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1Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau, France, e-mail:
vianney.debavelaere@polytechnique.edu

2ARAMIS Lab, Institut du Cerveau et de la Moelle épinière , Paris, France, e-mail:
stanley.durrleman@icm-institute.org

3Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France, e-mail:
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Abstract: In this paper, we extend the framework of the convergence of
stochastic approximations given by

θn+1 = θn + ∆n+1Hθn (Xn+1) ,

where (Xn)n∈N is a Markov Chain. Such a procedure is used in many
methods such as parameters estimation inside a Metropolis Hastings algo-
rithm, stochastic gradient descent or stochastic Expectation Maximization
algorithm. The convergence of such a stochastic approximation has already
been proved under an assumption of geometric ergodicity of the Markov
Chain. However, in many practical situations this hypothesis is not satis-
fied, for instance for any heavy tail target distribution in a Monte Carlo
Metropolis Hastings algorithm. In this paper, we loosen this hypothesis and
prove the convergence of the stochastic approximation by assuming only a
subgeometric ergodicity of the Markov dynamic. This result opens up the
possibility to derive more generic algorithms with proven convergence. As
an example, we study an adaptative Markov Chain Monte Carlo algorithm
where the proposal distribution is adapted by learning the variance of a
heavy tail target distribution.
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1. Introduction

A common problem across scientific fields is to find the roots of a non-linear
function h : Θ → R. In statistics, the problem is further increased by the fact
that h is not known, but only noisy observations of it or its gradient. This prob-
lematic can appear in a lot of different domains such as stochastic optimization
[25, 30], Expectation Maximization algorithms [3, 22], reinforcement learning
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[1, 10], ... In all cases, solutions to this problem often take the form of an itera-
tive sequences (θn)n∈N that converges towards a point θ∗ in the set of solutions
of h(θ) = 0. The general class of stochastic approximation methods, and in
particular the Robbins-Monro one, falls within this framework and produces a
sequence defined by:

θn+1 = θn + ∆n+1ζn+1 ,

where ζn+1 is a noisy observation of h(θn): ζn+1 = h(θn) + ξn+1 with ξn+1 a
noise sequence of random variables. In that case, h is called the mean field.
This procedure, first developed in [27], has been studied under various sets of
hypotheses, see [1, 9, 10, 11, 12, 16, 23] among many other works.

In this paper, we focus on the case of a Markov state-dependent noise, which
means that the noise observation of h: (ζn)n∈N takes the form (Hθn(Xn))n∈N
where (Xn) is a Markov Chain in the state space X , and, for all θ ∈ Θ, Hθ is a
function from X to Θ:

θn+1 = θn + ∆n+1Hθn(Xn+1) .

The assumption of the state dependent Markov noise case is general, and met for
instance within the framework of the stochastic gradient descent [25] or within
the framework of Metropolis Hastings algorithms. In the latter, the distribution
to sample from may depend on a parameter θ that is learned throughout the al-
gorithm. This is notably the case of the Stochastic Approximation Expectation
Maximization Markov Chain Monte Carlo (SAEM MCMC) algorithm [2, 3, 13].
One can also consider adaptive MCMC algorithms where the proposal distri-
bution depends of a parameter θ. Such a procedure can be used to adapt the
variance of the proposal along the algorithm [5, 6, 19, 28] and allows a better
sampling. In both cases, the update of the parameter θ can be seen as a stochas-
tic approximation.

In the framework of a state dependant noise, the authors of [5] give general
hypotheses for the stochastic approximation algorithm to converge. They are
based on the control of the fluctuations of the Markov Chain as well as on the
regularity of the solution of a Poisson equation. In practice, these conditions can
be difficult to verify and the authors show their validity when the Markov chain
satisfies drift conditions implying a geometric ergodicity of the chain i.e. when
assuming the convergence of the kernel of the Markov Chain towards its invari-
ant distribution at a geometric rate. Under theses assumptions, we are then able
to prove the convergence of the SAEM MCMC [3] and some adaptative MCMC
algorithms [5].

However, in lot of practical situations, this ergodicity condition is not sat-
isfied. If several articles study the convergence of adaptive MCMC algorithms
under subgeometric ergodicity [7, 8, 29, 31], the general case of stochastic ap-
proximations with a subgeometric Markovian dynamic has not yet been proved
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convergent, to the best of our knowledge. Often, authors only consider a geomet-
ric ergodic Markovian dynamic [21, 24]. This can be a problem when (Xn)n∈N
is sampled using a Metropolis Hastings algorithm targetting heavy tails distri-
butions (Weibull ot Pareto distributions in particular) [14, 17, 18, 20], in which
case the Markov Chain is not geometric ergodic. Similarly the geometric ergod-
icity condition has been a problem in [4] where the authors have not proved
the convergence of the exponentially scaled Gaussian independent component
analysis (EG-ICA) model due to the presence of a subgeometric Markov Chain.
In all these cases, the theorem presented in [5] does not allow us to conclude on
the convergence of the stochastic approximation algorithm using these Marko-
vian dynamics. In the same vein, in [22], the authors prove the convergence of
a mini batch SAEM algorithm using the theorem presented in [5] and hence, by
assuming the geometric ergodicity of the Markov Chain.

In this paper, we propose a more general sets of hypotheses, under which we
prove the convergence of stochastic approximations with subgeometric Marko-
vian dynamics. These new conditions mainly concern the rate of convergence of
the Markov Chain as well as the regularity of its kernel. In particular, most of
the polynomial rates of convergence satisfy these hypotheses. Finally, we apply
this new theorem to prove the convergence of a stochastic approximation used
to adapt the variance of the proposal of a Metropolis Hastings algorithm. More
precisely, we prove this convergence for two different classes of heavy tail target
distributions including, among others, the Weibull and the Pareto distributions.

2. Stochastic approximation framework with Markovian dynamic

In this section, we summarize the stochastic approximation procedure in the
case of a Markovian dynamic with adaptive truncation sets. This procedure was
first described in [5]. In the following, we denote X the state space and Θ the
parameter space that we assume to be an open subset of Rnθ . Moreover, we
suppose that both are equipped with countably generated σ-fields B(X ) and
B(Θ).

In the next subsection, we present the framework of a stochastic approxima-
tion producing a sequence of elements converging towards a solution of h(θ) = 0
when there exists probability measures πθ such that h(θ) = Eπθ (Hθ(X)) and,
for all θ ∈ Θ, Hθ : X 7→ Θ.

2.1. Markov Chain sequence

Let ∆ = (∆n)n∈N be a monotone non increasing sequence of positive real num-
bers with ∆0 ≤ 1 and set θc /∈ Θ and xc /∈ X two cemetery states. We also
set, for all θ ∈ Θ the vector field Hθ : X 7→ Θ. We then define a Markov chain
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Y ∆
n = (Xn, θn) on X ∪ {xc} ×Θ ∪ {θc} by:

θn+1 =

{
θn + ∆n+1Hθn(Xn+1) and Xn+1 ∼ Pθn(Xn, .) if θn ∈ Θ
θc and Xn+1 = xc if θn /∈ Θ .

(1)
We put the following hypothesis on the transition probabilities (Pθ, θ ∈ Θ)

and on the random vector field H:

(A2) For any θ ∈ Θ, the Markov kernel Pθ has a single stationary
distribution πθ. In addition, H : Θ×X → Θ is measurable for all
θ ∈ Θ.

The existence and uniqueness of the invariant distribution can be verified
under the classical conditions of irreducibility and recurrence [26]. We also set
h(θ) =

∫
X Hθ(x)πθ(dx) the mean field of the stochastic approximation. This

allows us to recognize the usual stochastic approximation procedure:

θn+1 = θn + ∆n+1(h(θn) + ξn+1)

where ξn+1 = Hθn(Xn+1)− h(θn) is the noise sequence.

We assume the mean field h satisfies the following hypothesis that amounts
to the existence of a global Lyapunov function:

(A1) h : Θ→ Rnθ is continuous and there exists a continuously
differentiable function w : Θ→ [0,+∞[ such that:

(i) there exists M0 > 0 such that

L := {θ ∈ Θ, 〈∇w(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, w(θ) < M0} ,

(ii) there exists M1 ∈ (M0,+∞] such that
WM1

:= {θ ∈ Θ, w(θ) ≤M} is a compact set,
(iii) for any θ ∈ Θ \ L, 〈∇w(θ), h(θ)〉 < 0,
(iv) the closure of w(L) has an empty interior.

We denote by F = {Fn, n ≥ 0} the natural filtration of the Markov chain
(Xn, θn) and by P∆

x,θ the probability measure associated to the chain (Y ∆
n )

started from the initial conditions (x, θ) ∈ X×Θ. Finally, we denotes by Q∆n the
sequence of transition probabilities that generates the inhomogeneous Markov
chain (Y ∆

n ).

2.2. Truncation process

We introduce (Kn)n∈N a sequence of compact subsets of Θ such that⋃
q≥0

Kq = Θ and Kq ⊂ int(Kq+1) .



/Convergence of Stochastic Approximations 5

Let (εn)n∈N be a sequence of non increasing positive numbers and K be a
subset of X . Let Φ : X × Θ → K × K0 be a measurable function. We then
define the stochastic approximation algorithm with adaptive truncation sets as
an homogeneous Markov chain on X ×Θ× N× N by

Zn = (Xn,Θn, κn, νn) (2)

with the following transition at iteration n+ 1:

• If νn = 0, then draw (Xn+1, θn+1) ∼ Q∆n(Φ(Xn, θn), .). Otherwise, draw
(Xn+1, θn+1) ∼ Q∆n(Xn, θn, .).

• If |θn+1−θn| ≤ εn and θn+1 ∈ Kκn then set κn+1 = κn and νn+1 = νn+1.
Otherwise, set κn+1 = κn + 1 and νn+1 = 0.

To summarize this process, if our parameter θ leaves the current truncation
set Kκn or if the difference between two of its successive values is larger than a
time dependent threshold εn, we reinitialize the Markov chain by a value inside
K0: Φ(Xn, θn) and update the truncation set to a larger one Kκn+1 as well as
the threshold to a smaller one: εn+1. Hence, κn represents the number of re-
initialization before the step n while νn is the number of steps since the last
re-initialization.

The idea behind this truncation process is to force the noise to be small in
order for the drift h(θ) to dominate. We do so by forcing our algorithm to come
back to the center of Θ whenever the parameters become too big.

2.3. Control of the fluctuations and main convergence theorem

In this section, we state two last hypothesis about the control of fluctuations
before presenting the theorem proved in [5]. In this paper, the authors present
several conditions (A1 to A4) that imply the convergence of the stochastic ap-
proximation algorithm. It is those conditions that we will, in the next section,
verify under subgeometric ergodicity of the Markov chain.

We first define, for any compact K and any sequence of non increasing positive
numbers (εk)k∈N, σ(K) = inf(k ≥ 1, θk /∈ K) and νε = inf(k ≥ 1, |θk − θk−1| ≥
εk). Moreover, for W : X → [1,∞) and g : X → Rnθ , we write

||g||W = sup
x∈X

|g(x)|
W (x)

.

We can now present the hypothesis (A3):
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(A3) For any θ ∈ Θ, the Poisson equation g − Pθg = Hθ − πθ(Hθ) has a
solution gθ. Moreover, there exist a function W : X → [1,+∞] such
that {x ∈ X ,W (x) < +∞} 6= ∅, constants α ∈ (0, 1] and p ≥ 2 such
that for any compact subset K ⊂ Θ,

(i) the following holds:

sup
θ∈K
||Hθ||W <∞ (3)

sup
θ∈K
||gθ||W + ||Pθgθ||W <∞ (4)

sup
θ,θ′∈K

|θ − θ′|−α (||gθ − gθ′ ||W + ||Pθgθ − Pθ′gθ′ ||W ) <∞ (5)

(ii) there exist constants {Ck, k ≥ 0} such that, for any k ∈ N, for
any sequence ∆ and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)≥k] ≤ CkW p(x) (6)

(iii) there exist ε and a constant C such that for any sequence ∆
and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)∧νε≥k] ≤ CW p(x) . (7)

This assumption concerns the existence and regularity of the Poisson equa-
tion associated with each of the transition kernel Pθ. In [5], the authors show
that those conditions are verified under hypothesis of geometric ergodicity of
the Markov chain. In the next sections, we will relax this ergodicity conditions
to be able to consider subgeometric ergodic chains.

Finally, the last condition concerns the step size sequences:

(A4) The sequences (∆k) and (εk) are non increasing, positive and
satisfy

∑∞
k=0 ∆k =∞, limk→∞ εk = 0 and

∞∑
k=1

∆2
k + ∆kε

α
k + (ε−1

k ∆k)p <∞

where p and α are defined in (A3).
We can finally state the theorem proved in [5]:

Theorem 2.1. Assume (A1)-(A4). Let K ⊂ X such that supx∈KW (x) < ∞
and such that K0 ⊂ WM0 (where M0 and WM0 are defined in (A1)) and let Zn
be as defined in (2). Then, for all (x, θ) ∈ X ×Θ, we have limk→∞ d(θk,L) = 0,
P∆
x,θ-a.s.
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Of the four conditions (A1) to (A4), (A3) is often the most difficult to ver-
ify and we need more practical conditions to verify it. In particular, in [5], the
authors give drift conditions that imply (A3). However, those drift conditions
imply the geometric ergodicity of the Markov chain. In lot of cases, this er-
godicity is not verified. It is the case for instance in the Metropolis Hastings
algorithm when the target distribution has heavy tails. It was also a problem in
the exponentially scaled Gaussian independant components analysis (EG-ICA
[4]) ”EM like” model where the authors could not prove the convergence of their
algorithm due to a subgeometric ergodicity. To tackle this problem, we will, in
the next section, state subgeometric drift conditions and hypotheses on the rate
of convergence that are sufficient to insure the validity of (A3). The new the-
orem allows us to verify the convergence in a broader range of cases, some of
them being explicited section 5.

3. Convergence of the stochastic approximation sequence under
subgeometric conditions

In this section, we give the drift conditions and hypotheses under which we will
work to prove the validity of (A3). Denote, for V : X → [1,∞), LV = {g : X →
Rnθ , ||g||V <∞}.

(DRI) For any θ ∈ Θ, Pθ is ψ-irreductible and aperiodic. In addition,
there exist a function V : X → [1,∞) and a constant p ≥ 2 such
that, for any compact subset K ⊂ Θ, there exist constants b,
δ0 > 0, a probability measure ν, a concave, increasing function
φ : [1,∞)→ (0,∞), continuously differentiable such that
limv→∞ φ′(v) = 0 and a subset C of X with

sup
θ∈K

PθV
p(x) + φ ◦ V p(x) ≤ V p(x) + b1C(x) ∀x ∈ X (8)

inf
θ∈K

Pθ(x,A) ≥ δ0ν(A) ∀x ∈ C,∀A ∈ B(X ) . (9)

Remark 3.1. We could consider the following, more general, drift condition:
it exists m ∈ N∗ such that

sup
θ∈K

Pmθ V
p(x) + φ ◦ V p(x) ≤ V p(x) + b1C(x) ∀x ∈ X

inf
θ∈K

Pmθ (x,A) ≥ δ0ν(A) ∀x ∈ C,∀A ∈ B(X ) .

The results we present in the following sections would still be verified under
such a drift condition. To adapt the proofs (and more precisely, the proof of the
lemma 4.6), we would then need to use the lemma B.3. of [5].

Under the condition (DRI), C is a small set and the Markov Chain Pθ verifies
a subgeometric drift condition [15]. In particular, it implies the existence of a
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stationary distribution πθ for all θ ∈ K as well as an uniform subgeometric
ergodicity on all compacts of Θ. Hence, for all θ ∈ Θ, there exists a constant
Cθ and a sequence (rθ,k)k∈N such that, ∀q, s > 0 with 1/q + 1/s = 1 and
∀f ∈ L(φ◦V p)1/s ,

r
1/q
θ,k ||P

k
θ f − πθ(f)||(φ◦V p)1/s ≤ Cθ||f ||(φ◦V p)1/s .

Moreover, it has been showed in [14] that, under a subgeometric ergodicity
condition, we can choose a rate of convergence (rk)k∈N that only depends of
the function φ. Hence, for θ ∈ K a fixed compact, we can choose a rate of
convergence (rk)k∈N that depends only of K. Similarly, it has been proved that
the constant Cθ is bounded on all compact K. Hence, it exists a constant CK
and a sequence (rk)k∈N such that, for all f ∈ L(φ◦V p)1/s and for all θ ∈ K,

sup
θ∈K

r
1/q
k ||P

k
θ f − πθ(f)||(φ◦V p)1/s ≤ CK||f ||(φ◦V p)1/s . (10)

We will see in the following that several hypothesis must be made on that
rate of convergence (rk)k∈N for the condition (A3) to be satisfied.

Remark 3.2. In general, we can consider Ψ1 and Ψ2 a pair of inverse Young
functions i.e. two strictly increasing continuous functions on R+ verifying
Ψ1(x)Ψ2(y) ≤ x+ y. We then have, for all f ∈ LΨ2(φ◦V p):

Ψ1(rk)||P kθ f − πθ(f)||Ψ2(φ◦V p) ≤ CK||f ||Ψ2(φ◦V p) .

In order to simplify the notations, we will only consider in the following the
pair of inverse Young functions Ψ1(x) = qx1/q and Ψ2(x) = sx1/s. The same
reasoning could be carried out for any other pair of Young functions by adapting
the hypotheses (H1) and (H2).

We now state several hypothesis that we will need to prove the condition
(A3). The first one concerns the choice of the inverse Young functions with re-
spect to the rate of convergence and the regularity of Hθ. With p as defined in
(DRI), we suppose:

(H1) For any compact K, it exists q > 0 and s ≥ p with 1/q + 1/s = 1
such that:∑

k≥0

1

r
1/q
k

<∞ and sup
θ∈K
||Hθ||(φ◦V p)1/s <∞ .

Remark 3.3. Most of the polynomial rates of convergence satisfy this hypothe-
sis. The assumption s ≥ p is necessary to control the V -norm by the (φ ◦ V p)1/s-
norm.

We then need hypotheses on the regularity of Hθ and Pθ. Two of them are
similar to the ones presented in [5] while the first one will help us to conclude
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on the validity of Eq. (5).

(H2) For any compact K, it exists a constant β ∈ [0, 1] such that

(i) there exists T ∈ N and α ∈ (0, 1) such that

sup
θ,θ′∈K

T ||θ − θ′||β−α + ||θ − θ′||−α
∑
k≥T

1

r
1/q
k

<∞ .

(ii) there exists C such that for all x ∈ X ,

sup
θ,θ′∈K

|θ − θ′|−β |Hθ(x)−Hθ′(x)| ≤ CV p(x)

(iii) there exists C such that for all θ, θ′ ∈ K,

||Pθg − Pθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s |θ − θ′|β ∀g ∈ L(φ◦V p)1/s .

Remark 3.4. The condition (H2-i) can be easily verified for r
1/q
k = kd with

d > 1. Indeed, we know that
∑∞
k=T

1
kd
∼ 1

(d−1)Td−1 . Hence, if 0 < α < 1, we

choose T =
⌊
||θ − θ′||−

α
d−1
⌋

and we have:

||θ − θ′||−α
∞∑
k=T

1

kd
∼θ→θ′

1

d− 1
.

Moreover, T ||θ−θ′||β−α = ||θ−θ′||β−α−
α
d−1 . Choosing α such that β−α− α

d−1 >

0 i.e. α < β d−1
d allows us to conclude.

Finally, due to the subgeometric ergodicity, we are unable to iterate the drift
condition without causing divergent quantities to appear. This iteration was
however one of the key of the proof of the condition 7. To overcome this prob-
lem, we add one last hypothesis on the behaviour of φ on the petite set C defined
by assumption (DRI):

(H3) It exists δ > 0 such that, ∀x ∈ C,

φ ◦ V p(x) ≥ δV p(x) .

Remark 3.5. It is interesting to remark that asking for this condition on the
whole set X implies the geometric ergodicity of the chain. However, we only ask
it on the petite set C on which we have some freedom. In fact, in most cases,
this condition will be easy to verify. Indeed, according to the theorem 16.1.9. of
[15], we can choose C = {V p ≤ d} with d > 0. Hence, if this set is compact (true
if V is continuous and V (x) −→x→∞ ∞) and if (φ ◦ V p)1/s/V p is continuous,
(H3) is verified.
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We can now state our major theorem:

Theorem 3.1. Assume (DRI) and (H1)-(H3). Then, the condition (A3) is
verified. In particular, if (A1), (A2) and (A4) are also verified we can apply the
theorem 2.1 to conclude that limk→∞d(θk,L) = 0

4. Proof of the theorem 3.1

4.1. Sketch of proof

The proof follows the principal ideas of [5]. However, due to the fact that our
Markov chain is no longer supposed to be geometric ergodic, we need several
new arguments.

The first important result is the fact that we are able to control the V -norm
by the (φ ◦ V p)1/s-norm under the hypothesis (H1). This is particularly impor-
tant as we need to choose W = V p in (A3) to be able to find an upper bound of
the expectation of W p(Xk)1σ(K)∧νε≥k (see Eq. (7)). Hence, we use this control
of the V -norm to control the different quantities in Eq. (3), (4) and (5) using
the rate of convergence given by Eq (10). This control is given by the lemma 4.1.

Using this lemma, we can control the norm of the solution of the Poisson
equation using the subgeometric ergodicity. This is explicited lemma 4.2.

We then want to prove the condition (5) (lemma 4.5). Using once again a
decomposition of the solution of the Poisson equation, we see that we need reg-
ularity conditions on θ 7→ Pθ and h. The regularity of θ 7→ Pθ is given by the
condition (H2) while we prove the Hölder continuity of h in lemma 4.4.

Finally, while the condition (6) is easily proved by iterating the drift condi-
tion, we still need to prove the condition (7). In [5], the authors prove it using
the same argument which does not hold anymore for us as this iteration can
make appear divergent quantities. That is why we need to state the condition
(H3). It is under this final condition that we are able to iterate an upper bound
of the drift and to prove (7) in lemma 4.6.

After this final step, we have all the tools necessary to prove the theorem 3.1.

We will now present and prove with details the different lemmas introduced
above and implying each of the conditions in (A3) before proving the theorem
3.1.
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4.2. Proof of Eq. (4)

First, using (H1), we show that we can control the V -norm using the (φ ◦ V p)1/s-
norm:

Lemma 4.1. Assume (H1). Then, it exists C > 0 such that, for all g ∈
L(φ◦V p)1/s ,

||g||V ≤ C||g||(φ◦V p)1/s .

Proof. φ is concave and increasing so, ∀v ≥ 1, φ(v) ≤ φ′(1)(v − 1) + φ(1) ≤ cv
with c a positive constant. Hence, for all x ∈ X , since s ≥ p and V (x) ≥ 1,

(φ ◦ V p)1/s(x) ≤ c1/sV p/s(x) ≤ c1/qV (x)

which allows us to verify the announced inequality.

We can now prove the equation (4).

Lemma 4.2. Suppose (DRI). Then, the Poisson equation g−Pθg = Hθ−πθ(Hθ)
has a solution gθ. Moreover, under (H1),

sup
θ∈K
||gθ||V <∞ and sup

θ∈K
||Pθgθ||V <∞ .

Proof. The proposition [21.2.4] of [15] states the existence of a solution gθ of the
Poisson equation under the subgeometric ergodicity conditions (DRI) verifying:

gθ(x) =
∑
k≥0

(
P kθ Hθ(x)− h(θ)

)
.

Moreover, we know that for all compact K, it exists a constant C and a conver-
gence rate (rk)k∈N independent of θ ∈ K such that, for all f ∈ L(φ◦V p)1/s , for
all θ ∈ K,

r
1/q
k ||P

k
θ f − πθ(f)||(φ◦V p)1/s ≤ C||f ||(φ◦V p)1/s .

Hence, using lemma 4.1,

r
1/q
k ||P

k
θ f − πθ(f)||V ≤ r1/q

k C||P kθ f − πθ(f)||(φ◦V p)1/s

≤ C||f ||(φ◦V p)1/s .

Since h(θ) = πθ(Hθ) and using (H1), we have that:

||gθ||V ≤
∑
k≥0

||P kθ Hθ − πθ(Hθ)||V ≤ C||Hθ||(φ◦V p)1/s

∑
k≥0

1

r
1/q
k

<∞ .

Finally, we can use the same argument for Pθgθ to prove that supθ∈K ||Pθgθ||V <
∞.
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4.3. Proof of Eq. (5)

We now want to prove the condition given by Eq. (5). In particular, we need
hypotheses on the regularity in θ of Hθ and Pθ presented in condition (H2). We
begin by proving two lemma implying the Hölder continuity of h.

Lemma 4.3. Assume (DRI), (H1) and (H2). Then, there exists a constant C
such that, for all g ∈ L(φ◦V p)1/s and any k ≥ 0,

sup
θ,θ′∈K

|θ − θ′|−β ||P kθ g − P kθ′g||V ≤ C||g||(φ◦V p)1/s .

Proof. This result is a consequence of (H2-iii). Indeed, we can write, for all θ,
θ′ in K, all k ∈ N and all g ∈ L(φ◦V p)1/s ,

P kθ g − P kθ′g =

k−1∑
j=0

P jθ (Pθ − Pθ′)(P k−j−1
θ′ g(x)− πθ′(g)) .

But, using Eq. (10), we know that,

sup
θ∈K
||P lθ − πθ||(φ◦V p)1/s ≤

C

r
1/q
l

.

Hence, supl∈N,θ∈K ||P lθ||(φ◦V p)1/s <∞.
Finally, using this result and (H2-iii),

||P kθ g − P kθ′g||V ≤ C||P kθ g − P kθ′g||(φ◦V p)1/s

≤ C||θ − θ||β
k−1∑
j=0

||P k−j−1
θ′ g(x)− πθ′(g)||(φ◦V p)1/s

≤ C||θ − θ||β ||g||(φ◦V p)1/s

k−1∑
j=0

1

r
1/q
k

.

We obtain the result using the convergence of the sum of the 1/r
1/q
k .

We now prove that h is α-Hölder for any α in (0, β). We will use this property
to finally be able to prove (5).

Lemma 4.4. Assume (DRI), (H1) and (H2). Then, for all α ∈ (0, β),

sup
θ,θ′∈K

||θ − θ′||−α|h(θ)− h(θ′)| <∞ .

Proof. We use the following decomposition of |h(θ) − h(θ′)| for x0 ∈ X and
k ∈ N:

|h(θ)− h(θ′)| = |A(θ, θ′) +B(θ, θ′) + C(θ, θ′)|

with:



/Convergence of Stochastic Approximations 13

A(θ, θ′) = h(θ)− P kθ Hθ(x0) + P kθ′Hθ′(x0)− h(θ′)

B(θ, θ′) = P kθ Hθ(x0)− P kθ′Hθ(x0)

C(θ, θ′) = P kθ′Hθ(x0)− P kθ′Hθ′(x0) .

From lemma 4.3, hypothesis (H2-ii) and (DRI), we obtain the following in-
equalities:

|A(θ, θ′)| ≤ C

r
1/q
k

||Hθ||(φ◦V p)1/s(φ ◦ V p)1/s(x0)

|B(θ, θ′)| ≤ C||Hθ||(φ◦V p)1/s ||θ − θ′||β(φ ◦ V p)1/s(x0)

|C(θ, θ′)| ≤
∫
X
P kθ′(x0, dy)|Hθ(y)−Hθ′(y)|

≤ C||θ − θ′||β
∫
X
P kθ′(x0, dy)V p(y)

≤ C||θ − θ′||βV p(x0) .

Hence, using the fact that supθ∈K ||Hθ||(φ◦V p)1/s <∞ and (φ ◦ V p)1/s ≤ cV p,
we find

|h(θ)− h(θ′)| ≤ CV p(x0)

(
||θ − θ′||β +

1

r
1/q
k

)
.

Finally, because 1

r
1/q
k

→ 0, it exists k ∈ N such that 1

r
1/q
k

< ||θ − θ′||β which

concludes the proof.

Finally, we can state the condition (5).

Lemma 4.5. Assume (DRI), (H1) and (H2). Then,

sup
θ,θ′∈K

|θ − θ′|−α (||gθ − gθ′ ||W + ||Pθgθ − Pθ′gθ′ ||W ) <∞ .

Proof. Using (H2-iii), lemma 4.3 and 4.4, we have that, for x ∈ X , k ∈ N and
θ, θ′ ∈ K,

Dk(x, θ, θ′) := ||P kθ Hθ(x)− h(θ)− P kθ′Hθ′(x) + h(θ′)||
≤ ||P kθ Hθ(x)− P kθ Hθ′(x)||+ ||P kθ′Hθ′(x)− P kθ Hθ′(x)||+ ||h(θ)− h(θ′)||
≤ C||θ − θ′||βV p(x) .

On the other hand, using the ergodicity of the Markov Chain, we have that:

Dk(x, θ, θ′) ≤ C

r
1/q
k

(φ ◦ V p)1/s(x) .
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Hence for t = 0 or 1 and any T ≥ t,
||θ − θ′||−α||P tθgθ − P tθ′gθ′ ||V ≤ C||θ − θ′||−α||P tθgθ − P tθ′gθ′ ||(φ◦V p)1/s

≤ C

(T − t)||θ − θ′||β−α + ||θ − θ′||−α
∑
i≥T

1

r
1/q
k

 .

Hence, we can use (H2-i) to conclude the proof.

Finally, under (DRI), (H1) and (H2), we are able to prove the first item of
(A3). We still have to prove the second and third item. The second item is easily
proved using the drift condition:

E∆
x,θ(V

p(Xk)1σ(K)≥k) ≤ E∆
x,θ

[
E∆
x,θ(PV

p(Xk−1)|Fk−1)
]

≤ E∆
x,θ(V

p(Xk−1)) + b ≤ V p(x) + kb

and we conclude using the fact that V p(x) ≥ 1.

Hence, we only need to prove the last item of (A3).

4.4. Proof of Eq. (7)

Under geometrical ergodicity, iterating the drift condition is enough to prove the
necessary inequality. However, in the subgeometric case, this iteration can make
appear a divergent sum. To overcome this difficulty, we will use the condition
(H3).

Lemma 4.6. Assume (DRI) and (H3). Then, there exist ε and a constant C
such that for any sequence ∆ and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)∧νε≥k] ≤ CW p(X) .

Proof. Using (DRI) and (H3), we have that, for all x ∈ X ,

PV p(X) ≤ V p(x)− φ ◦ V p(x) + b1C(x) .

Hence, if x /∈ C, PV p(x) ≤ V p(x) and, if x ∈ C, PV p(x) ≤ (1− δ)V p(x) + b.

We first consider the case δ ≥ 1. In that case, if x ∈ C, PV p(x) ≤ b. Hence,
by induction, E∆

x,θ

(
V (Xk)1σ(K)∧ν(ε)≥k

)
≤ V (x) + b.

If δ < 1, we note τk = Card(Xi|Xi ∈ C for 1 ≤ i ≤ k). Then, by induction,

E∆
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
= E∆

x,θ

(
E∆
x,θ

(
PV p(Xk−1)1σ(K)∧ν(ε)≥k

∣∣∣Fk−1

))
≤ E∆

x,θ

(
(1− δ1Xk−1∈C)V p(Xk−1) + b1Xk−1 /∈C

)
≤ E∆

x,θ

(
(1− δ)τkV p(x) + b

τk−1∑
i=0

(1− δ)i
)

≤ V p(x) +
b

1− δ
.
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Since V p(x) ≥ 1, we can conclude the proof.

4.5. Proof of Theorem 3.1

We can now finalize this section by proving the theorem 3.1 using the different
lemma previously presented.

Proof. Using lemma 4.1 and hypothesis (H1), we immediately obtain the first
inequality in hypothesis (A3-i). The next two conditions are given respectively
by 4.2 and 4.5. The last conditions are a consequence of lemma 4.6.

5. Example: Symmetric Random Walk Metropolis Hastings
(SRWMH)

5.1. Presentation of the algorithm

The SRWMH is a popular algorithm allowing for sampling from a distribution
π. It consists at simulating a Markov Chain (Xn) whose stationary distribution
is π. The user chooses a symmetric proposal distribution q. At each step, if the
chain is currently at x, a candidate y for Xn+1 is proposed using q(x− .). This
candidate is then accepted with probability:

α(x, y) =

{
1 ∧ π(y)

π(x) if π(x) 6= 0

1 otherwise.
(11)

If the candidate is rejected, the chain stays at its current location x. The tran-
sition kernel of this Markov Chain is: ∀x ∈ X ,∀A ∈ B(X ),

P (x,A) =

∫
A

α(x, y)q(x− y)λLeb(dy) +1A(x)

∫
X

(1−α(x, y))q(x− y)λLeb(dy) .

(12)
The choice of the proposal distribution q is of crucial importance. In particu-

lar, proposal distributions with a too small or too large covariance matrix leads
to a highly correlated Markov Chain. To overcome this difficulty, the authors of
[19] have proposed to learn the covariance matrix while sampling the Markov
Chain leading to adaptive MCMC samplers. We note θ = (µ,Γ) and we suppose
that we can choose qθ such that V ar(qθ) = Γ. For instance, if we choose to work
with Gaussian distributions, qθ is the density of the distribution N (0,Γ). We
then write Pθ the kernel of the SRWMH when the proposal is qθ.

The authors of [19] choose to adapt the value of Γ using the following algo-
rithm: {

µn+1 = µn + ∆n+1(Xn+1 − µn)
Γn+1 = Γn + ∆n+1

(
(Xn+1 − µn)(Xn+1 − µn)T − Γn

) (13)
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with Xn+1 ∼ Pθn(Xn, .) where θn = (µn,Γn) and with (∆n) a nonincreas-
ing sequence of step sizes such that

∑∞
n=1 ∆n = ∞ and, for some b > 0,∑∞

n=1 ∆1+b
n <∞.

This procedure is in fact a stochastic approximation:

θn+1 = θn + ∆n+1Hθn(Xn+1)

with
Hθ(x) = (x− µ, (x− µ)(x− µ)T − Γ) . (14)

Moreover, assuming that
∫
X x

2π(dx) <∞, one can verify that:

h(θ) =
(
µπ − µ, (µπ − µ)(µπ − µ)T + Γπ − Γ

)
.

This algorithm has already been studied in [5]. In that paper, the authors
make an hypothesis on the tail properties of the target distribution that implies
the geometric ergodicity of the Markov Chain Pθ. Under this hypothesis, the
authors prove that the conditions (A1)-(A4) are verified and so prove the con-
vergence of the algorithm.
With our framework, we are able to loosen the hypothesis on π to give condi-
tions under which we have a subgeometric ergodicity of the Markov Chain Pθ
and still guarantee convergence of the algorithm.

In [5], the verification of the condition (A1) does not use the behaviour of
the tail of π. Hence, it will stay true in our case and we can state it here:

Proposition 5.1. Let

w(µ,Γ) = −
∫
X

log

(
π(x)

φµ,Γ

)
π(dx)

where φµ,Γ is the normal density of mean µ and variance Γ. Then, this w verifies
(A1). Furthermore, L is reduced to a single point θπ := (µπ,Γπ).

To prove (A3), we need some hypothesis on the behaviour of π. In particular,
we will verify that we can apply the theorem 3.1 under two sets of hypotheses.
The first contains among others the Weibull distributions while the second one
includes the Pareto distributions. Those two sets of hypotheses as well as the
proof of the condition (A3) are detailed in the following subsections.

5.2. First family of distributions (including the Weibull one)
satisfying our assumptions

In [14] and [18], the authors present a set of hypotheses on the target and
proposal distributions that imply the subgeometric ergodicity of the Markov
Chain. The first hypothesis concerns the target distribution:
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(E1) The target density π is continuous and positive on Rd and there
exist m ∈ (0, 1), r ∈ (0, 1), positive constants di, Di, i = 0, 1, 2 and
R0 <∞ such that, if |x| ≥ R0, x 7→ π(x) is twice continuously
differentiable and 〈

∇π(x)

|∇π(x)|
,
x

|x|

〉
≤ −r

d0|x|m ≤ − lnπ(x) ≤ D0|x|m

d1|x|m−1 ≤ − ln∇π(x) ≤ D1|x|m−1

d2|x|m−2 ≤ − ln∇2π(x) ≤ D2|x|m−2 .

Among others, the Weibull distribution on R+ π : x 7→ βηxη−1 exp(−βxη)
with β > 0 and η ∈ (0, 1) verifies those conditions.
We also need some conditions on the proposal distribution:

(E2) there exists ε > 0 and r <∞ such that y < r =⇒ qθ(y) ≥ ε.
Moreover, qθ is symmetric and bounded away from zero in a
neighborhood of zero, is compactly supported i.e. it exists c(qθ) such
that, for all |y| > c(qθ), q(y) = 0 and it exists C > 0, β ∈ (0, 1) such
that for all θ, θ′ ∈ Θ,∫

X

|qθ(z)− qθ′(z)|λLeb(dz) ≤ C|θ − θ′|β .

Remark 5.1. This compactly supported condition could be relaxed with appro-
priate moment conditions.

We can now prove the following theorem:

Theorem 5.1. Let π and qθ be distributions satisfying (E1) and (E2) and
consider the processus defined in (13) with ε and ∆ two sequences verifying
(A4). Then, (A1), (A2) and (A3) are verified. Moreover, θn → θπ w.p. 1 where
θπ := (µπ,Γπ) is the unique stationary point of (θn).

Proof. According to the theorem 3.1 of [14], if (E1) and (E2) are satisfied, it
exists ξ0 such that for all ξ ≤ ξ0, it exists c > 0, W = π−ξ and φ(v) =

cx(1 + ln(x))−2 1−m
m verifying:

PW + φ ◦W ≤W + b1C .

Hence, we have a subgeometric drift condition. It is then possible to compute
the associated rate of convergence: rk = exp(cx

m
2−m ).

As stated in proposition 5.1, the condition (A1) is verified and (A2) is satis-
fied using the theorem 2.2 of [28].
We will prove (A3) using the theorem 3.1.
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First, the condition (DRI) is verified with V 2 = W and p = 2. Indeed, the
drift condition is given above while the existence of small sets is insured given
the continuity of π and hypothesis (E2) (see Theorem 2.2 of [28]).

We then verify the hypothesis (H1). Given the value of rk, the sum of the

r
1/q
k will be finite for any q > 0. Moreover, supθ∈Θ ||Hθ||(φ◦V p)1/s < ∞ if and

only if x2πξ/s(x)(1 − ξ lnπ(x))
2(1−m)
sm < ∞. This will be true for any s > 0 as

π(x) ≤ exp(−D0x
m).

Concerning (H2), as discussed in remark 3.4, (H2-i) is verified for polynomial

rates of convergence kd with d > q. Using the fact that r
1/q
k > kd for k big

enough, we can conclude that (H2-i) is verified in this case.
To verify (H2-ii), we remark that

|Hθ(x)−Hθ′(x)| ≤ |µ− µ′|(1 + |µ+ µ′|+ 2|x|) + |Γ− Γ′| .

Since ||x||V p <∞, we obtain the inequality (H2-ii) for any β ≤ 1.
We now interest ourselves in (H2-iii). using the definition of the kernel Pθ, we
have that

|Pθg(x)− Pθ′g(x)| ≤
∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|g(x+ z)λLeb(dz)

+ g(x)

∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|λLeb(dz)

≤ ||g||(φ◦V p)1/s(φ ◦ V p)1/s(x)
(∫

X

α(x, x+ z)|qθ(z)− qθ′(z)|
(φ ◦ V p)1/s(x+ z)

(φ ◦ V p)1/s(x)
λLeb(dz)

+

∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|λLeb(dz)
)
.

Hence, writing W = (φ ◦ V p)1/s, we need to study:

α(x, x+ z)
W (x+ z)

W (x)
=

(
1 ∧ π(x+ z)

π(x)

)
π−ξ(x+ z)(1− ξ lnπ(x+ z))−

2(1−m)
m

π−ξ(x)(1− ξ lnπ(x))−
2(1−m)
m

.

But, if π(x+ z) ≥ π(x), this function is always less than 1.

If π(x+z) ≤ π(x), we use the growth of the function Φ(u) = u1−ξ(1−ξ ln(u))
for u ≤ 1 and ξ small enough. Hence, we deduce once again that the function is
less than 1.

Finally,

|Pθg(x)− Pθ′g(x)| ≤ 2||g||(φ◦V p)1/s(φ ◦ V p)1/s(x)

∫
X

|qθ(z)− qθ′(z)|λLeb(dz) .

Hence, the hypothesis (E2) allows us to conclude on the validity of (H2-iii).



/Convergence of Stochastic Approximations 19

Finally, we just have the hypothesis (H3) to prove. According to the theorem
16.1.9 of [15], C can be chosen as {V ≤ d} with d ∈ [0,∞). But, V p converges
towards infinity at infinity and is continuous so, C is compact. Hence, there ex-
ists a lower bound of φ◦V p

V p continuous on C and (H3) is verified.

All the hypothesis of the theorem 3.1 are thus verified and we can apply it
to conclude.

Hence, we have proven the convergence of the Metropolis Hastings algorithm
under a subgeometric ergodicity condition. In the next subsection we will inter-
est ourselves in the case where the rate of convergence is not only subgeometric
but polynomial and, once again, prove the convergence of a stochastic approxi-
mation.

5.3. Second usual family (including the Pareto distribution) covered
by our framework

In [18], the authors give other conditions on the target density for the SRWMH
kernel to be subgeometric ergodic when we work in R:

(E3) π is continuous on R and there exist some finite constants α > 1,
M > 0, C > 0 and a function ρ : R→ [0,∞) verifying
limx→∞ ρ(x) = 0 such that for all |x| > M , π is strictly decreasing
and, for all y ∈ {z ∈ R|π(x+ z) ≤ π(x)},∣∣∣∣π(x+ y)

π(x)
− 1 + αyx−1

∣∣∣∣ ≤ C|x|−1ρ(x)y2 .

This class of distributions contains in particular the Pareto distributions (π(x) ∝
x−α) as well as many heavy tail distributions. We also need some hypothesis on
our proposal:

(E4) there exists ε > 0 and r <∞ such that y < r =⇒ qθ(y) ≥ ε.
Moreover, qθ is symmetric and there exists ξ ≥ 1 such that∫
|y|ξ+3qθ(y)dy <∞.

Under those conditions, we can state the following proposition, proved in [18].

Proposition 5.2. Assume (E3) and (E4). Set u = ξ∧α+1 and W (x) = 1+|x|u.
Then, it exists c > 0 and a small set C such that, if we set φ(x) = cx1−2/u,

PθW (x) + φ ◦W (x) ≤W (x) + b1C .

Under such a drift condition, we are able to deduce the rate of convergence
using the value of φ [14]: for all k ∈ N, rk ∝ ku/2−1.
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Theorem 5.2. Let π and qθ be distributions on R satisfying (E3) and (E4) with
ξ ∧ α > 5 and consider the model defined in (13) with ε and ∆ two sequences
verifying (A4). Assume also that (H2-iii) is verified. Then, (A1), (A2) and
(A3) are verified. Moreover, θn → θπ w.p. 1 where θπ := (µπ,Γπ) is the unique
stationary point of (θn).

Remark 5.2. In this theorem, we suppose that (H2-iii) is verified. This con-
dition depends of the function π. Given the functions V and φ chosen here, we
need, ∀x, z ∈ R, π(x+ z) ≤ π(x) =⇒ π(x+z)

π(x)

(
1+|x+z|u

1+|x|u

)u−2
us ≤ C

π(x+ z) ≥ π(x) =⇒ |x+ z| ≤ C|x| .
(15)

Other conditions can appear if V or φ have another form. It was the case in
the previous subsection when we have been able to prove this condition under
the conditions (E1) and (E2). We prove this particular condition in the next
section for the Pareto distribution.

Proof. (A1) is stated in proposition 5.1.
Under (E3) and (E4), Pθ is ψ-irreductible (see theorem 2.2 of [28]). Hence, we
have existence and unicity of the invariant distribution πθ. Moreover, H is mea-
surable. Hence, (A2) is verified.
We still need to verify (A3). To do so, we will use the theorem 3.1 and prove
the hypotheses (DRI) and (H1)-(H3).
The proposition 5.2 ans the theorem 2.2 of [28] give us the validity of (DRI)
with p = 2 and W = V 2.

We now prove (H1). First,
∑
k≥0

1

r
1/q
k

is finite for all q < u−2
2 . Moreover, for

any K compact of R × R∗+, since (φ ◦ V p)1/s = (1 + |x|u)
u−2
us and since Hθ is

quadratic, supθ∈K ||Hθ||(φ◦V p)1/s < ∞ if and only if q > u−2
u−4 . Hence, we need

to choose q such that:
u− 2

u− 4
< q <

u− 2

2
. (16)

Since u > 6, such a q exists. Moreover, because u−2
2 > 2 = p, we can also

choose s > p. Hence, the condition (H1) is verified.

Concerning (H2), as discussed in remark 3.4, (H2-i) is verified if u/2−1
q > 1

which is true given Eq. (16).
Concerning (H2-ii), we have that

|Hθ(x)−Hθ′(x)| ≤ |µ− µ′|(1 + |µ+ µ′|+ 2|x|) + |Γ− Γ′| .

Since ||x||V p <∞ because u ≥ 1, we obtain the inequality (H2-ii) for any β ≤ 1.

Hence, we only have to prove (H3) to conclude. According to the theorem
16.1.9 of [15], C can be chosen as {V ≤ d} with d ∈ [0,∞). In particular,
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since V p(x) = 1 + |x|u, it exists d1 > 0 such that {V ≤ d} = [0, d1]. But,

x 7→ (φ◦V p)1/s(x)
V p(x) is continuous hence, bounded on the compact [0, d1]. Thus,

(H3) is verified.

We have proved the convergence of the Metropolis Hastings algorithm under a
set of hypothesis implying a polynomial rate of convergence. In the next section,
we show that those hypotheses are verified for the Pareto distribution with a
scale parameter more than 5.

5.4. Application to the Pareto distribution

In this application, we choose to study the case where the target distribution π
is a Pareto distribution and the proposal qθ is a normal distribution N (0,Γ). As
showed in [18], the Pareto distribution π(x) ∝ |x|−α verifies the condition (E3).
Moreover, (E4) is satisfied for any ξ > 0. Hence, when applying the theorem
5.2, we need α ∧ ξ > 5 i.e. α > 5.

We now show that the Pareto distribution verifies the condition (H2-iii):

Lemma 5.3. Suppose that π is a Pareto distribution with shape α > 5 and,
for θ = (µ,Γ), qθ is the normal distribution N (0,Γ). Then, if Pθ is the kernel
defined in (12) and K is a compact of R∗+, there exists C such that for all
θ, θ′ ∈ K and for all g ∈ L(φ◦V p)1/s

||Pθg − Pθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s |θ − θ′|β .

Proof. As done in the proof of the theorem 5.1, writing W = (φ ◦ V p)1/s, we
need to find an upper bound to:∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|
W (x+ z)

W (x)
λLeb(dz)

=

∫
X

(
1 ∧ |x|α

|x+ z|α

)
(1 + |x+ z|α+1)

α−1
s(α+1)

(1 + |x|α+1)
α−1
s(α+1)

|qθ(z)− qθ′(z)|λLeb(dz) .

But, if |x+ z|α ≤ |x|α,

(1 + |x+ z|α+1)
α−1
s(α+1)

(1 + |x|α+1)
α−1
s(α+1)

≤ 1 .

Similarly, if |x+z|α ≥ |x|α, using Eq. (16), we have that s > 1 ≥ α−1
α . Hence,

|x|α

|x+ z|α
(1 + |x+ z|α+1)

α−1
s(α+1)

(1 + |x|α+1)
α−1
s(α+1)

≤
∣∣∣1 +

z

x

∣∣∣−α(1 +
∣∣∣1 +

z

x

∣∣∣α+1
) α−1
s(α+1)
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is bounded.

Finally, it exists C > 0 such that:

|Pθg(x)− Pθ′g(x)| ≤ C||g||(φ◦V p)1/s(φ ◦ V p)1/s(x)

∫
X

|qθ(z)− qθ′(z)|dz .

But it has already been proved in [5] that, if qθ is the normal distribution of
variance Γ, for any Γ,Γ′ in a compact subset K of R∗+,∫

R
|qθ(z)− qθ′(z)|dz ≤

1

Γmin
|Γ− Γ′|

where Γmin is the minimum value of K which allows us to conclude for any
β ≤ 1.

Theorem 5.4. Suppose that π is a Pareto distribution with shape α > 5 and,
for θ = (µ,Γ) ∈ Θ = R×R∗+, qθ is the normal distribution N (0,Γ). Let (Zn)n∈N
be the Markov chain as described in 2 with Pθ defined in (12) and H defined
in (14). Suppose that (∆n)n∈N and (εn)n∈N are two sequences verifying (A4).
Then, θn → θπ = (µπ, θπ) w.p. 1.

Proof. It is a consequence of the theorem 5.2 and lemma 5.3. All the conditions
have already been proved.

6. Conclusion

We have been able to relax the condition of geometric ergodicity previously
needed to ensure the convergence of stochastic approximations with Markovian
dynamics. The new theorem implies the convergence for Markov Chains that
are only subgeometric ergodic with mild hypotheses on the rate of convergence
and the drift condition. In particular, this enables us to prove the convergence
of a Metropolis Hastings algorithm with adapted variance, first in the case of
the Weibull distribution with a shape parameter between 0 and 1 and then in
the case of the Pareto distribution with a shape parameter more than 5. This
new theorem should hence be applicable in a broader range of cases where the
geometric ergodicity is not verified.

References

[1] Abounadi, J., Bertsekas, D. P. and Borkar, V. (2002). Stochastic ap-
proximation for nonexpansive maps: Application to Q-learning algorithms.
SIAM Journal on Control and Optimization 41 1–22.

[2] Allassonnière, S., Durrleman, S. and Kuhn, E. (2015). Bayesian
mixed effect atlas estimation with a diffeomorphic deformation model.
SIAM Journal on Imaging Sciences 8 1367–1395.



/Convergence of Stochastic Approximations 23

[3] Allassonnière, S., Kuhn, E., Trouvé, A. et al. (2010). Construction
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