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NEWTON-LIKE INERTIAL DYNAMICS AND PROXIMAL ALGORITHMS
GOVERNED BY MAXIMALLY MONOTONE OPERATORS

HEDY ATTOUCH∗ AND SZILÁRD CSABA LÁSZLÓ †

Abstract. The introduction of the Hessian damping in the continuous version of Nesterov’s accelerated gradient
method provides, by temporal discretization, fast proximal gradient algorithms where the oscillations are significantly
attenuated. We will extend these results to the maximally monotone case. We rely on the technique introduced
by Attouch-Peypouquet (Math. Prog. 2019), where the maximally monotone operator is replaced by its Yosida
approximation with an appropriate adjustment of the regularization parameter. In a general Hilbert framework, we
obtain the weak convergence of the iterates to equilibria, and the rapid convergence of the discrete velocities to zero.
By specializing these algorithms to convex minimization, we obtain the convergence rate o

(
1/k2

)
of the values, and

the rapid convergence of the gradients towards zero.

Key words. Damped inertial dynamics; Hessian damping; large step proximal method; Lyapunov analysis;
maximally monotone operators; Newton method; time-dependent viscosity; vanishing viscosity; Yosida regularization.
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Introduction. Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm
‖ · ‖. Given a general maximally monotone operator A : H → 2H, based on Newton’s method, we
want to design rapidly converging proximal algorithms to solve the monotone inclusion

(0.1) 0 ∈ Ax.

Solving (0.1), i.e. find a zero of A, is a difficult problem of fundamental importance in optimization,
equilibrium theory, economics and game theory, partial differential equations, statistics, among
other subjects, (see for instance [20, 23, 24, 25, 26, 28, 30]). As a guide to our study, the algorithms
will be derived from the temporal implicit discretization of the second-order differential equation

(DIN−AVD)α,β ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) = 0, t > t0 > 0,

where α, β are positive damping parameters, and JλA = (I + λA)
−1
, Aλ = 1

λ (I − JλA) stand
respectively for the resolvent of A and the Yosida regularization of A of index λ > 0. According to
the Lipschitz continuity property of Aλ, (DIN−AVD)α,β is a well-posed evolution equation which
enjoy nice asymptotic convergence properties. The object of our study is the ”Proximal Regularized
Inertial Newton Algorithm for Monotone operator”, called (PRINAM) for short, and which can be
viewed as a discrete temporal version of (DIN−AVD)α,β . It is written as follows:


yk =

(
1− β

(
1

λk
− 1

λk−1

))
xk + (αk −

β

λk−1
)(xk − xk−1) +

β

λk
JλkA(xk)− β

λk−1
Jλk−1A(xk−1)

xk+1 =
λk+1

λk+1 + s
yk +

s

λk+1 + s
J(λk+1+s)A(yk).
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This algorithm includes both extrapolation and relaxation steps. Compared to the extrapolation
step in the accelerated gradient method of Nesterov, its main characteristic is to include an addi-
tional correction term which is equal to the difference of the resolvents computed at two consecutive
iterates. As a main result, we will prove that for an appropriate adjustment of the parameters, any
sequence (xk) generated by this algorithm converges weakly to a zero of A. Moreover, when A = ∂f
specializes in the subdifferential of a convex lower semicontinuous function f : H → R ∪ {+∞},
we obtain the convergence rate o

(
1
k2

)
of the values, and the fast convergence of the gradients to-

wards zero. Our study is based on several recent advances in the study of inertial dynamics and
algorithms for solving optimization problems and monotone inclusions. We describe them briefly
in the following paragraphs. Our main contribution is to show how to put them together.

0.1. Asymptotic Vanishing Damping. The inertial system

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,

was introduced in the context of convex optimization by Su-Boyd-Candès in [32]. For a general
convex differentiable function f , it provides a continuous version of the accelerated gradient method
of Nesterov. For α ≥ 3, each trajectory x(·) of (AVD)α satisfies the asymptotic convergence rate
of the values f(x(t)) − infH f = O

(
1/t2

)
. As a specific feature, the viscous damping coefficient

α
t vanishes (tends to zero) as time t goes to infinity, hence the terminology. The case α = 3,
which corresponds to Nesterov’s historical algorithm, is critical. In the case α = 3, the question
of the convergence of the trajectories remains an open problem (except in one dimension where
convergence holds [9]). For α > 3, it has been shown by Attouch-Chbani-Peypouquet-Redont [8]
that each trajectory converges weakly to a minimizer. For α > 3, it is shown in [14] and [29] that
the asymptotic convergence rate of the values is actually o(1/t2). These rates are optimal, that is,
they can be reached, or approached arbitrarily close. The corresponding inertial algorithms

yk = xk +
(

1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f(yk).

are in line with the Nesterov accelerated gradient method. They enjoy similar properties to the
continuous case, see Chambolle-Dossal [22], and [6], [8], [14] for further results.

0.2. Hessian damping. The following inertial system

ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0.

combines asymptotic vanishing damping with Hessian-driven damping. It was considered by Attouch-
Peypouquet-Redont in [15], (see also [3, 11]). At first glance, the presence of the Hessian may seem
to entail numerical difficulties. However, this is not the case as the Hessian intervenes in the form
∇2f(x(t))ẋ(t), which is nothing but the derivative with respect to time of the function t 7→ ∇f(x(t)).
So, the temporal discretization of this dynamic provides first-order algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = yk − s∇f(yk).
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As a specific feature, and by comparison with the accelerated gradient method of Nesterov, these
algorithms contain a correction term which is equal to the difference of the gradients at two consec-
utive steps. While preserving the convergence properties of the Nesterov accelerated method, they
provide fast convergence to zero of the gradients, and reduce the oscillatory aspects. Several recent
studies have been devoted to this subject, see Attouch-Chbani-Fadili-Riahi [7], Boţ-Csetnek-László
[21], Kim [26], Lin-Jordan [27], Shi-Du-Jordan-Su [31].

0.3. Inertial dynamics and cocoercive operators. Let’s come to the case of maximally
monotone operators. Álvarez-Attouch [2] and Attouch-Maingé [10] studied the equation

(0.2) ẍ(t) + γẋ(t) +A(x(t)) = 0,

when A is a cocoercive 1 (and hence maximally monotone) operator. Cocoercivity plays an impor-
tant role in the study of (0.2), not only to ensure the existence of solutions, but also to analyze
their long-term behavior. They showed that each trajectory of (0.2) converges weakly to a zero
of A if the cocoercivity parameter λ and the damping coefficient γ satisfy the inequality λγ2 > 1.
Since Aλ is λ-cocoercive and A−1λ (0) = A−1(0), we immediately deduce that, under the condition
λγ2 > 1, given a general maximally monotone operator A, each trajectory of

ẍ(t) + γẋ(t) +Aλ(x(t)) = 0

converges weakly to a zero of A. In the quest for a faster convergence, the analysis of

(DIN−AVD)α,0 ẍ(t) +
α

t
ẋ(t) +Aλ(t)(x(t)) = 0, t > t0 > 0,

leads to introduce a time-dependent parameter λ(·) satisfying λ(t)× α2

t2
> 1, see Attouch-Peypouquet

[13]. Temporal discretization of this dynamic gives the Relaxed Inertial Proximal Algorithm

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkJµkA(yk),

whose convergence properties have been analyzed by Attouch-Peypouquet [13], Attouch-Cabot [5].

0.4. Link with Newton-like methods for solving monotone inclusions. Let us specify
the link between our study and Newton’s method for solving (0.1). To overcome the ill-posed
character of the continuous Newton method, the following first-order evolution system was studied
by Attouch-Svaiter (see [17]), for a general maximally monotone operator A{

v(t) ∈ A(x(t))

γ(t)ẋ(t) + βv̇(t) + v(t) = 0.

This system can be considered as a continuous version of the Levenberg-Marquardt method, which
acts as a regularization of the Newton method. Remarkably, under a fairly general assumption on
the regularization parameter γ(t), this system is well posed and generates trajectories that converge

1A : H → H is λ-cocoercive (λ is a positive parameter) if for all x, y ∈ H 〈Ay −Ax, y − x〉 ≥ λ‖Ay −Ax‖2.
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weakly to equilibria. Parallel results have been obtained for the associated proximal algorithms
obtained by implicit temporal discretization, see [1], [12], [16], [19]. Formally, this system writes as

γ(t)ẋ(t) + β
d

dt
(A(x(t))) +A(x(t)) = 0.

Thus, (DIN−AVD)α,β can be considered as an inertial and regularized version of this system.

0.5. Organization of the paper. The (PRINAM) algorithm, which is our main subject, is
studied in section 1. Then, in section 2 we will examine the case A = ∂f where f : H → R∪{+∞}
is a convex lower semicontinuous function. Finally, we outline some perspectives.

1. Convergence of the associated proximal relaxed algorithm. The (PRINAM) algo-
rithm will be introduced by implicit temporal discretization of (DIN−AVD)α,β . In view of the
Lipschitz continuity property of Aλ, the explicit discretization might work well too. In fact, the
implicit discretization tends to follow the continuous-time trajectories more closely. In addition,
the implicit and explicit discretizations have a comparable iteration complexity.

1.1. Regularized Inertial Proximal Algorithms. Take a fixed time step h > 0, and set
tk = kh, xk = x(tk), λk = λ(tk). Consider the implicit finite-difference scheme for (DIN−AVD)α,β

(1.1)
1

h2
(xk+1 − 2xk + xk−1) +

α

kh2
(xk − xk−1) +

β

h
(Aλk

(xk)−Aλk−1
(xk−1)) +Aλk+1

(xk+1) = 0.

with centered second-order variation. After expanding (1.1), we obtain

(1.2) xk+1 + h2Aλk+1
(xk+1) = xk +

(
1− α

k

)
(xk − xk−1)− βh(Aλk

(xk)−Aλk−1
(xk−1)).

Set s = h2. Keeping the notation β for βh, and setting αk :=
(
1− α

k

)
, we have

(1.3) xk+1 + sAλk+1
(xk+1) = yk,

where

(1.4) yk := xk + αk(xk − xk−1)− β(Aλk
(xk)−Aλk−1

(xk−1)).

From (1.3) we get

(1.5) xk+1 =
(
I + sAλk+1

)−1
(yk),

where
(
I + sAλk+1

)−1
is the resolvent of index s > 0 of the maximally monotone operator Aλk+1

.
Putting (1.4) and (1.5) together, we obtain the following algorithm

(1.6)

 yk = xk + αk(xk − xk−1)− β(Aλk
(xk)−Aλk−1

(xk−1))

xk+1 =
(
I + sAλk+1

)−1
(yk) .

Let us give some equivalent formulations of this algorithm. According to the resolvent equation
(formulated as a semi-group property) (Aλ)s = Aλ+s, we have

(I + sAλ)
−1

= I − s (Aλ)s = I − sAλ+s.
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Thus, we obtain the following formulation, which makes use of the Yosida approximations of A.yk = xk + αk(xk − xk−1)− β(Aλk
(xk)−Aλk−1

(xk−1))

xk+1 = yk − sAλk+1+s(yk).
(1.7)

According to Aλ = 1
λ (I − JλA), let us reformulate (1.7) using the resolvents of A. We have

Aλk
(xk)−Aλk−1

(xk−1) =
1

λk
xk −

1

λk−1
xk−1 −

(
1

λk
JλkA(xk)− 1

λk−1
Jλk−1A(xk−1)

)
=

1

λk−1
(xk − xk−1) +

(
1

λk
− 1

λk−1

)
xk −

(
1

λk
JλkA(xk)− 1

λk−1
Jλk−1A(xk−1)

)
yk − sAλk+1+s(yk) = yk −

s

λk+1 + s

(
yk − J(λk+1+s)A(yk)

)
=

λk+1

λk+1 + s
yk +

s

λk+1 + s
J(λk+1+s)A(yk).

This gives the ”Proximal Regularized Inertial Newton Algorithm for Monotone operator”, called
(PRINAM) for short. It is formulated below in terms of the resolvents of A.

(PRINAM)

Take x0 ∈ H, x1 ∈ H

Step k :



yk =
(

1− β
(

1
λk
− 1

λk−1

))
xk +

(
αk − β

λk−1

)
(xk − xk−1)

+β
(

1
λk
JλkA(xk)− 1

λk−1
Jλk−1A(xk−1)

)
xk+1 =

λk+1

λk+1 + s
yk +

s

λk+1 + s
J(λk+1+s)A(yk).

We are now in position to prove the main result of this section, namely:

Theorem 1.1. Let A : H → 2H be a maximally monotone operator such that S = A−1(0) 6= ∅.
Consider the algorithm (PRINAM) where, for all k ≥ 0, αk = tk−1

tk+1
, tk = rk + q, r > 0, q ∈ R and

λk = λk2 with λ >
(2β + s)2r2

s
.

Then, for any sequences (xk), (yk) generated by (PRINAM), the following properties are satisfied:

i) The speed tends to zero, and we have the following estimates

‖xk+1 − xk‖ = O
(

1

k

)
as k → +∞,

∑
k

k‖xk − xk−1‖2 < +∞

‖Aλk
(xk)‖ = o

(
1

k2

)
as k → +∞,

∑
k

k3‖Aλk
(xk)‖2 < +∞.

ii) The sequence (xk) converges weakly to some x̂ ∈ S, as k → +∞.

iii) The sequence (yk) converges weakly to x̂ ∈ S, as k → +∞.

Precisely, ‖yk − xk‖ = O
(
1
k

)
, as k → +∞, and so yk − xk converges strongly to zero.
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1.2. Geometric interpretation. In algorithm (PRINAM), the proximal parameter λk tends
to infinity in a controlled way, namely λk = λk2 with λ sufficiently large. This property balances
the vanishing property of the damping coefficient. As a classical property of the resolvents ([18,
Theorem 23.44]), for any x ∈ H, JλAx → projS(x) as λ → +∞, where S is the set of zeros of A.
Thus the algorithm writes

xk+1 = θkyk + (1− θk)J(λk+1+s)A (yk) = yk +
s

λk+1 + s

(
J(λk+1+s)A(yk)− yk

)
with λk ∼ +∞, θk = λk+1

λk+1+s
∼ 1, s

λk+1+s
∼ 0, J(λk+1+s)A (yk) ∼ projS(yk) as k → +∞. At step k,

after reaching yk, the direction J(λk+1+s)A(yk)−yk ∼ projS(yk)−yk is well oriented in the direction
of S, but we are allowed to take only a small step in this direction. This is illustrated in figure 1.1.

yk = extrapolation + correction•

xk•

xk−1•

•

J(λk+1+s)A(yk)

xk+1 = yk + s
λk+1+s

(
J(λk+1+s)A(yk)− yk

)•

S = A−1(0)

Fig. 1.1: (PRINAM) algorithm

Remark 1. Following [5]-[6], we could develop our theory with a general sequence (αk) of
extrapolation coefficients which satisfy 0 ≤ αk ≤ 1. A particularly interesting situation is the case
αk → 1, which corresponds to the asymptotic vanishing damping in the associated dynamic system.
The sequence (tk) which is linked to the sequence (αk) by the relation

(1.8) αk =
tk − 1

tk+1

plays a central role. To simplify the presentation, in Theorem 1.1 we limit our study to the case

(1.9) tk = rk + q, r > 0, q ∈ R,

which contains most interesting situations. In particular, when αk = 1 − α
k , we have tk = k−1

α−1 ,

which corresponds to r = 1
α−1 , q = − 1

α−1 . The critical value α = 3 corresponds to r = 1
2 .
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1.3. Proof of Theorem 1.1.
The discrete energy. Take z ∈ S. For each k ≥ 1, let us define the discrete energy

Eka,b := atk−1
〈
Aλk−1

(xk−1), xk−1 − z
〉

+
1

2
‖b(xk−1 − z) + tk(xk − xk−1 + sAλk

(xk))‖2(1.10)

+
b(1− b)

2
‖xk−1 − z‖2.

We will show that by adjusting the real parameters a and b, the following Lyapunov property is
satisfied: there exist ε1, ε2 > 0 and an index N ∈ N such that for all k ≥ N

Ek+1
a,b − E

k
a,b + ε1k

3‖Aλk
(xk)‖2 + ε2k‖xk − xk−1‖2 ≤ 0.

Specifically, in what follows, we will take

0 < b < 1 and bβ < a < bβ + bs, whenever β > 0;(1.11)

a = 0 for β = 0.(1.12)

For each k ≥ 1, briefly write Ea,b as follows

Eka,b = atk−1
〈
Aλk−1

(xk−1), xk−1 − z
〉

+
1

2
‖vk‖2 +

b(1− b)
2

‖xk−1 − z‖2,

with
vk := b(xk−1 − z) + tk(xk − xk−1 + sAλk

(xk)).

Using successively the definition of vk, (1.3) (1.4), and (1.8) we obtain

vk+1 = b(xk − z) + tk+1(xk+1 − xk + sAλk+1
(xk+1))(1.13)

= b(xk − z) + tk+1(yk − xk)

= b(xk − z) + tk+1

(
αk(xk − xk−1)− β

(
Aλk

(xk)−Aλk−1
(xk−1)

))
= b(xk − z) + (tk − 1)(xk − xk−1)− βtk+1(Aλk

(xk)−Aλk−1
(xk−1)).

Further, vk can be written as

(1.14) vk = b(xk − z) + (tk − b)(xk − xk−1) + stkAλk
(xk).

Therefore, for all k ≥ 1, we have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 =

1

2
‖b(xk − z) + (tk − 1)(xk − xk−1)− βtk+1(Aλk

(xk)−Aλk−1
(xk−1))‖2

−1

2
‖b(xk − z) + (tk − b)(xk − xk−1) + stkAλk

(xk)‖2

=
1

2
((tk − 1)2 − (tk − b)2)‖xk − xk−1‖2

+
1

2
(β2t2k+1 − s2t2k)‖Aλk

(xk)‖2 − β2t2k+1〈Aλk
(xk), Aλk−1

(xk−1)〉

+
1

2
β2t2k+1‖Aλk−1

(xk−1)‖2 + b(b− 1)〈xk − xk−1, xk − z〉

−b(βtk+1 + stk)〈Aλk
(xk), xk − z〉+ bβtk+1〈Aλk−1

(xk−1), xk − z〉
−(βtk+1(tk − 1) + stk(tk − b))〈Aλk

(xk), xk − xk−1〉
+βtk+1(tk − 1)〈Aλk−1

(xk−1), xk − xk−1〉.(1.15)
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According to the elementary identities

b(b− 1)〈xk − xk−1, xk − z〉 = b(b− 1)‖xk − xk−1‖2 + b(b− 1)〈xk − xk−1, xk−1 − z〉,

bβtk+1〈Aλk−1
(xk−1), xk − z〉 = bβtk+1〈Aλk−1

(xk−1), xk − xk−1〉+ bβtk+1〈Aλk−1
(xk−1), xk−1 − z〉

formula (1.15) becomes

1

2
‖vk+1‖2 −

1

2
‖vk‖2 =

1

2
(b− 1)(2tk + b− 1)‖xk − xk−1‖2(1.16)

+
1

2
(β2t2k+1 − s2t2k)‖Aλk

(xk)‖2 − β2t2k+1〈Aλk
(xk), Aλk−1

(xk−1)〉

+
1

2
β2t2k+1‖Aλk−1

(xk−1)‖2 + b(b− 1)〈xk − xk−1, xk−1 − z〉

− b(βtk+1 + stk)〈Aλk
(xk), xk − z〉+ bβtk+1〈Aλk−1

(xk−1), xk−1 − z〉
− (βtk+1(tk − 1) + stk(tk − b))〈Aλk

(xk), xk − xk−1〉
+ βtk+1(tk + b− 1)〈Aλk−1

(xk−1), xk − xk−1〉.

Moreover, we have for all k ≥ 1

b(1− b)
2

‖xk − z‖2 −
b(1− b)

2
‖xk−1 − z‖2(1.17)

=
b(1− b)

2
‖(xk − xk−1) + (xk−1 − z)‖2 −

b(1− b)
2

‖xk−1 − z‖2

=
b(1− b)

2
‖xk − xk−1‖2 + b(1− b)〈xk − xk−1, xk−1 − z〉.

By combining the above results (the terms 〈xk − xk−1, xk−1 − z〉 cancel out), we get for all k ≥ 1

Ek+1
a,b − E

k
a,b = (atk − b(βtk+1 + stk)) 〈Aλk

(xk), xk − z〉+ (bβtk+1 − atk−1)
〈
Aλk−1

(xk−1), xk−1 − z
〉

+
1

2
(β2t2k+1 − s2t2k)‖Aλk

(xk)‖2 − β2t2k+1〈Aλk
(xk), Aλk−1

(xk−1)〉+
1

2
β2t2k+1‖Aλk−1

(xk−1)‖2

−(βtk+1(tk − 1) + stk(tk − b))〈Aλk
(xk), xk − xk−1〉

+βtk+1(tk + b− 1)〈Aλk−1
(xk−1), xk − xk−1〉+

1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2.(1.18)

According to the assumptions (1.11) and (1.12) on the parameters a and b, there exists k1 ≥ 1 such
that for all k ≥ k1

atk − b(βtk+1 + stk) < 0 and bβtk+1 − atk−1 ≤ 0,

where in the last relation the equality holds only in case a = 0, β = 0. According to the cocoercive-
ness of Aλk

and Aλk−1
and z ∈ S, we deduce from the above inequalities that, for all k ≥ k1

(atk − b(βtk+1 + stk)) 〈Aλk
(xk), xk − z〉 ≤ (atk − b(βtk+1 + stk))λk‖Aλk

(xk)‖2

(bβtk+1 − atk−1)
〈
Aλk−1

(xk−1), xk−1 − z
〉
≤ (bβtk+1 − atk−1)λk−1‖Aλk−1

(xk−1)‖2.
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Therefore, (1.18) yields, for all k ≥ k1

Ek+1
a,b − E

k
a,b ≤

(
(atk − b(βtk+1 + stk))λk +

1

2
(β2t2k+1 − s2t2k)

)
‖Aλk

(xk)‖2(1.19)

+

(
(bβtk+1 − atk−1)λk−1 +

1

2
β2t2k+1

)
‖Aλk−1

(xk−1)‖2

+
1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2 − β2t2k+1〈Aλk

(xk), Aλk−1
(xk−1)〉

− (βtk+1(tk − 1) + stk(tk − b))〈Aλk
(xk), xk − xk−1〉

+ βtk+1(tk + b− 1)〈Aλk−1
(xk−1), xk − xk−1〉.

Further, for all p1, p2 > 0 and k ≥ k1 we have the elementary inequalities

− β2t2k+1〈Aλk
(xk), Aλk−1

(xk−1)〉 ≤ β2

2
t2k+1

(
‖Aλk

(xk)‖2 + ‖Aλk−1
(xk−1)‖2

)
;(1.20)

− (βtk+1(tk − 1) + stk(tk − b))〈Aλk
(xk), xk − xk−1〉(1.21)

≤ |βtk+1(tk − 1) + stk(tk − b)|
(
p1k‖Aλk

(xk)‖2 +
1

4p1k
‖xk − xk−1‖2

)
;

βtk+1(tk + b− 1)〈Aλk−1
(xk−1), xk − xk−1〉(1.22)

≤ |βtk+1(tk + b− 1)|
(
p2k‖Aλk−1

(xk−1)‖2 +
1

4p2k
‖xk − xk−1‖2

)
.

Combining (1.19) with (1.20)-(1.21)-(1.22), we deduce that, for all k ≥ k1

Ek+1
a,b − E

k
a,b ≤ P (k)‖Aλk

(xk)‖2 +Q(k)‖Aλk−1
(xk−1)‖2 +R(k)‖xk − xk−1‖2,(1.23)

where

P (k) = (atk − b(βtk+1 + stk))λk + 1
2 (β2t2k+1 − s2t2k) + β2

2 t
2
k+1 + |βtk+1(tk − 1) + stk(tk − b)|p1k;

Q(k) = (bβtk+1 − atk−1)λk−1 + 1
2β

2t2k+1 + β2

2 t
2
k+1 + |βtk+1(tk + b− 1)|p2k;

R(k) = 1
2 (b− 1)(2tk − 1) +

|βtk+1(tk − 1) + stk(tk − b)|
4p1k

+
|βtk+1(tk + b− 1)|

4p2k
.

Elementary computation gives the following asymptotic developments

P (k) = ((a− bβ − bs)rλ+ (β + s)r2p1)k3 + r1(k)

Q(k) = ((bβ − a)rλ+ βr2p2)k3 + r2(k)

R(k) =

(
(b− 1)r +

(β + s)r2

4p1
+
βr2

4p2

)
k + r3(k),

where r1(k), r2(k) = O(k2) and r3(k) = O(1) as k → +∞. Let us adjust the parameters by taking

b =
1

2
∈ (0, 1), a =

β(β + s)

2β + s
∈ (bβ, b(β + s)) wheneverβ > 0;

b =
1

2
and a = 0 wheneverβ = 0.
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In this last case Q ≡ 0. For the rest of the proof we do not need to distinguish the cases β > 0 and
β = 0. Further, take

p1 = p2 =
λs

2ε(2β + s)r
with 1 < ε <

λs

(2β + s)2r2
.

This is possible, thanks to our basic assumption on λ, namely λ > (2β+s)2r2

s . With this choice of
parameters, we have for all k ≥ k1

P (k) =
(β + s)srλ

2(2β + s)

(
1

ε
− 1

)
k3 + r1(k),

Q(k) =
βsrλ

2(2β + s)

(
1

ε
− 1

)
k3 + r2(k),

R(k) =

(
−1

2
r +

(2β + s)2εr3

2sλ

)
k + r3(k).

Since ε > 1, we have
(β + s)srλ

2(2β + s)

(
1

ε
− 1

)
< 0 and

βsrλ

2(2β + s)

(
1

ε
− 1

)
≤ 0.

Since ε <
λs

(2β + s)2r2
, we have − 1

2
r +

(2β + s)2εr3

2sλ
< 0. So, there exists ε1, ε2 > 0 such that

(β + s)srλ

2(2β + s)

(
1

ε
− 1

)
+ ε1 < 0 and

(
−1

2
r +

(2β + s)2εr3

2sλ

)
+ ε2 < 0.

According to the above inequalities, (1.23) leads to

Ek+1
a,b − E

k
a,b + ε1k

3‖Aλk
(xk)‖2 + ε2k‖xk − xk−1‖2(1.24)

≤
((

(β + s)srλ

2(2β + s)

(
1

ε
− 1

)
+ ε1

)
k3 + r1(k)

)
‖Aλk

(xk)‖2

+

(
βsrλ

2(2β + s)

(
1

ε
− 1

)
k3 + r2(k)

)
‖Aλk−1

(xk−1)‖2

+

((
−1

2
r +

(2β + s)2εr3

2sλ
+ ε2

)
k + r3(k)

)
‖xk − xk−1‖2.

Take N ≥ k1 such that, for all k ≥ N(
(β + s)srλ

2(2β + s)

(
1

ε
− 1

)
+ ε1

)
k3 + r1(k) ≤ 0,

βsrλ

2(2β + s)

(
1

ε
− 1

)
k3 + r2(k) ≤ 0,(

−1

2
r +

(2β + s)2εr3

2sλ
+ ε2

)
k + r3(k) ≤ 0.

Then, for all k ≥ N

(1.25) Ek+1
a,b − E

k
a,b + ε1k

3‖Aλk
(xk)‖2 + ε2k‖xk − xk−1‖2 ≤ 0.
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Estimates. According to (1.25), the sequence of non-negative numbers
(
Eka,b

)
k∈N

is non-increasing,

and therefore converges. In particular, it is bounded. From this, and by adding the inequalities
(1.25) we obtain

sup
k
tk 〈Aλk

(xk), xk − z〉 < +∞,(1.26)

sup
k
‖b(xk − z) + tk+1(xk+1 − xk + sAλk+1

(xk+1))‖2 < +∞,(1.27)

sup
k
‖xk − z‖2 < +∞,(1.28)

+∞∑
k=0

k3‖Aλk
(xk)‖2 < +∞,(1.29)

+∞∑
k=1

k‖xk − xk−1‖2 < +∞.(1.30)

Since the general term of a convergent series goes to zero, we deduce from (1.29) that

(1.31) ‖Aλk
(xk)‖ = o

(
1

k
3
2

)
as k → +∞.

In fact, we will get better estimates a little further. According to (1.28), the sequence (‖xk − z‖)
is bounded, and so is the sequence (xk). Combining the above results with (1.27), we deduce that

(1.32) ‖xk − xk−1‖ = O
(

1

k

)
as k → +∞.

From (xk) bounded, and Aλk

1
λk

- Lipschitz continuous, we obtain the existence of M > 0 such that

‖λkAλk
(xk)‖ = ‖λkAλk

(xk)− λkAλk
(z)‖ ≤ λk

1

λk
‖xk − z‖ ≤M,(1.33)

which yields

(1.34) ‖Aλk
(xk)‖ = O

(
1

k2

)
as k → +∞.

Let us show the following better estimate which will play a key role in the rest of the proof

‖Aλk
(xk)‖ = o

(
1

k2

)
as k → +∞.

To obtain it, we follow the line of proof of [13, Theorem 3.6]. From Lemma A.4 [13], for all k ≥ 1

(1.35) ‖λkAλk
(xk)− λk−1Aλk−1

(xk−1)‖ ≤ 2‖xk − xk−1‖+ 2‖xk − z‖
|λk − λk−1|

λk
.

According to ‖xk − xk−1‖ = O
(
1
k

)
as k → +∞, (xk) is bounded, and λk = λk2 we conclude that

there exists C > 0 such that

(1.36) ‖λkAλk
(xk)− λk−1Aλk−1

(xk−1)‖ ≤ C

k
, for all k ≥ 1.
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According to (1.33) and (1.36), we deduce that∣∣∣‖λkAλk
(xk)‖2 − ‖λk−1Aλk−1

(xk−1)‖2
∣∣∣

=
(
‖λkAλk

(xk)‖+ ‖λk−1Aλk−1
(xk−1)‖

)∣∣∣‖λkAλk
(xk)‖ − ‖λk−1Aλk−1

(xk−1)‖
∣∣∣

≤ 2M‖λkAλk
(xk)− λk−1Aλk−1

(xk−1)‖ ≤ 2MC

k
, for all k ≥ 1.

Consequently, by using (1.29) we get∑
k

∣∣‖λkAλk
(xk)‖4 − ‖λk−1Aλk−1

(xk−1)‖4
∣∣

=
∑
k

(‖λkAλk
(xk)‖2 + ‖λk−1Aλk−1

(xk−1)‖2)
∣∣∣‖λkAλk

(xk)‖2 − ‖λk−1Aλk−1
(xk−1)‖2

∣∣∣
≤
∑
k

2MCλ2k4

k
‖Aλk

(xk)‖2 +
∑
k

2MCλ2(k − 1)4

k
‖Aλk−1

(xk−1)‖2 < +∞.

From this, by a telescopic argument we conclude that limk→+∞ ‖λkAλk
(xk)‖4 exists.

But then limk→+∞ ‖λkAλk
(xk)‖2 and limk→+∞ ‖λkAλk

(xk)‖ also exist. Set

lim
k→+∞

k4‖Aλk
(xk)‖2 := L ≥ 0.

According to (1.29) we will have∑
k

1

k
(k4‖Aλk

(xk)‖2) =
∑
k

k3‖Aλk
(xk)‖2 < +∞,

which implies that L = 0. Hence, limk→+∞ k2‖Aλk
(xk)‖ = 0, that is

(1.37) ‖Aλk
(xk)‖ = o

(
1

k2

)
as k → +∞.

Convergence of (xk). Using the Opial’s lemma, let us prove that the sequence (xk) converges
weakly towards an element of S. Take z ∈ S, and consider the anchor sequence (hk) defined by
hk = 1

2‖xk − z‖
2 for k ≥ 1. Elementary algebra gives

(1.38) hk+1 − hk =
1

2
‖xk+1 − xk‖2 + 〈xk+1 − xk, xk − z〉.

According to (1.6) we have

〈xk+1 − xk, xk − z〉 = 〈yk − xk − sAλk+1
(xk+1), xk − z〉(1.39)

= αk〈xk − xk−1, xk − z〉 − β〈Aλk
(xk)−Aλk−1

(xk−1), xk − z〉
− s〈Aλk+1

(xk+1), xk − z〉.

Let us examine the terms involved in the above equality. We have

〈xk − xk−1, xk − z〉 = ‖xk − xk−1‖2 + 〈xk − xk−1, xk−1 − z〉 = hk − hk−1 +
1

2
‖xk − xk−1‖2.
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and

−s〈Aλk+1
(xk+1), xk − z〉 = s〈Aλk+1

(xk+1), xk+1 − xk〉 − s〈Aλk+1
(xk+1), xk+1 − z〉.

Combining these relations with (1.38) and (1.39), and neglecting the term −s〈Aλk+1
(xk+1), xk+1−z〉

which is non-positive, we obtain

hk+1 − hk ≤ αk(hk − hk−1) +
1

2
‖xk+1 − xk‖2 +

αk
2
‖xk − xk−1‖2(1.40)

− β〈Aλk
(xk)−Aλk−1

(xk−1), xk − z〉+ s〈Aλk+1
(xk+1), xk+1 − xk〉.

According to ‖xk − z‖ bounded, ‖Aλk+1
(xk+1)‖ = o

(
1
k2

)
and ‖xk+1 − xk‖ = O

(
1
k

)
, we obtain the

existence of a constant M > 0 such that

hk+1 − hk ≤ αk(hk − hk−1) +
1

2
‖xk+1 − xk‖2 +

αk
2
‖xk − xk−1‖2(1.41)

+M‖Aλk
(xk)−Aλk−1

(xk−1)‖+M
1

k3
.

In addition, by (1.36) and by the fact that λk = λk2, we get

‖λk2Aλk
(xk)− λ(k − 1)2Aλk−1

(xk−1)‖ ≤ C

k
, for all k ≥ 1.

Equivalently,

‖(2λk − λ)Aλk
(xk) + λ(k − 1)2(Aλk

(xk)−Aλk−1
(xk−1))‖ ≤ C

k
, for all k ≥ 1.

Using again that ‖Aλk+1
(xk+1)‖ = o

(
1
k2

)
, we deduce that, for some K > 0

(1.42) ‖Aλk
(xk)−Aλk−1

(xk−1)‖ ≤ K

k3
.

Therefore, (1.41) leads to

hk+1 − hk ≤ αk(hk − hk−1) +
1

2
‖xk+1 − xk‖2 +

αk
2
‖xk − xk−1‖2 +MK

1

k3
+M

1

k3
.(1.43)

Let us analyze this inequality with the help of the Lemma A.1. Set

ωk :=
1

2
‖xk+1 − xk‖2 +

αk
2
‖xk − xk−1‖2 +MK

1

k3
+M

1

k3
.

As a direct result of the estimates we have already obtained, we have
∑
k tk+1ωk < +∞. Therefore,

by applying Lemma A.1 to the sequence ak = [hk − hk−1]+ we obtain∑
k

[hk − hk−1]+ < +∞.

Since hk is nonnegative, this property classically gives the existence of limk→+∞ hk, and hence of
the existence of limk→+∞ ‖xk − z‖. This shows item (i) of the Opial lemma.
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It remains to show that every weak cluster point of the sequence (xk) belongs to S. Let x∗ be a
weak cluster point of (xk) and consider a subsequence (xkn) of (xk), such that xkn ⇀ x∗, n→ +∞.
According to (1.37) we have

lim
k→+∞

λkAλk
(xk) = 0.

Now use Aλkn
(xkn) ∈ A(JλknA

(xkn)). Equivalently,

(1.44) Aλkn
(xkn) ∈ A(xkn − λknAλkn

(xkn)).

According to the demi-closedness of the graph of A, passing to the limit in (1.44) gives

0 ∈ A(x∗).

According to Opial’s lemma, we finally obtain that (xk) converges weakly to an element x̂ in S.
Finally, by definition of yk, we have

yk − xk = αk(xk − xk−1)− β(Aλk
(xk)−Aλk−1

(xk−1)),

which, combined with (1.32) and (1.42), gives

‖yk − xk‖ = O
(

1

k

)
, as k → +∞.

Therefore, (yk) also converges weakly towards the same element x̂ in S.

1.4. Comparison with related algorithms. By taking β = 0 and r = 1
α−1 , q = − 1

α−1
in (PRINAM), we obtain the algorithm (RIPA) considered by Attouch-Peypouquet in [13]. This
algorithm and its convergence properties are recalled below

(RIPA)


yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 =
λk

λk + s
yk +

s

λk + s
J(λk+s)A(yk).

Theorem (Attouch-Peypouquet, [13]) Let A : H → 2H be a maximally monotone operator with
S = A−1(0) 6= ∅. Let (xk) be a sequence generated by (RIPA) where s > 0, α > 2 and for all k ≥ 1

λk = λk2 for some λ >
s

α(α− 2)
.

Then, the sequences (xk) and (yk) converge weakly, as k → +∞, to some x̂ ∈ S.
In addition, ‖xk+1 − xk‖ = O( 1

k ) as k → +∞, and
∑
k k‖xk − xk−1‖2 < +∞.

A natural question is to compare (PRINAM) to (RIPA), and show what the introduction of
the correcting term in (PRINAM) (β > 0) brings. We emphasize that, for small β and r = 1

α−1 ,

the lower bound for λ obtained in Theorem 1.1 namely λ > (2β+s)2r2

s is better than the lower
bound obtained in the above result, namely λ > s

α(α−2) . Further, in (PRINAM) the more general

condition α > 1 is allowed. As a model example of a maximally monotone operator which is not
the subdifferential of a convex function, consider A : R2 → R2 given for any x = (ξ, η) ∈ R2 by

A(ξ, η) = (−η, ξ).

A is a skew symmetric linear operator whose single zero is x∗ = (0, 0). An easy computation shows
that A and Aλ can be identified respectively with the matrices
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A =

(
0 −1
1 0

)
Aλ =

( λ
1+λ2

−1
1+λ2

1
1+λ2

λ
1+λ2

)
.

Let’s compare (PRINAM) and (RIPA) by considering different instances of the parameters involved.
• Take α = 3, then α = 11 in (RIPA), which corresponds to respectively tk = 0.5k − 0.5,
tk = 0.1k − 0.1, (r = 0.5, r = 0.1, q = −0.5, q = −0.1), in (PRINAM).

• Take λk = λk2 with λ chosen as follows:
To satisfy the condition λ > s

α(α−2) in (RIPA), we take λ = 1.01 s
α(α−2) in (RIPA).

To satisfy the condition λ > (2β+s)2r2

s in (PRINAM), we take λ = 1.01 (2β+s)2r2

s .

• For the step size s, we consider the following instances: s ∈ {0.01, 0.1, 0.5, 1}. For (PRI-
NAM) we consider the values β ∈ {0, 0.1s, 0.25s, 0.35s, 0.5s}.

To start the algorithm we take x0 = (1,−1), x1 = (−1, 1). We run the algorithms until the
iteration error ‖xk − x∗‖ reaches the value 10−5. The results are depicted at Figure 1.2 1.2a-1.2d.
The horizontal and vertical axis show respectively the number of iterations and the value of the error
‖xk − x∗‖. Despite the fact that it is difficult to draw general conclusions from a single numerical
experiment, the above result shows the numerical interest of the introduction of the correcting term
(β > 0), and also that the step size s must be taken not too large (therefore not remaining too
far from the continuous dynamics). We only report here numerical examples where s is relatively
small, for large values of s the convergence properties are less good. Further, r should be taken
small (or α large) in order to obtain fast convergence.
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Fig. 1.2: Iteration error ‖xk − x∗‖ for different instances of (PRINAM) and (RIPA)
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2. The convex case. Let us specialize the previous results to the case of convex minimization,
and show the rapid convergence of values. Given a lower semi-continuous convex and proper function
f : H → R ∪ {+∞} such that argmin f 6= ∅, we consider the minimization problem

(P) inf
x∈H

f(x).

Fermat’s rule states that x is a global minimum of f if and only if

(2.1) 0 ∈ ∂f(x).

Therefore, (P) is equivalent to the monotone inclusion problem (2.1), and argmin f = (∂f)−1(0).
The Yosida approximation of ∂f is equal to the gradient of the Moreau envelope of f : for any λ > 0

(2.2) (∂f)λ = ∇fλ.

Recall that fλ : H → R, is a C1,1 function, which is defined by: for any x ∈ H

fλ(x) = inf
ξ∈H

{
f(ξ) +

1

2λ
‖x− ξ‖2

}
.

When we specialize the (PRINAM) algorithm in the case A = ∂f , we obtain

(PRINAM)-convex

Take x0 ∈ H, x1 ∈ H

Step k :

yk = xk + αk(xk − xk−1)− β(∇fλk
(xk)−∇fλk−1

(xk−1))

xk+1 = yk − s∇fλk+1+s(yk).

The next result is a direct consequence of Theorem 1.1

Theorem 2.1. Let (xk), (yk) be sequences generated by the algorithm (PRINAM)-convex. As-
sume that αk = tk−1

tk+1
, tk = rk + q, r > 0, q ∈ R and for all k ≥ 0

λk = λk2, with λ >
(2β + s)2r2

s
.

Then, the following properties are satisfied:

i) The speed tends to zero, and we have the following estimates

(pointwise) ‖xk+1 − xk‖ = O
(

1

k

)
, ‖∇fλk

(xk)‖ = o

(
1

k2

)
as k → +∞.

(summation)
∑
k k‖xk − xk−1‖2 < +∞,

∑
k k

3‖∇fλk
(xk)‖2 < +∞.

ii) The sequences (xk), (yk) converge weakly, as k → +∞, to some x̂ ∈ argmin f .

iii) We have the convergence rates of the values: as k → +∞

fλk
(xk)−min f = o

(
1

k2

)
and f(proxλkf

(xk))−min f = o

(
1

k2

)
.

In addition, ‖ proxλkf
(xk)− xk‖ → 0 as k → +∞.
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Proof. (i) and (ii) follow directly from Theorem 1.1 applied to the operator ∂f and using (2.2).
(iii). Take x∗ ∈ argmin f. From the gradient inequality, and (xk) is bounded, for all k ≥ 0 we have

fλk
(xk)−min

H
f = fλk

(xk)− fλk
(x∗) ≤ 〈∇fλk

(xk), xk − x∗〉

≤ ‖∇fλk
(xk)‖‖xk − x∗‖ ≤M‖∇fλk

(xk)‖.

Combining the above relation with ‖∇fλk
(xk)‖ = o

(
1
k2

)
as k → +∞ (see (1.37)), we obtain

(2.3) fλk
(xk)−min

H
f = o

(
1

k2

)
as k → +∞.

By definition of fλk
and of the proximal mapping, we have

(2.4) fλk
(xk)−min

H
f = f(proxλkf

(xk))−min
H

f +
1

2λk
‖xk − proxλkf

(xk)‖2.

Combining (2.3) with (2.4), we obtain

(2.5) f(proxλkf
(xk))−min

H
f = o

(
1

k2

)
as k → +∞, lim

k→+∞
k2

1

2λk
‖xk − proxλkf

(xk)‖2 = 0.

The above relation leads to limk→+∞ ‖xk − proxλkf
(xk)‖ = 0, which completes the proof.

Remark 2. When A = ∂f , f convex, we have additional tools, such as the gradient inequality.
We will show in the following theorem that, in this case, some assumptions can be weakened. When
β = 0, we will obtain fast convergence of the values for λk = λkt, t ≥ 0, λ > 0, that is, under the
mild assumption that the sequence (λk) is nonincreasing. Further, fast convergence can be obtained
in the general case β > 0 provided that the sequence (λk) is constant or λk = λkt, t > 1, λ > 0.

Theorem 2.2. Let (xk), (yk) be sequences generated by the algorithm (PRINAM)-convex. As-
sume that αk = tk−1

tk+1
and λk = λkt, t ≥ 0 for all k ≥ 0, further tk = rk+ q, r ∈

(
0, 12
)
, q ∈ R, that

is, there exists k1 ≥ 0 and m ∈ (0, 1) such that

(2.6) tk ≥ 1, mtk+1 ≥ t2k+1 − t2k, for all k ≥ k1.

i) Assume that one of the following conditions hold.

(a) β = 0, t ≥ 0.
(b) β > 0, t = 0, s > 2β.

(c) β > 0, t > 1 or β > 0, t = 1 and λ > 2(β+s)βr
(1−m)s .

Then, the speed tends to zero, and we have the following estimates as k → +∞:

(pointwise) fλk
(xk)−min f = O

(
1

k2

)
, f(proxλkf

(xk))−min f = O
(

1

k2

)
,

‖xk+1 − xk‖ = O
(

1

k

)
, ‖xk − proxλkf

(xk)‖ = O
(√

λk
k

)
, ‖∇fλk

(xk)‖ = O
(

1

k
√
λk

)
.

(summation)
∑
k

k‖xk − xk−1‖2 < +∞,
∑
k

kλk‖∇fλk
(xk)‖2 < +∞,

∑
k

k(fλk
(xk)−min f) < +∞,

∑
k

k2‖∇fλk
(xk)‖2 < +∞.
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ii) For β = 0, t ≥ 0 or β > 0 and t > 1 we have the following convergence rates of the values

fλk
(xk)−min f = o

(
1

k2

)
and f(proxλkf

(xk))−min f = o

(
1

k2

)
as k → +∞.

In addition, ‖xk − xk−1‖ = o
(
1
k

)
and limk→+∞

k√
λk
‖ proxλkf

(xk)− xk‖ = 0.

iii) For β = 0, t ∈ [0, 2] or β > 0, t ∈]1, 2], (xk) and (yk) converge weakly to some x̂ ∈ argmin f .

Proof. I. The discrete energy functions. Take z ∈ argmin f. In each of the three cases
(a)-(c), our Lyapunov analysis is based on a different energy function.

(a) Case β = 0. For each k ≥ 1, consider the discrete energy function as in the proof of
Theorem 1.1, with a = 0 (in accordance with (1.12)), and with Aλk

= ∇fλk
, that is,

Eka,b =
1

2
‖b(xk−1 − z) + tk(xk − xk−1 + s∇fλk

(xk))‖2 +
b(1− b)

2
‖xk−1 − z‖2.(2.7)

Arguing as in the proof of Theorem 1.1, equation (1.18) in this particular instance becomes

Ek+1
a,b − E

k
a,b =− bstk 〈∇fλk

(xk), xk − z〉 −
1

2
s2t2k‖∇fλk

(xk)‖2(2.8)

− stk(tk − b)〈∇fλk
(xk), xk − xk−1〉+

1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2.

By using successively the gradient inequality, and the fact that the function λ 7→ fλ is non-increasing
and the sequence (λk) is non-decreasing we get

〈∇fλk
(xk), xk−1 − xk〉 ≤ fλk

(xk−1)− fλk
(xk) ≤ fλk−1

(xk−1)− fλk
(xk).

Set ε := −1+
√
9−8m
8 and b := m+ε. Since 0 < m < 1, one can easily verify that ε > 0 and 0 < b < 1.

Since by assumption there exists k1 ≥ 0 such that 1 ≤ tk for all k ≥ k1, we obtain

− stk(tk − b)〈∇fλk
(xk), xk − xk−1〉 = stk(tk −m− ε)〈∇fλk

(xk), xk−1 − xk〉 ≤(2.9)

stk(tk −m)(fλk−1
(xk−1)− fλk

(xk)) + εstk〈∇fλk
(xk), xk − xk−1〉, for all k ≥ k1.

Moreover, according to the gradient inequality, we have that, for all k ≥ 1

−bstk 〈∇fλk
(xk), xk − z〉 = −(m+ ε)stk 〈∇fλk

(xk), xk − z〉(2.10)

≤ mstk(fλk
(z)− fλk

(xk))− εstk 〈∇fλk
(xk), xk − z〉

= mstk(min f − fλk
(xk))− εstk 〈∇fλk

(xk), xk − z〉 .

Now using the fact that fλk
(z) − fλk

(xk) = (fλk
(z) −min f) − (fλk

(xk) −min f), and using (2.6)
the last two relations give

− bstk 〈∇fλk
(xk), xk − z〉 − stk(tk − b)〈∇fλk

(xk), xk − xk−1〉(2.11)

≤ stk(tk −m)(fλk−1
(xk−1)−min f)− st2k(fλk

(xk)−min f)

− εstk 〈∇fλk
(xk), xk − z〉+ εstk〈∇fλk

(xk), xk − xk−1〉
≤ st2k−1(fλk−1

(xk−1)−min f)− st2k(fλk
(xk)−min f)

− εstk 〈∇fλk
(xk), xk − z〉+ εstk〈∇fλk

(xk), xk − xk−1〉, for all k ≥ k1 + 1.
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Combining (2.8) and (2.11), we obtain, for all k ≥ k1 + 1

Ek+1
a,b − E

k
a,b + st2k(fλk

(xk)−min f)− st2k−1(fλk−1
(xk−1)−min f)(2.12)

≤ −εstk 〈∇fλk
(xk), xk − z〉+ εstk〈∇fλk

(xk), xk − xk−1〉

− 1

2
s2t2k‖∇fλk

(xk)‖2 − 1

2
(1− b)(2tk − 1)‖xk − xk−1‖2.

Take p >
εs

4(1− b)
, and write the elementary algebraic inequality

εstk〈∇fλk
(xk), xk − xk−1〉 ≤ pεstk‖∇fλk

(xk)‖2 +
εstk
4p
‖xk − xk−1‖2.

Since tk = rk + q, r > 0, there exists ε1 > 0, ε2 > 0 and k2 ≥ k1 + 1 such that for all k ≥ k2

pεstk −
1

2
s2t2k < −ε1t2k and

εstk
4p
− 1

2
(1− b)(2tk − 1) < −ε2tk,

where the last above inequality comes from the choice of p. Therefore,

εstk〈∇fλk
(xk), xk − xk−1〉 −

1

2
s2t2k‖∇fλk

(xk)‖2 − 1

2
(1− b)(2tk − 1)‖xk − xk−1‖2(2.13)

≤ −ε1t2k‖∇fλk
(xk)‖2 − ε2tk‖xk − xk−1‖2, for all k ≥ k2.

According to the λk-cocoerciveness of ∇fλk
, ∇fλk

(z) = 0, and the gradient inequality, we have

〈∇fλk
(xk), xk − z〉 ≥

1

2
(fλk

(xk)−min f) +
λk
2
‖∇fλk

(xk)‖2, for all k ≥ k2.

Consequently, (2.12) becomes, for all k ≥ k2

Ek+1
a,b − E

k
a,b + st2k(fλk

(xk)−min f)− st2k−1(fλk−1
(xk−1)−min f)(2.14)

+
ε

2
stk(fλk

(xk)−min f) +
ε

2
stkλk‖∇fλk

(xk)‖2 + ε1t
2
k‖∇fλk

(xk)‖2 + ε2tk‖xk − xk−1‖2 ≤ 0.

(b) Case β > 0 and t = 0. Then λk = λ > 0. For each k ≥ 1, consider the discrete energy
function as in the proof of Theorem 1.1, with Aλk

= ∇fλ, that is,

Eka,b = atk−1 〈∇fλ(xk−1), xk−1 − z〉+
1

2
‖b(xk−1−z)+tk(xk−xk−1+s∇fλ(xk))‖2+

b(1− b)
2

‖xk−1−z‖2

and for d > 0 (which will fixed later) set

(2.15) W k
a,b,d := Eka,b + dk2‖∇fλ(xk−1)‖2.

Arguing as in the proof of Theorem 1.1, the equation (1.18) in this particular instance becomes

Ek+1
a,b − E

k
a,b = (atk − b(βtk+1 + stk)) 〈∇fλ(xk), xk − z〉+ (bβtk+1 − atk−1) 〈∇fλ(xk−1), xk−1 − z〉

+
1

2
(β2t2k+1 − s2t2k)‖∇fλ(xk)‖2 − β2t2k+1〈∇fλ(xk),∇fλ(xk−1)〉+

1

2
β2t2k+1‖∇fλ(xk−1)‖2

− (βtk+1(tk − 1) + stk(tk − b))〈∇fλ(xk), xk − xk−1〉

+ βtk+1(tk + b− 1)〈∇fλ(xk−1), xk − xk−1〉+
1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2.
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Therefore

W k+1
a,b,d −W

k
a,b,d = (atk − b(βtk+1 + stk)) 〈∇fλ(xk), xk − z〉+ (bβtk+1 − atk−1) 〈∇fλ(xk−1), xk−1 − z〉

+
1

2
(β2t2k+1 − s2t2k + 2d(k + 1)2)‖∇fλ(xk)‖2 − β2t2k+1〈∇fλ(xk),∇fλ(xk−1)〉

+
1

2
(β2t2k+1 − 2dk2)‖∇fλ(xk−1)‖2 − (βtk+1(tk − 1) + stk(tk − b))〈∇fλ(xk), xk − xk−1〉

+βtk+1(tk + b− 1)〈∇fλ(xk−1), xk − xk−1〉+
1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2.(2.16)

According to the monotonicity of ∇fλ and the assumption tk + b− 1 > 0 for all k ≥ k1, we have

− (βtk+1(tk − 1) + stk(tk − b))〈∇fλ(xk), xk − xk−1〉+ βtk+1(tk + b− 1)〈∇fλ(xk−1), xk − xk−1〉
≤ (βbtk+1 − stk(tk − b))) 〈∇fλ(xk), xk − xk−1〉
= (βbtk+1 + sbtk)) 〈∇fλ(xk), xk − xk−1〉+ st2k〈∇fλ(xk), xk−1 − xk〉.(2.17)

According to the gradient inequality we have, for all k ≥ k1

st2k〈∇fλ(xk), xk−1 − xk〉 ≤ st2k((fλ(xk−1)−min f)− (fλ(xk)−min f))(2.18)

= st2k−1(fλ(xk−1)−min f)− st2k(fλ(xk)−min f) + s(t2k − t2k−1)(fλ(xk−1)−min f).

Combining (2.17) and (2.18) with (2.16), we obtain

W k+1
a,b,d −W

k
a,b,d + st2k(fλ(xk)−min f)− st2k−1(fλ(xk−1)−min f)(2.19)

≤ (atk − b(βtk+1 + stk)) 〈∇fλ(xk), xk − z〉+ (bβtk+1 − atk−1) 〈∇fλ(xk−1), xk−1 − z〉

+
1

2
(β2t2k+1 − s2t2k + 2d(k + 1)2)‖∇fλ(xk)‖2 − β2t2k+1〈∇fλ(xk),∇fλ(xk−1)〉

+
1

2
(β2t2k+1 − 2dk2)‖∇fλ(xk−1)‖2 + (βbtk+1 + sbtk)) 〈∇fλ(xk), xk − xk−1〉

+
1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2 + s(t2k − t2k−1)(fλ(xk−1)−min f), for all k ≥ k1.

Take βb < a < b(β + s) and 0 < b < 1. Since r < 1
2 , we can choose a and b satisfying the previous

inequalities and such that there exists k2 ≥ k1 and ε3 > 0 such that

atk − b(βtk+1 + stk) + ε3k ≤ 0 and bβtk+1 − atk−1 + s(t2k − t2k−1) ≤ 0

for all k ≥ k2 ( take a = bβ + (1− ε)bs with ε sufficiently small, so that 1 > b > 2r
1−ε ). By using the

gradient inequality

e3k(fλ(xk)−min f) ≤ ε3k〈∇fλ(xk), xk − z〉,
(bβtk+1 − atk−1) 〈∇fλ(xk−1), xk−1 − z〉 ≤ (bβtk+1 − atk−1)(fλ(xk−1)−min f), for all k ≥ k2.

Therefore,

(atk − b(βtk+1 + stk) + ε3k) 〈∇fλ(xk), xk − z〉+ (bβtk+1 − atk−1) 〈∇fλ(xk−1), xk−1 − z〉(2.20)

+ s(t2k − t2k−1)(fλ(xk−1)−min f) ≤ 0, for all k ≥ k2.
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Combining (2.19) with (2.20), we get, for all k ≥ k2

W k+1
a,b,d −W

k
a,b,d + st2k(fλ(xk)−min f)− st2k−1(fλ(xk−1)−min f) + ε3k(fλ(xk)−min f)(2.21)

≤ 1

2
(β2t2k+1 − s2t2k + 2d(k + 1)2)‖∇fλ(xk)‖2 − β2t2k+1〈∇fλ(xk),∇fλ(xk−1)〉

+
1

2
(β2t2k+1 − 2dk2)‖∇fλ(xk−1)‖2 + (βbtk+1 + sbtk)) 〈∇fλ(xk), xk − xk−1〉

+
1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2.

We now use the following elementary algebraic inequalities

−β2t2k+1〈∇fλ(xk),∇fλ(xk−1)〉 ≤
β2t2k+1

2

(
‖∇fλ(xk)‖2 + ‖∇fλ(xk−1)‖2

)
(βbtk+1 + sbtk) 〈∇fλ(xk), xk − xk−1〉 ≤ (βbtk+1 + sbtk)

(√
k

2
‖∇fλ(xk)‖2 +

1

2
√
k
‖xk − xk−1‖2

)
.

Taking into account that s > 2β, we choose d such that β2r2 < d < −β2r2 + s2

2 r
2.

Then, there exists k3 ≥ k2 and ε4, ε5 > 0 such that, for all k ≥ k3
1

2

(
2β2t2k+1 − s2t2k + 2d(k + 1)2 + (βbtk+1 + sbtk)

√
k
)

+ ε4k
2 ≤ 0;

β2t2k+1 − dk2 ≤ 0 and
1

2

(
(b− 1)(2tk − 1) +

βbtk+1 + sbtk√
k

)
+ ε5k ≤ 0.

Consequently, (2.21) becomes, for all k ≥ k3

W k+1
a,b,d −W

k
a,b,d + st2k(fλ(xk)−min f)− st2k−1(fλ(xk−1)−min f) + ε3k(fλ(xk)−min f)(2.22)

+ε4k
2‖∇fλ(xk)‖2 + ε5k‖xk − xk−1‖2

≤ 1

2

(
2β2t2k+1 − s2t2k + 2d(k + 1)2 + (βbtk+1 + sbtk)

√
k + 2ε4k

2
)
‖∇fλ(xk)‖2

+(β2t2k+1 − dk2)‖∇fλ(xk−1)‖2 +
1

2

(
(b− 1)(2tk − 1) +

βbtk+1 + sbtk√
k

+ 2ε5k

)
‖xk − xk−1‖2 ≤ 0.

(c) Case β > 0 and t ≥ 1. For each k ≥ 1, consider the discrete energy function as in the
proof of Theorem 1.1, with Aλk

= ∇fλk
, that is,

Eka,b = atk−1
〈
∇fλk−1

(xk−1), xk−1 − z
〉
+

1

2
‖b(xk−1−z)+tk(xk−xk−1+s∇fλk

(xk))‖2+
b(1− b)

2
‖xk−1−z‖2.

Arguing as in the proof of Theorem 1.1, the equation (1.18) in this particular instance becomes

Ek+1
a,b − E

k
a,b = (atk − b(βtk+1 + stk)) 〈∇fλk

(xk), xk − z〉+ (bβtk+1 − atk−1)
〈
∇fλk−1

(xk−1), xk−1 − z
〉

+
1

2
(β2t2k+1 − s2t2k)‖∇fλk

(xk)‖2 − β2t2k+1〈∇fλk
(xk),∇fλk−1

(xk−1)〉+
1

2
β2t2k+1‖∇fλk−1

(xk−1)‖2

− (βtk+1(tk − 1) + stk(tk − b))〈∇fλk
(xk), xk − xk−1〉

+ βtk+1(tk + b− 1)〈∇fλk−1
(xk−1), xk − xk−1〉+

1

2
(b− 1)(2tk − 1)‖xk − xk−1‖2, for all k ≥ 1.
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From [13, Lemma A4], for all k ≥ 1 we have

(2.23) ‖λk∇fλk
(xk)− λk−1∇fλk−1

(xk−1)‖ ≤ 2‖xk − xk−1‖+ |λk − λk−1|‖∇fλk
(xk)‖.

Hence, we have for all k ≥ 1 that

〈∇fλk−1
(xk−1), xk − xk−1〉 =

1

λk−1
〈λk−1∇fλk−1

(xk−1)− λk∇fλk
(xk), xk − xk−1〉

(2.24)

+
λk
λk−1

〈∇fλk
(xk), xk − xk−1〉 ≤

1

λk−1
‖λk−1∇fλk−1

(xk−1)− λk∇fλk
(xk)‖‖xk − xk−1‖

+
λk
λk−1

〈∇fλk
(xk), xk − xk−1〉

≤ 2

λk−1
‖xk − xk−1‖2 +

|λk − λk−1|
λk−1

‖∇fλk
(xk)‖‖xk − xk−1‖+

λk
λk−1

〈∇fλk
(xk), xk − xk−1〉.

Moreover, for every p1 > 0 we have

‖∇fλk
(xk)‖‖xk − xk−1‖ ≤ p1

√
k‖∇fλk

(xk)‖2 +
1

4p1
√
k
‖xk − xk−1‖2.

Therefore, (2.24) becomes, for all k ≥ 1

〈∇fλk−1
(xk−1), xk − xk−1〉 ≤

λk
λk−1

〈∇fλk
(xk), xk − xk−1〉(2.25)

+

(
2

λk−1
+
|λk − λk−1|
4p1
√
kλk−1

)
‖xk − xk−1‖2 +

p1
√
k|λk − λk−1|
λk−1

‖∇fλk
(xk)‖2.

Combining the above results, we obtain (we write shortly ∆k = Ek+1
a,b − Eka,b), for all k ≥ 1,

∆k ≤ (atk − b(βtk+1 + stk)) 〈∇fλk
(xk), xk − z〉+ (bβtk+1 − atk−1)

〈
∇fλk−1

(xk−1), xk−1 − z
〉

+
1

2

(
β2t2k+1 − s2t2k + 2βtk+1(tk + b− 1)

p1
√
k|λk − λk−1|
λk−1

)
‖∇fλk

(xk)‖2

−β2t2k+1〈∇fλk
(xk),∇fλk−1

(xk−1)〉+
1

2
β2t2k+1‖∇fλk−1

(xk−1)‖2

+

(
βtk+1(tk − 1)

λk − λk−1
λk−1

+ βbtk+1
λk
λk−1

− stk(tk − b)
)
〈∇fλk

(xk), xk − xk−1〉

+

(
βtk+1(tk + b− 1)

(
2

λk−1
+
|λk − λk−1|
4p1
√
kλk−1

)
+

1

2
(b− 1)(2tk − 1)

)
‖xk − xk−1‖2.(2.26)

Further estimates give

−β2t2k+1〈∇fλk
(xk),∇fλk−1

(xk−1)〉 ≤
β2t2k+1

2

(
‖∇fλk

(xk)‖2 + ‖∇fλk−1
(xk−1)‖2

)
;(2.27) (

βtk+1(tk − 1)
λk − λk−1
λk−1

+ βbtk+1
λk
λk−1

+ sbtk

)
〈∇fλk

(xk), xk − xk−1〉(2.28)

≤
(
βtk+1(tk − 1)

λk − λk−1
λk−1

+ βbtk+1
λk
λk−1

+ sbtk

)(√
k‖∇fλk

‖2 +
1

4
√
k
‖xk − xk−1‖2

)
.
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To simplify the formulation of the formulas, let us denote

r1(k) = −1

2
(b− 1) +

2β(b− 1)tk+1

λk−1
+ βtk+1(tk + b− 1)

|λk − λk−1|
4p1
√
kλk−1

,

r2(k) =

(
(βtk+1(tk − 1)

λk − λk−1
λk−1

+ βbtk+1
λk
λk−1

+ sbtk

)
1

4
√
k

r3(k) =

(
(βtk+1(tk − 1)

λk − λk−1
λk−1

+ βbtk+1
λk
λk−1

+ sbtk

)√
k + 2βtk+1(tk + b− 1)

p1
√
k|λk − λk−1|
λk−1

.

Since lim
x→+∞

xt − (x− 1)t

(x− 1)t−1
= t, we have

λk − λk−1
λk−1

= O
(

1

k

)
as k → +∞. Hence,

(2.29) r1(k) = O
(
k

1
2

)
, r2(k) = O

(
k

1
2

)
, r3(k) = O

(
k

3
2

)
, k → +∞.

Consequently, (2.26), (2.27) and (2.28) yield, for all k ≥ 1

∆k ≤ (atk − b(βtk+1 + stk)) 〈∇fλk
(xk), xk − z〉+ (bβtk+1 − atk−1)

〈
∇fλk−1

(xk−1), xk−1 − z
〉

+
1

2
(2β2t2k+1 − s2t2k + 2r3(k))‖∇fλk

(xk)‖2 + β2t2k+1‖∇fλk−1
(xk−1)‖2

− st2k〈∇fλk
(xk), xk − xk−1〉+

(
(b− 1)tk +

2βtk+1tk
λk−1

+ r1(k) + r2(k)

)
‖xk − xk−1‖2.(2.30)

Now, using (2.18) we get, for all k ≥ k1

∆k + st2k(fλ(xk)−min f)− st2k−1(fλ(xk−1)−min f)(2.31)

≤ (atk − b(βtk+1 + stk)) 〈∇fλk
(xk), xk − z〉+ (bβtk+1 − atk−1)

〈
∇fλk−1

(xk−1), xk−1 − z
〉

+
1

2
(2β2t2k+1 − s2t2k + 2r3(k))‖∇fλk

(xk)‖2 + β2t2k+1‖∇fλk−1
(xk−1)‖2

+s(t2k − t2k−1)(fλ(xk−1)−min f) +

(
(b− 1)tk +

2βtk+1tk
λk−1

+ r1(k) + r2(k)

)
‖xk − xk−1‖2.

Further, by the gradient inequality and the fact that t2k − t2k−1 ≤ mtk for all k ≥ k1 + 1 we have

(bβtk+1 − atk−1)
〈
∇fλk−1

(xk−1), xk−1 − z
〉

+ s(t2k − t2k−1)(fλ(xk−1)−min f)

≤ (bβtk+1 − atk−1 +mstk)〈∇fλk−1
(xk−1), xk−1 − z〉, for all k ≥ k1 + 1.

Assume that t = 1 and let b = β+ms
β+s ∈ (m, 1) and a = βb + (m+b)s

2 ∈ (βb + ms, βb + bs).

Since by assumption we have λ > 2(β+s)βr
(1−m)s we conclude that there exist ε6, ε7 > 0 such that

((a− βb− bs)r + ε6)λ+
1

2
(2β2r2 − s2r2) < 0(2.32)

(b− 1)r +
2βr2

λ
+ ε7 < 0 and

(βbr − ar +msr)λ+ β2r2 < 0.
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Assume that t > 1 and fix b ∈ (m, 1), a ∈ (βb+ms, βb+ bs). Then take ε6, ε7 > 0 such that

(a− βb− bs)r + ε6 < 0 and(2.33)

(b− 1)r + ε7 < 0.

From now on, we do not need to distinguish the cases t = 1 and t > 1. According to the λk
cocoerciveness of ∇fλk

, (2.32), (2.33), (2.29) and t ≥ 1, we deduce that

(atk − b(βtk+1 + stk) + ε6k) 〈∇fλk
(xk), xk − z〉+

1

2
(2β2t2k+1 − s2t2k + 2r3(k))‖∇fλk

(xk)‖2 ≤ 0,

(bβtk+1 − atk−1 +mstk)〈∇fλk−1
(xk−1), xk−1 − z〉+ β2t2k+1‖∇fλk−1

(xk−1)‖2 ≤ 0,(
(b− 1)tk +

2βtk+1tk
λk−1

+ r1(k) + r2(k) + ε7k

)
‖xk − xk−1‖2 ≤ 0

holds for some for k2 ≥ k1 + 1, and all k ≥ k2. Consequently, (2.31) leads to

∆k + st2k(fλ(xk)−min f)− st2k−1(fλ(xk−1)−min f)(2.34)

≤ −ε6k 〈∇fλk
(xk), xk − z〉 − ε7k‖xk − xk−1‖2, for all k ≥ k2.

Then, use −ε6k 〈∇fλk
(xk), xk − z〉 ≤ − ε62 kλk‖∇fλk

(xk)‖2 + ε6
2 k(min f −fλk

(xk)), to finally obtain

∆k + st2k(fλ(xk)−min f)− st2k−1(fλ(xk−1)−min f)(2.35)

+
ε6
2
kλk‖∇fλk

(xk)‖2 +
ε6
2
k(fλk

(xk)−min f) + ε7k‖xk − xk−1‖2 ≤ 0, for all k ≥ k2.

II. Estimates According to (2.14), (2.22), (2.35) the sequences of non-negative numbers

(Ek0,b + t2k(fλk
(xk)−min f))k, (W k

a,b,d + t2k(fλk
(xk)−min f))k and (Eka,b + t2k(fλk

(xk)−min f))k

are non-increasing, and therefore converge. In particular, they are bounded. From this, and by
adding the inequalities in (2.14), (2.22) and (2.35) we obtain:

sup
k
k2(fλk

(xk)−min f) < +∞,(2.36)

sup
k
‖b(xk − z) + tk+1(xk+1 − xk + s∇fλk+1

(xk+1))‖2 < +∞,(2.37)

sup
k
‖xk − z‖2 < +∞,(2.38)

+∞∑
k=0

k(fλk
(xk)−min f) < +∞,(2.39)

+∞∑
k=0

kλk‖∇fλk
(xk)‖2 < +∞,(2.40)

+∞∑
k=0

k2‖∇fλk
(xk)‖2 < +∞,(2.41)

+∞∑
k=1

k‖xk − xk−1‖2 < +∞.(2.42)
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Obviously (2.36) assures that

(2.43) fλk
(xk)−min f = O

(
1

k2

)
as k → +∞.

Since the general term of a convergent series goes to zero, we deduce from (2.41) that

(2.44) ‖∇fλk
(xk)‖ = o

(
1

k

)
as k → +∞.

The same argument applied to (2.40) yields

(2.45) ‖∇fλk
(xk)‖ = o

(
1√
kλk

)
as k → +∞.

Further, (2.38) shows that ‖xk − z‖ is bounded. Consequently, the sequence (xk) is bounded.
Combining the above results with (2.37), we obtain

(2.46) ‖xk − xk−1‖ = O
(

1

k

)
as k → +∞.

From fλk
(xk)−min f = f(proxλkf

(xk))−min f + 1
2λk
‖xk − proxλkf

(xk)‖2, we deduce that

(2.47) f(proxλkf
(xk))−min f = O

(
1

k2

)
, ‖xk − proxλkf

(xk)‖ = O
(√

λk
k

)
as k → +∞.

Further we have ∇fλk
= (∂f)λk

= 1
λk

(I − proxλkf
), hence

(2.48) ‖∇fλk
(xk)‖ = O

(
1

k
√
λk

)
as k → +∞.

III. The limit. Using the Opial’s lemma, let us prove that the sequence (xk) generated by the
algorithm (PRINAM)-convex converges weakly towards an element of argmin f . Take z ∈ argmin f ,
and consider the anchor sequence (hk) defined by hk = 1

2‖xk − z‖
2 for k ≥ 1. According to (1.38)

hk+1 − hk =
1

2
‖xk+1 − xk‖2 + 〈xk+1 − xk, xk − z〉.

According to the corresponding version of (1.6), we get

〈xk+1 − xk, xk − z〉 = 〈yk − xk − s∇fλk+1
(xk+1), xk − z〉(2.49)

= αk〈xk − xk−1, xk − z〉 − β〈∇fλk
(xk)−∇fλk−1

(xk−1), xk − z〉
− s〈∇fλk+1

(xk+1), xk − z〉.

Let us examine the terms involved in the above equality. We have

〈xk − xk−1, xk − z〉 = ‖xk − xk−1‖2 + 〈xk − xk−1, xk−1 − z〉 = hk − hk−1 +
1

2
‖xk − xk−1‖2

−s〈∇fλk+1
(xk+1), xk − z〉 = s〈∇fλk+1

(xk+1), xk+1 − xk〉 − s〈∇fλk+1
(xk+1), xk+1 − z〉.
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Combining these relations with (1.38) and (2.49), and neglecting the term −s〈∇fλk+1
(xk+1), xk+1−

z〉 which is non-positive, we obtain

hk+1 − hk ≤ αk(hk − hk−1) +
1

2
‖xk+1 − xk‖2 +

αk
2
‖xk − xk−1‖2(2.50)

− β〈∇fλk
(xk)−∇fλk−1

(xk−1), xk − z〉+ s‖∇fλk+1
(xk+1)‖‖xk+1 − xk‖.

Since ‖xk − z‖ is bounded, we get the existence of a constant M > 0 such that, for all k ≥ 1

hk+1 − hk ≤ αk(hk − hk−1) +
1

2
‖xk+1 − xk‖2 +

αk
2
‖xk − xk−1‖2(2.51)

+ Mβ‖∇fλk
(xk)−∇fλk−1

(xk−1)‖+ s‖∇fλk+1
(xk+1)‖‖xk+1 − xk‖.

Further, when β > 0, from Lemma [13, Lemma A4], we get

‖∇fλk
(xk)−∇fλk−1

(xk−1)‖ ≤ 2

λk
‖xk − xk−1‖+

|λk − λk−1|
λk

(
‖∇fλk

(xk)‖+ ‖∇fλk−1
(xk−1)‖

)
.

Recall that λk = λkt, t > 1 and λk−λk−1

λk
= O

(
1
k

)
as k → +∞. Then, from (2.46) and (2.48) we

obtain that there exists k̄ ≥ 1 and C > 0 such that, for all k ≥ k̄

2

λk
‖xk − xk−1‖ ≤

C

k1+t

|λk − λk−1|
λk

(
‖∇fλk

(xk)‖+ ‖∇fλk−1
(xk−1)‖

)
≤ C

k2+
t
2

.

Therefore, for all k ≥ k̄

(2.52) ‖∇fλk
(xk)−∇fλk−1

(xk−1)‖ ≤ C

k1+t
+

C

k2+
t
2

.

Consequently, (2.51) leads to

hk+1 − hk ≤ αk(hk − hk−1) + ωk,(2.53)

for all k ≥ k̄, where

ωk =



1
2‖xk+1 − xk‖2 + αk

2 ‖xk − xk−1‖
2 + s‖∇fλk+1

(xk+1)‖‖xk+1 − xk‖, if β = 0

1
2‖xk+1 − xk‖2 + αk

2 ‖xk − xk−1‖
2 + βMC

(
1

k1+t + 1

k2+
t
2

)
+ s‖∇fλk+1

(xk+1)‖‖xk+1 − xk‖,

if β > 0, t > 1.

As a direct consequence of the majorization

‖∇fλk+1
(xk+1)‖‖xk+1 − xk‖ ≤

1

2
‖∇fλk+1

(xk+1)‖2 +
1

2
‖xk+1 − xk‖2,

of (2.42) and (2.41), and of the fact that t > 1 if β > 0, we have
∑
k tk+1ωk < +∞. Therefore, by

applying Lemma A.1 to the sequence ak = [hk − hk−1]+ we obtain∑
k

[hk − hk−1]+ < +∞.
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Since hk is nonnegative, this property classically gives the existence of limk→+∞ hk, and hence of
the existence of limk→+∞ ‖xk − z‖. This shows item (i) of the Opial lemma.

Let us return to the fact that, according to (2.14) and (2.35), the sequences of non-negative numbers

(Ek0,b + t2k(fλk
(xk)−min f))k and (Eka,b + t2k(fλk

(xk)−min f))k

are non-increasing, and therefore converge. Since ‖xk − z‖ converges, and tk‖∇fλk
(xk)‖ → 0, as

k → +∞ we obtain that the following limit exists

(2.54) lim
k→+∞

(
t2k‖xk − xk−1‖2 + t2k(fλk

(xk)−min f)
)
.

On the other hand, according to (2.39) we have
∑+∞
k=0 tk(fλk

(xk) − min f) < +∞, and according

to (2.42) we have
∑+∞
k=1 tk‖xk − xk−1‖2 < +∞. Therefore,

(2.55)

+∞∑
k=1

1

tk

(
t2k‖xk − xk−1‖2 + t2k(fλk

(xk)−min f)
)
< +∞.

Combining (2.54) and (2.55) we obtain that

lim
k→+∞

(
t2k‖xk − xk−1‖2 + t2k(fλk

(xk)−min f)
)

= 0,

that is, ‖xk − xk−1‖ = o

(
1

k

)
and fλk

(xk)−min f = o

(
1

k2

)
as k → +∞.

From fλk
(xk)−min f = f(proxλkf

(xk))−min f + 1
2λk
‖xk − proxλkf

(xk)‖2, we deduce that

(2.56) f(proxλkf
(xk))−min f = o

(
1

k2

)
, lim

k→+∞

k2

λk
‖xk − proxλkf

(xk)‖2 = 0.

It remains to show that every weak cluster point of the sequence (xk) belongs to argmin f. Let x∗

be a weak cluster point of (xk) and consider a subsequence (xkn) of (xk), such that

xkn ⇀ x∗, n→ +∞.
If t ≤ 2, then one has limk→+∞ ‖xk − proxλkf

(xk)‖ = 0. Therefore,

proxλknf
(xkn) ⇀ x∗, n→ +∞.

Since f is lower semi-continuous and convex, it is weakly lower semi-continuous. Combined with

lim
k→+∞

(f(proxλkf
(xk))−min f) = 0,

it yields
0 = lim inf

xkn⇀x∗
(f(proxλknf

(xkn))−min f) ≥ f(x∗)−min f.

The latter relation shows that x∗ ∈ argmin f and consequently, according to Opial lemma, the
sequence (xk) converges weakly to an element x̂ ∈ argmin f. Finally, since

‖xk − xk−1‖ = o

(
1

k

)
, ‖∇fλk

(xk)−∇fλk−1
(xk−1)‖ = o

(
1

k

)
, as k → +∞

we get that

‖xk − yk‖ = o

(
1

k

)
, as k → +∞,

hence yk converges weakly to the same element x̂ ∈ argmin f.
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3. Conclusion, Perspectives. (PRINAM) is a proximal-based inertial algorithm which aims
to solve general monotone inclusions in Hilbert spaces. It has several favorable features:

1. Under the sole assumption that the solution set is nonempty, each sequence generated by
the algorithm converges weakly to a zero of the operator.

2. The algorithm involves a correcting term which is naturally linked to the Hessian driven
damping in the case of convex minimization, and to the Newton method for general monotone inclu-
sions. There is numerical evidence of the fact that this correcting term attenuates the oscillations
which naturally occur with the inertial methods.

3. When specializing the maximally monotone operator to the subdifferential of a convex
lower semicontinuous proper function, the algorithm improves the accelerated gradient method
of Nesterov by giving the convergence rate o

(
1
k2

)
of the values, and the fast convergence of the

gradients towards zero.

The article presents the basic elements of the convergence theory for (PRINAM), many aspects
of which have yet to be developed. We need to enlarge the framework by considering structured
composite monotone inclusions, and show how to use (PRINAM) as the basic block of splitting
algorithms such as (ADMM), Douglas-Rachford, to cite some of them. For numerical reasons, it
is important to consider the introduction of perturbations, errors in the algorithms. Considering a
Tikhonov regularization term with vanishing coefficient would allow to obtain strong convergence
of the iterates towards the minimum norm solution, a desirable feature for the inverse problems.
Various versions/extensions of (PRINAM) can also be considered, including the case of a variable
stepsize, and time rescaling.

Appendix A. Auxiliary results. In our analysis of (PRINAM) we need the following result.

Lemma A.1. Let (ak) be a sequence of non-negative real numbers which satisfies: for all k ≥ 0

ak+1 ≤ αkak + ωk,

where
∑
k tk+1ωk < +∞. Then

∑
k ak < +∞.

Proof. Since αk = tk−1
tk+1

we have tk+1ak+1 − (tk − 1)ak ≤ tk+1ωk. After summation, we obtain

tn+1an+1 − t0a0 +
∑n
k=0 ak ≤

∑n
k=0 tk+1ωk.

Hence,
∑+∞
k=0 ak ≤

∑+∞
k=0 tk+1ωk + t0a0 < +∞, which gives the claim.
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