with at least n(n -2)/4 edges of weight 1 required to query. In total, the user is therefore required to pick O(n 2 ) edges.

Remark 8. Although it requires an involved and technical proof, it can be shown that this instance can be embedded in R n . Any weight assignment to the edges of K n satisfies the triangle inequality, corresponding to a sub-constrained problem that can be satisfied in R n .

Discussion

This paper leaves open multiple algorithmic questions. First, can better algorithms be found in the general case, using the number of edges as a parameter instead of the number of centres? For example, it could be possible to get Õ(m) complexity by extending the constructive proof of Theorem 3, building a spanning tree and finding its centre in O(m log * m).

A different possible direction is to look not for optimal solutions but for satisficing ones, where any center with R ≤ r a + j r j is considered a valid solution. In such a case, one could get rid of dense parts of the graph by only looking at the top three furthest neighbours and absorbing them into the ball currently considered. Most importantly, could the methods shown in this paper improve the bounds or give access to simpler proofs of the results for clustering and facility location problems, such as the ones in [START_REF] Charikar | Clustering to minimize the sum of cluster diameters[END_REF]? Acknowledgements. This work was supported partly by the french PIA project "Lorraine Université d'Excellence", reference ANR-15-IDEX-04-LUE.