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Abstract—Most of the efforts to characterize DTN routing
are focused on the trade-off between delivery ratio and delay.
Buffer occupancy is usually not considered a problem and most
of the related work assumes infinite buffers. In the present work,
we focus on the drop ratio for message forwarding considering
finite buffers. We model message drops with a continuous time
Markov chain (CTMC). To the best of our knowledge, there is no
previous work with such approach. We focus on the worst case
with 1-packet buffers for message forwarding in homogeneous
inter-contact times (ICT) and 2-class heterogeneous ICT. Our
main contribution is to link the encounter rate(s) with the drop
ratio. We show that the modeled drop ratio fits simulation results
obtained with synthetic traces for both cases.

Keywords—DTN, Modeling, Characterization, Drop ratio, Con-

tinuous time Markov chain

I. INTRODUCTION

Delay Tolerant Networks (DTNs) are a well-known
paradigm to allow communication between peers when in-
frastructure is scarce [1]. Communications are handled in a
store-carry-and-forward format in DTNs. Hence, we benefit
from peers communication opportunities (given by node move-
ments, periodicity of contacts/connections, etc) to deliver data.
Usually, it is not possible to establish a direct end-to-end path
between source and destination; instead, a spatio-temporal path
may be created by contact opportunities.

The DTNs pure definition based on the delay tolerance na-
ture of communications covers a big spectrum of networks [2]:
space communications, vehicular networks, sensor networks,
opportunistic networks, etc. All these scenarios have in com-
mon to impose strong restrictions on the resources available to
the nodes (energy, memory, processing power). Many works
have focused on those different restrictions providing a better
understanding in terms of characterization, mobility, energy
consumption, or performance metrics such as delay, delivery
or drop ratios to name a few.

A pioneering work in the field of DTN performance
modeling was [3], where the authors provide a Markov model
for the 2-hop and unrestricted multicopy routing protocols in
the case of homogeneous exponentially distributed intercontact
times (ICTs). Markov modeling was subsequently applied to
Epidemic routing [4]–[6], Spray And Wait [7], [8] and Binary
Spray and Wait [9]. Other modeling tools include Ordinary
Differential Equations [10], [11] or Petri Nets [12].

Such works showed that unrestricted buffers and epidemic
routing will provide the best delivery ratio [10], even though
the number of message copies increases exponentially, as
predicted by the SIR (Susceptible-Infected-Recovered) model

[13]. The buffer occupancy is usually not considered a prob-
lem, or one of less importance, to the point that most of
the related work assumes infinite buffers [3]–[9], [14]–[17].
Heterogeneous ICTs, either for pairs [9], [15], [16] or groups
[5], [14], [17] of nodes, are also rarely considered. A more
detailed literature overview can be found in Table I.

We focus our work on a specific type of sensor net-
work where mobile nodes perform a measurement and then
transmit their data by message forwarding among their peers.
Two groups of nodes are considered: sources which perform
measurements, and destinations acting as collection points.
A message can reach any collection point, as in an anycast
network. We study the behavior of message forwarding in
terms of number of dropped messages when we increase the
number of messages generated in this sensor network. We
use simple forwarding of messages to avoid including new
message copies in the network (via replication), as this would
only increase the probability of dropping a message.

We restrict our study to networks where nodes can carry
only one message. Although it might seem limited, this case
captures the situation of bigger buffers almost filled up with
messages, to the point that every node has at most one free
space in its buffer. Somehow this represents the basic limits
of a DTN in terms of absorption capabilities: after reaching
a given buffer occupancy, no more messages can be injected
unless nodes start dropping messages due to buffer saturation.

In Section II we propose a continuous time Markov chain
(CTMC) to characterize the drop of messages in 1-message
buffers DTNs. The objective is to exhibit an upper bound
to the drop ratio. From this, we can extract the trade-off
between the number of sources and destinations nodes in order
to achieve a desired drop ratio. We show that the outputs of
the CTMC model fit to DTN simulation outputs (Section III).
Our contribution is twofold:

1) We study a DTN network where nodes can store only
one message in their buffer. Messages are forwarded
from source to destination. Encounters between nodes
are homogeneous. We model the drop ratio when
increasing the number of messages (Section II-B),
and provide simulations that match this dropping
model (Sections III-A and III-B);

2) We extend our model to the case where nodes are
divided among two groups with different encounter
rates (Section II-C). We provide simulations to com-
pare with the extended model (Section III-C).



Table I: Previous literature considering finite/infinite buffers. Only [10] characterizes the drop ratio with finite buffers, using
ODEs and focusing on homogeneous ICT and epidemic routing.

Reference Buffer size Exponential parameters Routing protocols Performance metrics derived
Delay Delivery ratio Number of copies Drop ratio

[10] Finite Homogeneous Epidemic X - X X
[11] Finite Homogeneous Spray and Wait X - - -
[12] Finite Homogeneous Epidemic, 2-hop X X - -
[18] Finite Not mentioned 2-hop X - - -

[3]–[9], [14]–[17] Infinite - - X X X -

This paper Finite Homogeneous Forwarding - - - XTwo-class Heterogeneous

II. DROP MESSAGE MODEL

In this section, we define the basic notation and global
hypotheses of the model. Then we introduce the specifics
of our model for two cases: homogeneous intercontact time
distribution and a restricted heterogeneous case with two
classes of nodes.

A. Model basics

We consider a DTN with N identical nodes N =

{1, 2, 3, . . . , N} with a buffer capacity of one message. We
consider S < N message sources and M initial copies of
the same message. Notice that S = M due to the buffer
restriction. The M messages are delivered to any of D < N�S

destinations. Unless stated differently, we consider D = 1.
Intermediary nodes act as forwarders of those M messages.
Hence, no extra copies are created in the evolution of the
process. The goal is to determine the distribution of dropped
messages and the drop ratio over time.

Let 0  ti,j(1)  ti,j(2) < ... be the successive encounter
times among nodes i and j. We consider that the transmission
time of a message is negligible with respect to the time it takes
to two nodes to meet one another. It follows that the n-th inter-
contact time between i and j is icti,j(n) = ti,j(n+1)�ti,j(n).
Later we set specific hypotheses on the nature of the processes
{ti,j}. Since each node can keep only one message, each time
a contact occurs we try to forward it. Hence, when node i and
j meet either: (i) only one of the nodes has a message, it is
instantaneously transmitted, or (ii) both nodes have a message,
then one is chosen at random to instantaneously transmit its
message while the other drops its message.

B. The (d, c) model: homogeneous case

For the homogeneous case, we assume that the processes
{ti,j(k), k � 1, 8i 6= j 2 N} are mutually independent
and homogeneous Poisson processes with rate � > 0. Hence
the random variables {icti,j(k), k � 1, 8i 6= j 2 N} are
mutually independent and exponentially distributed with mean
1/�.

To calculate the number of dropped messages, we introduce
a continuous time Markov chain (X(t), t > 0). The states of
the chain are (d, c), where d represents the number of dropped
messages and c the number of message copies. Our initial
state is (0,M). The transitions from a state (d, c) are either
to (d, c� 1) when a message is delivered or to (d+ 1, c� 1)

when a drop occurs. The rate to encounter a destination will
be D�. Since we have c nodes with a copy of the message, the
former transition will happen with rate cD�. The latter occurs

with rate c(c�1)
2 � given the number of combinations where

two nodes with a message meet. In Figure 1, we detail the
possible transitions for the general case. The absorbing states
of the chain are in the form (d, 0) with 0  d  M�1. Notice
that when reaching the absorbing states, we must impose some
border conditions. Since the last message will be delivered with
probability 1, we cannot transit from state (d, 1) to (d+1, 0).
In Figure 2, we draw the complete Markov chain for M .

d, c d, c� 1

d+ 1, c� 1 d+ 1, c� 2

cD�

c(c�1)
2 �

. . .

. . .

. . .

. . .

. . .

· · ·

Figure 1: Chain transitions from a given state (d, c). Either
a destination is found among D possibilities, leading to state
(d, c � 1), or there is a drop, leading to (d + 1, c � 1). State
(d+ 1, c� 2) is included to show the progression of states.

We can easily calculate the probabilities of going out from
the state (d, c). Indeed, the embedded Markov chain for X(t)

allows to write the probabilities to jump between states as
shown in (1).

P ((d, c) ! (d, c� 1)) =

cD�

cD� +

c(c�1)
2 �

=

2D

c+ 2D � 1

P ((d, c) ! (d+ 1, c� 1)) =

c(c�1)
2 �

cD� +

c(c�1)
2 �

=

c� 1

c+ 2D � 1

(1a)

The absorbing states probabilities are defined as:

PM (d) = P (X1 = (d, 0)|X(0) = (0,M)), 0  d  M � 1

(2)

Since the process is a feed-forward process, these proba-
bilities can be easily calculated with a dynamic programming
algorithm. The drop rate distribution is defined as the expected
value of reaching the absorbing states over the number of
starting messages 1

M

PM�1
d=0 d PM (d) .



0,M 0,M � 1 0,M � 2 0,M � 3

· · · 0, 1 0, 0

1,M � 1 1,M � 2 1,M � 3

· · · 1, 1 1, 0

2,M � 2 2,M � 3

· · · 2, 1 2, 0

...
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Figure 2: Complete Markov chain for the drop process. When there are no more messages to deliver, we reach a final state (d, 0)

with d being the number of messages dropped.

It is important to notice that the probabilities are indepen-
dent of the process arrival rate �. Therefore, for any {ti,j}
defined as before, we expect the same drop ratio results.

C. The (d, c1, c2) model: heterogeneity with two classes

We extend the (d, c) model to the case of two different
classes of nodes C1 and C2, with |C1| = N1 and |C2| = N2

such that N = N1 + N2 + D. For convenience, we impose
D = 1. To keep the problem symmetrical, the destination does
not belong to any class of nodes. We have M = M1 + M2

messages distributed as M1 in C1 and M2 in C2.

The heterogeneity is defined such that the processes {ti,j}
have different rates for each class: independent homogeneous
Poisson processes with rate �1 in class C1 and with rate
�2 in class C2, while inter-class interactions are given by
independent and homogeneous Poisson processes with rate
�. As before, it follows that the random variables icti,j are
mutually independent and exponentially distributed with the
reciprocal of �1, �2 or � according to the case.

The differences between the values of �1, �2 and � define
different speeds for the group encounter rates (and hence the
waiting times between connections). For instance, this allows
to model one group that will deliver its messages faster than the
other. A faster delivery implies having more nodes with free
buffers, hence reducing the probability of drops. The inter-
class communication allows to balance the drops allowing to
pass messages from one class to another. From the symmetry
of the problem, the destination meets nodes from C1 with rate
�1 and nodes from C2 with rate �2. This restriction can easily
be removed and does not affect the general result.

We model the states as (d, c1, c2) where d is the number
of drops, c1 is the number of copies in class C1 and c2 is the
number of copies in class C2. We identify three different kinds
of transitions from the state (d, c1, c2):

1) Delivery transitions: we meet a destination with rates
�i in class Ci. Since we have ci message copies it
follows that the transitions rate are c1�1 for (d, c1 �
1, c2) and c2�2 for (d, c1, c2 � 1);

2) Drop transitions: the number of combinations in
class Ci where two nodes having a message meet

is ci(ci�1)
2 �i. Also we count the c1c2 combinations

where two nodes from different classes having a
message meet with rate �/2

1. It follows that the
transition rates are c1(c1 � 1)�1/2 + c1c2�/2 for
(d+1, c1 � 1, c2) and c2(c2 � 1)�2/2+ c1c2�/2 for
(d+ 1, c1, c2 � 1);

3) Inter-class transitions: in this case we count the
number of combinations where a node from class Ci
passes a message to a free node from class Cj 6=i. This
happens ci(Nj�cj) times with rate �. It follows that
the transition rates are c1(N2�c2)� for (d, c1�1, c2+

1) and c2(N1 � c1)� for (d, c1 + 1, c2 � 1).

Figure 3 presents the general transitions from a state
(d, c1, c2) to all possible states described before. Same as
before, we have M absorbing states in the form (d, 0, 0) with
0  d  M � 1. Notice that we arrive to the absorbing state
either from (d, 1, 0) with rate �1 or from (d, 0, 1) with rate
�2. Again, we need to rule out some transitions. For instance
from (d,N1, c2) we cannot go to (d,N1 + 1, c2 � 1) or from
(d, 0, c2) to (d,�1, c2 + 1). We do not present the complete
chain due to the impossibility to draw it because of its size.

To calculate the dropping probabilities, we use the fact that
the chain previously defined is an absorbing Markov chain. We
do the following: (i) enumerate the Ns valid states of the chain
(d, c1, c2) with 0  d  M � 1, 0  c1  N1 and 0  c2 
N2. This allows to define the mapping from 1  i  Ns to
state si = (d

0
, c

0
1, c

0
2) for all the valid states in the chain. (ii)

define the matrix A with coefficients aij as the rate transform
from state si to state sj and the matrix R with coefficients rij

as the rate from state si to absorbing state s

⇤
j . Notice that the

size of matrix A is Ns⇥Ns and the matrix R is M ⇥Ns. (iii)
finally, we define B = (I � A)

�1
R where the i

th row is the
distribution of absorbing states if the initial state is si. Since
the absorbing states correspond to drop states, it follows that
B is the dropping distribution PM (d).

1We can split the inter-class Poisson processes into two counting processes
with rate �p and �(1� p). The splitting probability corresponds to the drop
probability when two nodes have a message. Since we take one at random,
we have �p = �(1� p) = �/2.



(d+ 1, c1 � 1, c2)

(d, c1 � 1, c2 + 1) (d, c1, c2) (d+ 1, c1, c2 � 1)

(d, c1 � 1, c2)

(d, c1 + 1, c2 � 1) (d, c1, c2 � 1)

c1�1

c2�2

c1(c1�1)�1+c1c2�
2

c2(c2�1)�2+c1c2�
2c1(N2 � c2)�

c2(N1 � c1)�

Figure 3: Chain transitions from a given state (d, c1, c2). We observe the increase in number of states and transitions w.r.t the
(d, c) model shown in Figures 1 and 2: inter-class transitions (d, c1 � 1, c2 + 1) and (d, c1 + 1, c2 � 1); delivery transitions
(d, c1 � 1, c2) and (d, c1, c2 � 1); and drop transitions (d+ 1, c1 � 1, c2) and (d+ 1, c1, c2 � 1).

III. SIMULATION SETUP

In this section, we present the main results of the com-
parison between a simulated DTN network and the modeled
CTMC results. We generate pairwise ICTs distributed as
defined in Section II. We then run an event driven simulation
to perform the forwarding of the messages in the network
and calculate the drop ratio for a given configuration. We
compare the simulated and predicted drop ratio for both (d, c)

and (d, c1, c2) models. Table II presents an overview of the
simulations we cover in this section. The model results have
been obtained with MATLAB, while the continuous time
simulations are implemented with R.

We run all simulations with N = 100 nodes and buffer
size B = 1. We repeat each simulation 10 times and
provide the average results within a 95% confidence level.
The network occupancy is defined as ⇢ = S/N . Sources
are increased to represent the following percentages ⇢ 2
{1, 2, 5, 10, 15, . . . , 80, 95, 98}.

⇢ D Model Parameters
E1 % 1 (d, c) � = 500
E2 % % (d, c) � = 500
E3 % 1 (d, c1, c2) �1 = 2.5, �2 = 200, � = 66.6
E4 % 1 (d, c1, c2) �0

1 = 10, �0
2 = 100, �0 = 55

Table II: Summary of simulations and their parameters (⇢:
network occupancy, D: destinations, %: increasing).

A. Homogeneous case: single destination

As defined in Table II, we present the results of simu-
lation E1 with � = 500. As said in Section II, we assume
that all pairs follow the homogeneous case with {ti,j ⇠
PoissonProcess(�)} and {icti,j ⇠ exp(�

�1
)}.

Figure 4 shows how increasing the number of sources
(hence the network occupancy) increases the drop ratio, as
predicted by the (d, c) model. In this figure we plot the
drop ratio for each repetition (red points). We also plot the
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Figure 4: Results for Homogeneous case (E1): we see how
close the (d, c) model-predicted values and the simulated
values are.

average interpolation up to a 95% confidence interval envelope
(gray area within the error bars). Again, we see how close
the simulated and model results are. Indeed, we compute the
average case for the 10 repetitions and graph the difference
between the average and the model. We see that the maximum
difference between both is 0.04. Of course this is only true for
the average case. We will see a bigger difference if we include
the variance (points dispersion), especially when the number
of sources is small: when we have less sources, the chance of
dropping a message is lower, but not zero (bigger variance);
when we have more sources, chances of eventually dropping
are almost 100% (smaller variance).

B. Homogeneous case: Anycast

In simulation E2, we proceed similarly to E1 except that
we increase D. We set � = 500 and we increase both the num-



ber of sources and destinations. Since all destinations are in-
distinguishable, each time we meet one a message is delivered.
Figure 5 (on page 6) shows the evolution of the drop ratio when
increasing the number of destinations for different values of S
such as ⇢ 2 {5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%}. The
number of destinations D varies up to the maximum amount
of free nodes on each case, i.e. 1  D < N � S. We can see
how adding destinations reduces the drop ratio because of the
increase of delivery probability. We see the match between the
model and simulated results. We also notice that the variance
is lower with a higher number of sources as in the E1 case.
This graph allows to define how many nodes are needed in
an anycast sensor network to keep the drop ratio bounded.
Indeed, we observe that with 20 anycast destinations we can
obtain a drop ratio lower than 25% for a network occupancy
in between 30% and 40%.

C. Heterogeneity with two classes

In this section we discuss both simulations E3 and E4

with the main results for the two-class (d, c1, c2) model. We
have N = 100 nodes, D = 1 destination, and the rest of nodes
divided in two classes C1 and C2 of same size (N1 = 50 and
N2 = 49 respectively). We increase the number of sources
selecting randomly M1 from C1 and M2 from C1 such that
M = M1 +M2. We define �1 = 2.5, �2 = 200, � = 66.6 for
E3 and �

0
1 = 10, �0

2 = 100, �0
=

�0
1+�0

2
2 = 55 for E4.

Figure 6a presents the compared model results for three
cases: (d, c) model and (d, c1, c2) for E3 and E4 simulations.
First, we can see that the homogeneous case performs worse
than both two-class heterogeneous cases. Recall that the prob-
abilities of the (d, c) model are independent of � while in
the (d, c1, c2) model they are not. Indeed, we see how the
assigned values for the E3 case give a lower drop ratio than
E4. This is due to the encounter rates defined: on simulation
E3, we have �1 < � < �2. This means that nodes in class
C1 meet more frequently than the nodes in C2, and nodes in
C2 meet more frequently a node from C1 than from their own
class. Consequently, messages in the first class will reach the
destination more frequently than the ones in the second class,
and messages in the second class can also benefit from the
transfer opportunities to the first class to be in turn forwarded
to the destination. Since messages are being delivered more
frequently, we decrease the drop ratio in comparison with the
homogeneous case. On contrast, on simulation E4 the drop
ratio increases. If we think in terms of interactions between
nodes, the total number of pairs is 4950, with ⇠ 1225 pairs per
group. The number of interactions is distributed as C1 ⇠ 25%,
C2 ⇠ 25% and 50% for the inter-class interactions. In E4, the
rates are in the same configuration as E3, but with a difference
in the order of magnitude as �

0
1 < �

0
< �

0
2: values �

0
1 and �

0
2

in E4 are closer to a unique � value than �1 and �2 in E3.
Hence, more than half of interactions behave similarly in terms
of encounter frequency, which explains why E4 is closer to
the homogeneous case than E3. We see how the frequency of
contacts is key to characterizing the heterogeneity.

Figure 6 shows how the two-class model matches our
simulations in both number of drops and drop ratio. In this
figure we include the model for both E3 and E4, as well as
the simulation results in a 95% confidence interval. Like in
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(a) Comparison between the (d, c) and the (d, c1, c2) mod-
els. For the (d, c1, c2) model, different ICT parameters are
considered (E3 and E4).
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Figure 6: Drop ratio for two-class simulations E3 and E4.

the homogeneous case, we observe that with less sources we
have a bigger variance on the simulated results.

IV. CONCLUSIONS

In this work, we studied the drop ratio for the progression
of messages from a set of sources to a set of destinations.
Each source emits one message that can be absorbed by
any destination. Messages in our study are simply forwarded
among nodes to avoid the inclusion of extra copies (replica-
tion), which will only increase the probability of drops. We
worked with nodes with 1-message buffers to represent the
worst case: all nodes are saturated and we want to know how
many new messages can be injected (upper bound). Our main
contribution is the introduction of a continuous time Markov
chain model to characterize the drop of messages under these
hypotheses. We introduced two variants: the (d, c) model for
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Figure 5: Results for E2: each graph represents a fixed network occupancy ⇢. We see how adding destinations decreases the
drop ratio as predicted by the model. We see the number of destinations needed to get a 25% drop ratio for each case.

homogeneous contact between nodes and the (d, c1, c2) for
a two-class heterogeneous case. Based on these models, we
show the link between the encounter rate among nodes with
the drop ratio of forwarded messages: the selection of these
rates can impact the message dropping behavior. In specific,
we showed that some configurations behave better than the
homogeneous case, while others behave close to it. From the
model we can extract the trade-off between the number of
sources and destinations nodes in order to achieve a desired
drop ratio requirement. We performed a DTN simulation to
calculate the drop ratio for several scenarios to validate the
model. We showed that the outputs of the CTMC model fit to
DTN simulation outputs. For future work, we plan to better
characterize the behavior of the two-class model by varying
encounter frequencies. We will also investigate the cases of
larger buffers and full heterogeneity.
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